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to protein aggregation in ALS. The precise pathological 

effects of protein aggregation remain largely unknown, but 

experimental evidence hints at both gain- and loss-of-func-

tion mechanisms. Here, we discuss recent advances in our 

understanding of the molecular make-up, formation, and 

mechanism-of-action of protein aggregates in ALS. Further 

insight into protein aggregation will not only deepen our 

understanding of ALS pathogenesis but also may provide 

novel avenues for therapeutic intervention.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurode-

generative disease caused by the loss of both upper and 

lower motor neurons. Affected patients develop progressive 

muscle weakness eventually leading to death due to res-

piratory failure, typically 3–5 years after symptom onset. 

ALS affects ~2 out of 100,000 individuals per year [76]. In 

the majority of patients the disease occurs sporadic and is 

referred to as sporadic ALS (SALS). In 5 % of cases there 

is a family history of ALS (FALS) [29]. The presence of 

protein aggregates in affected motor neurons is a charac-

teristic, but still poorly understood hallmark of SALS 

and FALS patients. Recently, many new ALS causing 

gene defects have been identified including mutations in 

HNRNPA1, PFN1, C9ORF72, UBQLN2, OPTN, VCP, FUS 

and TARDBP [1, 105]. Most of these mutations are rare and 

cause ALS in a small subgroup of patients. Remarkably, 

however, the proteins encoded by these genes are present 

in protein aggregates of a large proportion of non-mutation 
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carriers indicating a more widespread role for their abnor-

mal localization in ALS pathogenesis (Table 1). Moreover, 

some of these proteins are present in pathological aggre-

gates of other neurodegenerative disorders such as fron-

totemporal lobar degeneration (FTLD), spinocerebellar 

ataxia (SCA), Huntington’s disease, Alzheimer’s disease 

and inclusion body myositis (IBM), indicating a more gen-

eral involvement in neurodegeneration.

Despite clear evidence that protein aggregation is central 

to the pathology of ALS many questions remain about the 

role, formation and mechanism-of-action of protein aggre-

gates in ALS. What drives deposition of proteins in ALS? 

Which cellular mechanisms contribute to protein aggrega-

tion or are affected by it? Furthermore, what is the role of 

proteins carrying ALS-associated mutations in aggregate 

formation? Pathological, cell culture and animal studies 

are now beginning to provide insights into these important 

questions. We will give an overview of the characteristics 

of aggregates observed in motor neurons of ALS patients 

and the relationship between protein aggregation, neuro-

toxicity and disease severity in cellular and animal model 

systems. We will then discuss possible underlying molecu-

lar mechanisms in protein aggregation and neuronal degen-

eration and provide directions for future research. Although 

an ever-increasing number of proteins is being implicated 

in ALS pathogenesis, the emphasis here is on the most 

recently discovered proteins and those present in spinal 

cord aggregates.

Novel insights into the molecular makeup and 

formation of cellular aggregates in ALS

The central pathological hallmark of ALS is the presence of 

cytoplasmic inclusions or aggregates in degenerating motor 

neurons and surrounding oligodendrocytes. Inclusions are 

not restricted to the spinal cord but also present in other 

brain regions such as the frontal and temporal cortices, 

hippocampus and cerebellum [1]. The predominant aggre-

gates found in ALS patients are ubiquitinated aggregates 

that are classified as either Lewy body-like hyaline inclu-

sions or skein-like inclusions. At the ultrastructural level, 

Lewy body-like or skein-like inclusions appear as ran-

domly oriented filaments covered by fine granules [78, 129, 

166]. Additional subclasses of aggregates found in ALS 

are Bunina bodies, which are small eosinophilic ubiqui-

tin-negative inclusions [158] and round hyaline inclusions 

without a halo. Bunina bodies consist of amorphous elec-

tron-dense material surrounded by tubular and vesicular 

structures [158]. Furthermore, neurofilamentous inclusions 

are found in the axon hillock in close proximity to ubiqui-

tinated inclusions. Other cellular abnormalities include the 

presence of mitochondrial vacuolization, fragmentation of 

the Golgi apparatus and abnormalities at the neuromuscular 

junction. In 1993, SOD1 was the first protein to be iden-

tified to aggregate in FALS cases carrying a mutation in 

the SOD1 gene [167]. Later, mutations in VAPB were also 

shown to cause ALS in a group of FALS patients [154]. 

Due to exponential development of genetic techniques, 

several new proteins have been identified to be involved in 

ALS pathophysiology during the past few years, including 

TDP-43, FUS, OPTN, UBQLN2 and C9ORF72. In the fol-

lowing sections, we will discuss for each of these proteins 

the characteristics of the aggregated protein, their physi-

ological functions and effects in ALS disease models.

TAR DNA-binding protein 43 (TDP43)

Following the identification of SOD1 aggregates in a small 

subset of ALS patients, a breakthrough was achieved in 

2006 with the identification of TDP-43 as a major compo-

nent of ubiquitinated inclusions in FTLD and ALS cases 

[6, 150]. Non-mutated TDP-43 is found in aggregates in 

spinal cord motor neurons, hippocampal and frontal cor-

tex neurons and glial cells in all SALS patients and the 

vast majority of SOD-1-negative FALS patients, but not in 

SOD1 related ALS [133, 181] (Table 1). In frontotempo-

ral dementia (FTD), TDP-43 aggregates are present in the 

most common subtype of the disease, FTLD with ubiqui-

tinated inclusions, now referred to as FTLD-TDP [150]. 

ALS and FTD show a remarkable overlap at the genetic, 

symptomatic and pathological level and they may actually 

reflect two ends of a disease spectrum [33, 66]. TDP-43 

is also found to accumulate in Alzheimer’s disease, Lewy 

body disease and SCA2, secondary to other molecules [3, 

7, 60, 82] and even in normal control subjects over the age 

of 65 [67].

Normally TDP-43 predominantly localizes to the 

nucleus. In ALS patients, cytoplasmic aggregation is often 

accompanied by nuclear clearing of the protein [133, 150]. 

Furthermore, the protein is cleaved in C-terminal fragments 

of 18–26 and 35 kDa and the full-length protein and 18–

26 kDa fragments are hyperphosphorylated [78, 91, 150]. 

Genetic studies have identified mutations in the gene encod-

ing TDP-43, TARDBP, in 1–2 % of FALS and SALS cases 

[100, 192]. In non-ALS inclusions TDP-43 is also cleaved 

and hyperphosphorylated. However, banding patterns of 

TDP-43 cleavage products are distinct between ALS and 

FTLD-B and other FTLD subtypes [78, 91, 189]. Further-

more, the distribution of the TDP-43-positive aggregates is 

disease-specific with, for example, involvement of spinal 

cord motor neurons in ALS and a more widespread distribu-

tion in the brain in FTLD [12]. Mutations in TARDBP are 

unique to ALS and are not found in other neurodegenerative 

disorders [28, 168, 192] with the exception of a small num-

ber of FTD cases [18, 23, 24, 34, 35, 38, 111, 145].
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TDP-43 is a DNA and RNA binding protein that binds 

around 30 % of the mouse transcriptome with a prefer-

ence for long UG-rich sequences [163, 185] (Fig. 1). Target 

sequences are mainly intronic, but also include non-coding 

RNAs and 3′ UTRs. In line with this, TDP-43 plays a role 

in nuclear RNA metabolism including splicing, transcrip-

tional repression, miRNA synthesis, mRNA nucleo-cyto-

plasmic shuttling and RNA transport [117]. The majority 

of TDP-43 mutations identified to date are localized in the 

C-terminal glycine-rich domain of the protein (Fig. 1). This 

domain binds other hnRNPs and is important for the splic-

ing activity of TDP-43 [41].

Purified TDP-43 is prone to aggregation and this aggre-

gation tendency depends on its C-terminal domain and is 

enhanced by ALS-linked TDP-43 mutations [94, 95]. In 

line with endogenous staining patterns, overexpression of 

TDP-43 causes a predominant nuclear localization [99, 

130, 176, 199]. In addition, a small proportion of primary 

neuronal cells shows cytoplasmic localization, which is 

enhanced when TDP-43 mutants are overexpressed [13, 

54, 73, 99]. Recently, the first induced pluripotent stem cell 

(iPSC)-derived motor neurons were generated from fibro-

blasts of patients carrying a M337V TARDBP mutation 

[22]. Similar to control, the M337V TARDBP line showed 

predominant nuclear localization of TDP-43 but with addi-

tional granular staining in soma and neurites [22].

Overexpression of WT TDP-43 has a toxic effect in 

yeast and cultured primary neurons derived from rat or 

mouse embryo’s. This effect is even more prominent when 

mutant TDP-43 is overexpressed [13, 54, 73, 95, 99]. In 

most animal studies, overexpression of WT or mutant 

TDP-43 induces a motor phenotype and reduces life span, 

but results so far are limited to the toxic effects of TDP-

43 overexpression [12] (Supplementary Table). Although 

some studies report on increased toxicity in mutant as 

compared to WT transgenic lines [9, 180, 222], other stud-

ies do not report such differences [177, 212, 213]. As the 

toxic effects of TDP-43 are clearly dose-dependent [177, 

208, 213], some of these results may be dependent on the 

level of expression rather than on TDP-43 mutation-spe-

cific toxic effects. Furthermore, while it has been reported 

that TDP-43 WT overexpression has motor neuron-specific 

toxic effects coinciding with the presence of nuclear and 

cytoplasmic inclusions and pathological phosphorylation 

and cleavage of TDP-43 [89, 208, 213], overexpression of 

TDP-43 can be toxic without aggregate formation [9, 205].

Several factors modulate TDP-43 toxicity. First, the 

TDP-43 C-terminal fragments that are found in ALS spinal 

Fig. 1  Schematic representation of the domain organization of TDP-

43, FUS, ATXN2, OPTN and UBQLN2. Different protein domains 

are indicated in different colors (see legend). The location of ALS-

associated genetic alterations is depicted by sticks (mutations) or 

arrowheads (repeats). For C9ORF72 intronic and exonic regions are 

depicted; an intronic hexanucleotide repeat is causative of ALS/FTD 

(arrowhead). Boxes show a selection of relevant interactors for each 

of the depicted proteins
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cord aggregates are particularly aggregation-prone and 

toxic when overexpressed [13, 54, 88, 156, 221]. Second, 

the cytoplasmic distribution of TDP-43 has been reported 

to be related to cell death whereas inclusion body forma-

tion or nuclear TDP-43 levels were not [13]. In line with 

this, mutations of the nuclear localization signal (NLS) of 

TDP-43 confer toxicity while NES mutations abrogate tox-

icity [13]. Third, phosphorylation of TDP-43 may modu-

late aggregation and toxicity of the protein [26, 126]. In  

C. elegans blockage of TDP-43 phosphorylation ameliorates 

the neurodegenerative effect of ALS-associated TDP-43  

mutants [126, 127]. In contrast, another study reported 

that mutation of phosphorylation sites increased aggregate 

formation in cells and in Drosophila, whereas hyperphos-

phorylation reduced aggregation and toxicity [123]. In 

addition, mutation of TDP-43 phosphorylation sites does 

not affect C-terminal fragment formation, the formation of 

cytoplasmic inclusions or survival in cells [51, 153, 221]. 

Thus, although it is clear that TDP-43 plays a crucial and 

central role in ALS pathology many questions remain about 

its pathological mechanisms in ALS.

Fused in sarcoma/translocated in liposarcoma (FUS/TLS)

The discovery of ALS-linked mutations in TDP-43 fueled 

the identification of mutations in another RNA binding pro-

tein, FUS, in FALS patients [116, 196]. A series of genetic 

studies of large ALS cohorts showed that FUS mutations 

account for 4 % of FALS and 1 % of SALS cases and that 

these are in part associated with young-onset disease [117]. 

Pathological examination of post-mortem tissue of FUS 

mutation carriers shows predominant degeneration of lower 

motor neurons with FUS-positive cytoplasmic inclusions 

and a normal distribution of TDP-43, thereby distinguish-

ing them from other ALS cases [72, 80, 116, 196]. The pre-

cise pattern of FUS-immunoreactivity in ALS cases with-

out FUS mutations is still unclear (Table 1). Some studies 

report that FUS is not present in SALS patients and SOD1 

FALS [87, 149, 196], while others show FUS-positive 

inclusions with signals for TDP-43, p62 and ubiquitin in 

all SALS and FALS cases, except for SOD1 mutation carri-

ers [48, 103]. In contrast to TDP-43, biochemical analyses 

show that mutant FUS protein itself is not ubiquitinated, 

hyperphosphorylated or cleaved. However, the protein is 

enriched in the insoluble fraction of FTLD-FUS brains 

[149]. Furthermore, nuclear clearing of FUS is not as evi-

dent as observed for TDP-43.

FUS has also been detected in aggregates found in other 

neurodegenerative disorders including FTLD, Hunting-

ton’s disease and SCA indicating that disruption of WT 

FUS function is associated with neurodegenerative disease 

in general [50, 149]. However, in contrast to ALS, FTLD 

patients with FUS inclusions only rarely harbor genetic 

alterations in FUS [195]. Interestingly, FUS-positive inclu-

sions in FTLD cases are immunoreactive for TAF15 and 

EWS, other members of the FET family of RNA binding 

proteins, and for transportin-1 [147, 151]. Protein aggre-

gates in ALS cases with FUS mutations do not stain for 

these proteins.

FUS is a nuclear RNA binding protein and preferentially 

binds pre-mRNA at intronic sites, but also long non-coding 

RNAs, exons and 3′UTRs [84] (Fig. 1). Most of the ALS-

linked FUS mutations reported to date are localized in the 

NLS of the protein resulting in impaired nuclear transport 

of FUS [52]. FUS mediates a wide range of cellular pro-

cesses including DNA repair, transcription, splicing and 

miRNA processing [117]. The protein shuttles between the 

nucleus and the cytoplasm to function in the transport of 

mRNA [224].

Purified FUS is aggregation prone, but in contrast to 

TDP-43 this property may not be influenced by ALS-linked 

mutations [179]. In yeast, cytosolic aggregation of FUS 

depends on its N-terminal, RRM and first RGG domains 

(Fig. 1). Toxicity is dependent on the N-terminal and first 

RGG domains [97, 179]. It should be noted, however, that 

the NLS of FUS is not fully recognized in yeast suggest-

ing that this domain may still be involved in protein aggre-

gation. Following overexpression in eukaryotic cells, WT 

FUS localizes to the nucleus, whereas FUS proteins car-

rying ALS mutations in the NLS form cytoplasmic aggre-

gates, thereby mimicking human disease [116, 196]. This 

cytoplasmic relocalization is observed in some but not all 

FUS animal models reported to date [25, 32, 42, 86, 119, 

142, 198, 203, 211] (Supplementary Table).

Deletion of the NES in FUS strongly reduces toxicity 

of mutant FUS in Drosophila [119], suggesting that the 

cytoplasmic localization of mutant FUS confers toxicity. 

However, another study reported that deletion of the NLS 

completely blocks FUS toxicity, as did the addition of a 

NES [211]. Blocking the RNA binding capacity of FUS 

also abolishes FUS toxicity in yeast [178] and ameliorates 

mutant FUS toxicity in Drosophila [42] (Supplementary 

Table). Although further work is needed to reveal to which 

extent mislocalization of mutant FUS contributes to dis-

ease, recent studies show that mutant FUS triggers stress 

granule formation and loss of nuclear GEMs, as will be dis-

cussed in more detail in the next section.

Optineurin (OPTN)

A study on Japanese ALS patients from consanguineous 

marriages reported mutations in OPTN to be associated 

with disease [135]. Although genetic variation in OPTN 

is rare in ALS patients in other populations, pathologic 

studies confirm a role for OPTN in ALS. In SALS cases, 

OPTN is present in cytoplasmic skein-like inclusions and 
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colocalizes with ubiquitin, TDP-43, and possibly FUS 

[46, 85, 103, 135, 159] (Table 1). Conflicting results are 

obtained with respect to OPTN immunoreactivity in SOD1 

and FUS mutation carriers. Two studies detected colocali-

zation of OPTN with SOD1-positive inclusions in SOD1 

mutation carriers [103, 135], while two other studies did 

not [46, 85]. Similarly, two studies reported OPTN immu-

noreactivity in FUS mutation carriers [92, 103], while a 

second group could not detect OPTN-positive inclusions 

[85].

OPTN is present in inclusions in several other neurode-

generative diseases such as ALS with dementia, Hunting-

ton’s disease, Alzheimer’s disease, Parkinson’s disease, 

Creutzfeldt-Jakob disease, multiple system atrophy and 

Pick disease [159].

OPTN functions as an inhibitor of NFκB-signaling 

[223], acts as an autophagy receptor [206] and participates 

in the regulation of vesicular trafficking and maintenance 

of the Golgi apparatus [169] (Fig. 1). Purified OPTN is not 

aggregation prone although strong overexpression in yeast 

results in aggregation of the protein and in toxicity [113]. 

This toxicity requires the Rab8 binding region but not the 

ubiquitin-binding domain of OPTN. Mutations identified 

in ALS patients so far include truncation mutations thought 

to act through loss-of-function mechanisms and missense 

mutations [17, 45, 90, 135, 141, 191]. OPTN E478G, car-

rying a mutation in the UBAN domain, looses its ability 

to bind K63-polyubiquitin or linear-polyubiquitin chains 

[206] and fails to inhibit NFκB [135]. Whereas exog-

enous WT OPTN localizes to LC3-positive vesicles upon 

autophagy induction [174, 206], OPTN E478G does not 

[206]. As the ubiquitin binding capacity of OPTN is neces-

sary to serve as an LC3 adaptor, this likely reflects a loss 

of binding to autophagosomes [206]. However, whether 

the inability of OPTN E478G to bind ubiquitin is related 

to ALS pathophysiology is unknown. It is interesting to 

note that homozygous knock-in mice expressing a OPTN 

D477N mutant, which also lacks ubiquitin binding capac-

ity, do not display an ALS-like phenotype [70]. The OPTN 

truncation mutants reported in ALS patients have been pro-

posed to cause decreased OPTN protein levels. In this light 

it is interesting that knockdown of OPTN results in motor 

neuron phenotypes in zebrafish [110]. Whether incorpora-

tion of OPTN in ALS aggregates in non-mutation carri-

ers also results in loss of function of the protein or merely 

reflects its role as an autophagic receptor warrants further 

investigation.

Ubiquilin-2 (UBQLN2)

Dysfunction of the ubiquitin–proteasome system (UPS) 

has been linked to ALS based on a variety of functional 

studies. The contribution of this process to motor neuron 

degeneration is further underlined by the recent identifi-

cation of mutations in UBQLN2 in X-linked ALS/FTD 

[47]. In human spinal cord autopsy material of UBQLN2 

mutation carriers, skein-like inclusions are positive for 

UBQLN2, ubiquitin, p62, TDP-43, FUS and OPTN but 

not SOD1 [47, 207] (Table 1). In cases with ALS-dementia 

with or without UBQLN2 mutations, UBQLN2-positive 

inclusions are found in the hippocampus which are absent 

in ALS cases without dementia indicating that UBQLN2 

aggregation and neurodegeneration are linked [47]. Skein-

like inclusions in spinal cord tissue from SALS and FALS 

patients with unknown mutations or mutations in SOD1, 

TDP-43 or FUS also stain positive for UBQLN2 [47, 

207]. It is currently unknown whether UBQLN2 is pre-

sent in aggregates in other neurodegenerative diseases and 

a first study did not detect mutations in UBQLN2 in FTD 

[79]. Whether the presence of UBQLN2 in ALS aggre-

gates reflects a cellular attempt for protein degradation or 

is related to dysfunction of protein degradation pathways 

needs to be further investigated.

The exact function of UBQLN2 is unknown, but it has 

been implicated in protein degradation via both UPS and 

autophagy and in G-protein coupled receptor endocyto-

sis [121] (Fig. 1). Overexpression of mutant UBQLN2 

has been shown to result in impaired UPS function [47]. 

Most, but not all ALS-associated mutations identified 

in UBQLN2 to date involve proline residues in its PXX 

region, which is thought to be important for protein–pro-

tein-interactions. Further research is needed to determine 

how mutant UBQLN2 impairs protein degradation systems 

and which proteins are affected.

Ataxin-2 (ATXN2)

A yeast screen for modifiers of TDP-43 toxicity recently 

led to the discovery that extended polyQ repeats in ATXN2 

are associated with ALS [53]. While ATXN2 normally 

harbors 21 or 22 polyQ repeats, and a polyQ length of 34 

and higher is known to cause SCA2 [120], polyQ lengths 

between 27 and 33 are associated with ALS [53]. Spinal 

cord tissue of SALS patients shows an increased cytoplas-

mic accumulation of ATXN2, as compared to controls, 

but there is no difference between patients with normal 

or extended polyQ repeats [53] (Table 1). Furthermore, 

ATXN2 and TDP-43 colocalize in cytoplasmic inclusions 

in FTLD [53], and FUS and ATXN2 have been reported to 

colocalize in ALS [56].

ATXN2 functions in mRNA polyadenylation, stress 

granule formation, polyribosome assembly and miRNA 

synthesis [136, 157, 171] (Fig. 1). The pathological effect 

of extended ATXN2 polyQ repeats is likely due to a gain-

of-function mechanism as ATXN2 knockout mice do not 

show overt neurological deficits [104]. In contrast to SCA2, 
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the polyQ repeats associated with ALS are not pure, i.e., 

containing only CAG codons. Rather, they are composed 

of CAG codons interrupted by CAA codons [216]. As both 

codons encode for the same amino acid, the pathogenic 

effect of ATXN2 polyQ repeat extensions may reside at the 

mRNA level.

Overexpression of ATXN2 with intermediate length 

polyQ repeats does not affect ATXN2 localization [53]. 

However, there is evidence that subcellular distribution of 

overexpressed WT TDP-43 or mutant FUS is altered upon 

overexpression of ATXN2 with intermediate length polyQ 

repeats [53, 56, 152]. Furthermore, ATXN2 with interme-

diate length polyQ repeats enhances stress-induced activa-

tion of caspase-3 as well as cleavage and phosphorylation 

of TDP-43 [77]. So, there is evidence that ATXN2 interme-

diate polyQ repeat modulates ALS pathophysiology via its 

RNA-dependent interaction with FUS and TDP-43, but fur-

ther research is needed to dissect the underlying molecular 

mechanisms.

C9ORF72

An intronic hexanucleotide repeat expansion in C9ORF72 

was recently identified as the most prevalent cause of ALS, 

FTD and ALS-FTD [44, 164]. While in the wild type sit-

uation the gene harbors fewer than 25 repeats, the repeat 

region can be extended to several hundred or thousand 

repeats [15]. Although extended repeat lengths can also be 

detected in control cases, repeat expansions are strongly 

associated with ALS and FTD. Extended repeat lengths 

have also been reported in some cases of Alzheimer’s dis-

ease and Huntington disease-like syndrome [15, 134, 209]. 

C9ORF72 is a protein with unknown function, but shows 

homology to differentially expressed in normal and neo-

plasia (DENN), which is a GDP/GTP exchange factor 

(GEF) that activates Rab GTPases [122, 217] (Fig. 1). The 

expression pattern of C9ORF72 is unaltered in expanded 

repeat carriers, although the specificity of the available 

C9ORF72 antibodies is subject to debate (Table 1). TDP-

43-negative, p62- and UBQLN-positive cytoplasmic and 

nuclear inclusions in the hippocampus, frontotemporal neo-

cortex and cerebellum distinguish expanded repeat from 

non-expanded repeat carriers [2, 27]. Fascinatingly, these 

characteristic inclusions contain poly dipeptide repeat pro-

teins generated by non-ATG-initiated translation from the 

C9ORF72 intronic repeat region [10, 144]. Whether and 

how these dipeptide repeat proteins mediate pathogenic 

effects are unknown and they probably represent one of 

several pathogenic mechanisms in C9ORF72-associated 

ALS. As a second mechanism, C9ORF72 RNA molecules 

containing extended repeats may accumulate and sequester 

RNA binding proteins preventing these proteins from exert-

ing their crucial functions. Similar aggregation of mutant 

RNAs is observed in other repeat expansion disorders. In 

support of this, C9ORF72-containing RNA foci have been 

observed in 25 % of spinal and frontal cortical neurons of 

expanded repeat carriers compared to 1 % in controls [44]. 

This observation has, however, not been confirmed in a sec-

ond, independent study [175]. It has been shown that the 

GGGGCC repeats present in C9ORF72 bind several RNA 

binding proteins and that one of these, hnRNPA3, localizes 

to the p62-positive/TDP-43-negative cytoplasmic inclu-

sions observed in repeat carriers [143]. As a third mecha-

nism, the repeat expansion may result in haploinsufficiency 

due to impaired transcription or splicing. This is supported 

by the finding that C9ORF72 protein levels are reduced in 

patients with increased repeat lengths [44, 68, 144, 193]. 

Finally, in a number of C9ORF72 repeat carriers with 

FTLD, tau pathology has been observed suggesting that the 

C9ORF72 repeat may influence tau protein [20, 106]. Fur-

ther research is needed to address these different mecha-

nisms in relation to ALS disease pathogenesis.

Molecular mechanisms underlying protein aggregation 

in ALS

When studying ALS pathophysiology it is essential, but 

very difficult, to distinguish cause and consequence in the 

cellular cascades driving protein aggregation. The recent 

discovery of new, disease-associated mutations that trigger 

protein aggregation or stability represent unique opportuni-

ties to further dissect the effect and mechanism-of-action 

of protein aggregation in ALS. Several important questions 

need to be addressed including (1) how are proteins seques-

tered into ALS aggregates and (2) how do these aggregates 

affect neuronal function? Several models addressing these 

questions have emerged and will be discussed below.

Low complexity domains in ALS proteins with 

aggregation-prone properties

FUS, TDP-43 and other RNA binding proteins (RBPs) 

contain domains with similarity to yeast prion domains 

(Figs. 1, 2). These domains are enriched for asparagine, 

glutamine, tyrosine and glycine residues and can adopt 

two conformational states: an unfolded and an aggregated 

state. Prion proteins in an aggregated state can sequester 

prion proteins in an unfolded state to adopt the aggre-

gation-prone confirmation and as such aggregation can 

spread. It has been hypothesized that in ALS aggregation 

may propagate from one cell to the other in a comparable 

fashion [107, 162]. Aggregation of FUS and TDP-43 has 

been shown to rely on regions resembling prion domains 

[94, 102, 179] and mutations in TDP-43 associated 

with ALS occur mainly in its prion-like region (Fig. 1).  
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Furthermore, there is direct evidence that ALS proteins 

share features with yeast prion proteins, e.g., that aggre-

gated FUS or TDP-43 can sequester native protein [62, 64, 

102, 215]. Finally, mutations in the prion-like domain of 

the RBP hnRNPA1 segregate with disease in FALS [105]. 

Yeast prions form amyloid deposits characterized by a sec-

ondary beta-sheet structure and stain positive for amyloid 

dyes. Although short synthetic TDP-43 and FUS peptides 

form amyloid-like fibrils in vitro [31, 73, 102] full-length 

TDP-43 does not [95]. Rather, purified full-length FUS 

and TDP-43 form pore-like oligomers and fibrils resem-

bling the ultrastructure of the skein-like inclusions [95, 

179]. However, although initial reports emphasized that 

ALS inclusions lack features of amyloid [148], two recent 

studies found that some TDP-43 positive inclusions stain 

positive for amyloid dyes [21, 166]. Furthermore, to date 

evidence for cell-to-cell spread of ALS aggregated pro-

teins is lacking. Finally, toxicity induced by TDP-43 and 

FUS depends not only on prion-like domains but also on 

RNA binding properties [42, 53, 94, 179, 199]. In all, 

accumulating evidence hints at an important role for prion-

like mechanisms in ALS pathogenesis but further studies 

are needed to uncover their precise mechanism-of-action 

and pathological effects.

Stress granule formation and ALS protein aggregation

Although FUS and TDP-43 have a predominant nuclear 

localization, both proteins rapidly shuttle between the 

nucleus and the cytoplasm and are actively transported into 

axons and colocalize with other RBPs [16, 54, 63, 186, 

202, 224]. RBPs regulate local translation of mRNAs by 

forming granular RNA–protein complexes in which trans-

lation is repressed [5]. Several types of RNA granules can 

be distinguished: stress granules (SG), processing bodies 

(PBs) and so called neuronal or transport granules. These 

granules are highly dynamic structures and interaction and 

exchange of RBPs and transcripts occur between the dif-

ferent types of granules [5]. SGs or PBs are formed fol-

lowing polysome disassembly in response to stress, while 

neuronal granules serve in the transport of mRNA to their 

site of local translation [5]. Interestingly, it has been sug-

gested that the aggregation-prone prion-like domains of 

RBPs assist in the dynamic movement of RBPs in and out 

of RNA granules [102].

ALS-associated mutations in TDP-43, FUS and ATXN2 

are being linked to SGs (Fig. 2). SG formation depends 

on the RRM domains and C-terminal region of TDP-43, 

the same domains required for TDP-43 toxicity [19, 37]. 

Fig. 2  Cellular mechanisms linked to protein aggregation in ALS. 

ALS-associated mutations result in cytoplasmic mislocalization or 

increased aggregation tendency thereby increasing the risk for aber-

rant aggregation. Proteins with domains of low complexity (prion-

like domains) such as FUS, TDP-43 and HNRNPA1 are though to 

be intrinsically aggregation prone. Many of these proteins participate 

in RNA granule formation. ALS-associated mutants alter RNA gran-

ule formation, thereby interfering with the local translation of RNA. 

Moreover, sequestration of ALS-associated proteins and their inter-

actors into cytoplasmic aggregates may result in a loss of function. 

Protein degradation by the UPS and autophagy is essential for the 

clearance of ubiquitinated proteins. Dysfunction of these systems, as 

has been suggested for mutant UBQLN2, OPTN and VCP, can lead to 

proteins deposits
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Although TDP-43 is dispensable for SG formation [19, 37, 

131], depletion of TDP-43 inhibits SG formation [137]. 

WT TDP-43 co-immunoprecipitates and colocalizes with 

stress granule markers, but the effect of mutant TDP-43 is 

less clear [37, 43, 49, 61, 83, 131, 137, 138, 160]. While 

two studies reported an increase in the number of cells 

containing SGs upon TDP-43 mutant overexpression [49, 

131], another study failed to observe such an effect [137]. 

A fourth study did not detect cytoplasmic signals for WT 

or mutant TDP-43 and consequently no colocalization with 

SG markers, although a TDP-43 NLS mutant clearly local-

ized to SGs [19]. Thus, WT TDP-43 likely plays a role in 

SG formation with some evidence for altered SG formation 

associated with mutant TDP-43.

In contrast to TDP-43, mutant but not WT FUS local-

izes to SGs [19, 25, 52, 108, 152, 197]. Whether mutant 

FUS induces SG formation or is recruited to SGs follow-

ing stress is unclear [108, 152, 197]. Similarly, studies 

reporting the effect of FUS mutations or truncations on SG 

recruitment show conflicting results [19, 102, 108]. How-

ever, proteins involved in SG formation have been identi-

fied as modifiers of FUS toxicity in yeast screens [97, 179].

ATXN2 localizes to PBs and SGs following cellular 

stress and its Lsm domain and PAM2 motif are required for 

this localization [152, 157] (Fig. 1). It is unknown whether 

ATXN2 directly regulates RNA granule formation or func-

tion. However, overexpression of ATXN2 31Q increases the 

cytoplasmic localization of TDP-43 following heat shock 

[53] and increases the cytoplasmic localization of mutant 

FUS, but without affecting SG formation [56].

In conclusion, FUS, TDP-43 and ATXN2 have all been 

implicated in SG formation and there is evidence that alter-

ations in SG formation are associated with ALS-associated 

mutant proteins. Interestingly, HNRNPA1 localizes to SGs 

as well and ALS-associated mutations in HNRNPA1 aug-

ment its incorporation into SGs [105]. However, while the 

formation of RNA granules is normally a reversible pro-

cess, in ALS disrupted RNA granule formation is hypothe-

sized to result in insoluble aggregates. The most convincing 

evidence for this comes from pathological examination of 

ALS spinal cords. Although one study did not detect colo-

calization of TDP-43 positive inclusions with SG markers 

in SALS motor neurons [37], three other studies, using 

more sensitive methods, convincingly did [19, 131, 200]. 

Furthermore, the SG markers PABP-1 and eIF4G colocalize 

with FUS aggregates in spinal cord of FUS mutation carri-

ers [52]. Whether these aggregates have primarily formed 

as SGs or reflect a more general sequestration of interact-

ing proteins in FUS and TDP-43 aggregates (see below), 

remains to be shown. Furthermore, how reversible SGs 

develop into insoluble aggregates is unknown. Increased 

cytoplasmic localization of FUS and TDP-43, increased 

aggregation tendency of mutant RBPs and phosphorylation 

of RBPs have been suggested to regulate their localiza-

tion to SGs [102, 108, 138] and may be altered in ALS. An 

altered RNA binding preference of mutant RBPs could also 

underlie altered RNA granule formation [84]. How RNA 

granule formation and disassembly are dysregulated in 

ALS and which transcripts are affected by these processes 

will undoubtedly be a focus of further investigations.

Protein sequestering

Cytoplasmic aggregation of ALS proteins at ectopic sites 

in the cell may prevent these proteins from executing their 

normal function (Fig. 2). If this mechanism would be 

solely responsible for ALS pathogenesis, gene knockdown 

or knockout is expected to result in strong motor neuron 

phenotypes. Unfortunately, FUS and TDP-43 are essential 

for normal development and knockout of FUS or TDP-

43 results in premature death in mice [81, 112, 115, 172]. 

There is some evidence that knockdown of FUS or TDP-

43 results in motor dysfunction in Drosophila and zebrafish 

models [58, 98, 99, 128, 170, 203] (Supplementary Table). 

However, the relevance of these findings in the context ALS 

is unclear as knockdown often triggers abnormalities out-

side the nervous system as well and motor neuron degen-

eration is not consistently observed. Additional models are 

needed to study the effect of reduced levels of proteins like 

FUS and TDP-43 but it seems unlikely that reduced levels 

of these proteins alone cause ALS.

On the other hand, FUS and TDP-43 aggregation could 

exert a toxic effect via sequestration of multiple binding 

partners or even interactomes essential for neuronal func-

tion. FUS and TDP-43 interact and colocalize with many 

different proteins including SMN, gemin proteins and 

small nuclear ribonucleoprotein particles (snRNPs) [188, 

214] (Fig. 1). The SMN complex can be detected in the 

cytoplasm, but also in nuclear foci called GEMs. Knock-

down of FUS or TDP-43 results in the loss of GEMs [173, 

188]. Furthermore, a reduced number of GEMs is observed 

in ALS spinal cord motor neurons [188], fibroblasts derived 

from FUS or TDP-43 mutation carriers [214] and ALS 

mouse models [65, 101, 173]. Therefore, sequestration 

of SMN in FUS or TDP-43 cytoplasmic aggregates could 

affect SMN levels and function.

The idea that aggregation of proteins, such as TDP-43, 

leads to the sequestering of other essential proteins is sup-

ported by a recent study identifying the lariat debranch-

ing enzyme Dbr1 as a modifier of TDP-43 toxicity [8]. 

Dbr1 normally mediates the degradation of intronic lari-

ats. Knockdown of Dbr1 triggers the transport of exces-

sive lariat RNAs into the cytoplasm where they bind 

TDP-43. Since this leads to a reduction in cellular toxic-

ity it was proposed that knockdown of Dbr1 reduces TDP-

43 toxicity by capturing TDP-43 and thereby diminishing 
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sequestration of RNAs and RBPs in TDP-43 aggregates. 

Although currently functional evidence for RNA and pro-

tein sequestering by ALS-associated protein aggregates 

is scarce, these recent findings warrant a more extensive 

study of the ability of ALS-associated protein aggregates 

to sequester RNAs and RBPs and of the effect this has on 

motor neuron homeostasis.

Dysfunction of protein degradation pathways

Molecular chaperones, the UPS, and the autophagy-lyso-

some system function to monitor protein quality and protect 

cells from dysfunctional, malfolded or denatured proteins. 

The presence of ubiquitin, p62 and molecular chaperones 

in ALS aggregates implicates a role for all these three sys-

tems in ALS pathophysiology (Fig. 2).

Chaperone molecules assist in protein folding under 

physiological circumstances and prevent protein aggrega-

tion in response to stress. They also assist in protein degra-

dation by the proteasome or autophagy. Chaperones, such 

as heat shock proteins, are upregulated in ALS spinal cord 

[4] and present in motor neuron aggregates [14, 204]. Inter-

estingly, upregulation of molecular chaperones increases 

solubility and reduces toxicity of FUS [139] and TDP-43, 

especially of TDP-43 C-terminal fragments [40, 71]. In line 

with this, knockdown of molecular chaperones increases 

accumulation of pTDP-43 C-terminal fragments [220] and 

enhances toxicity of TDP-43 overexpression [219]. Thus, 

chaperone molecules are likely to play a significant role in 

aggregation of ALS proteins and in their toxic effects.

Ubiquitination not only marks proteins for degradation 

but also mediates intracellular signaling, e.g., NFκB acti-

vation [114]. As proteins present in ALS aggregates are 

ubiquitinated it has been postulated that they are marked 

for degradation by the UPS, but eventually deposit when 

dysfunctional protein levels exceed UPS capacity. In line 

with this, examination of ALS spinal cord tissue shows 

that ubiquitination occurs before accumulation starts and 

that inclusion formation inversely correlates to the num-

ber of motor neurons, indicating that deposition of ubiq-

uitinated proteins relates to toxicity [69]. Consistently, 

proteasome inhibition has been found to increase endog-

enous TDP-43 levels, blocks degradation of overexpressed 

TDP-43 C-terminal fragments and enhances toxicity [88, 

155, 194, 220]. Recently, motor neuron-specific knockout 

of the proteasome subunit Rpt3 was reported to result in 

the loss of spinal motor neurons and locomotor dysfunc-

tion in mice [183]. Interestingly, these mice contained 

basophilic, hyaline and skein-like inclusions positive for 

TDP-43, FUS, UBQLN2 and OPTN, indicating that dys-

function of the proteasome itself is sufficient to induce 

aggregation of ALS-associated proteins and motor neuron 

degeneration. The fact that mutations in UBQLN2 cause 

ALS and are associated with impaired UPS function fur-

ther underlines the notion that proteasomal degradation 

does not only modulate but also may play a causative role 

in ALS pathogenesis.

p62 serves as an adaptor of autophagic degradation 

by binding both polyubiquitinated proteins and LC3, an 

important autophagosomal marker. Autophagy mediates 

the degradation of TDP-43 C-terminal fragments, but 

not full-length protein [30, 93, 182]. Interestingly, treat-

ment of transgenic TDP-43 mice with autophagic activa-

tors reduces locomotor dysfunction, learning and memory 

deficits, and neuron loss [201]. This is accompanied by 

a decrease in cytosolic TDP-43 inclusions and in insolu-

ble full-length and truncated TDP-43. This indicates that 

autophagic clearance of TDP-43 reduces neurotoxic-

ity. Knockout mice lacking Atg7 or Atg5 in the central 

nervous system, genes essential for autophagy, display 

movement disorders, widespread neurodegeneration and 

ubiquitin-positive inclusions in a variety of brain regions 

[75, 109]. Motor neuron-specific knockout of these genes 

results in ubiquitinated and p62-positive inclusions, but 

do not stain for TDP-43, FUS, OPTN or UBQLN2 and 

do not result in motor neuron death [183]. This would 

suggest that autophagic disruption does not primarily 

underlie ALS pathogenesis. However, mutations in genes 

encoding autophagy regulators have been associated with 

ALS, i.e., VCP, p62, CHMP2B and UBQLN2 [47, 57, 

96, 161]. Patients with mutations in SQSTM1, the gene 

encoding p62, show large round p62-positive inclusions 

in motor neurons with additional TDP-43 deposits which 

are p62-negative [184]. Furthermore, TDP-43 has been 

identified as a modifier of mutant VCP toxicity [165] and 

ubiquilins have been reported to modulate TDP-43 toxic-

ity in Drosophila [74]. In conclusion, components of the 

protein degradation pathways have emerged as important 

modulators of protein aggregation and toxicity in ALS. 

Furthermore, mutations in genes encoding these compo-

nents have been associated with ALS indicating a causal 

role in the disease. Future studies are needed to investigate 

how these processes are affected in ALS, as they may rep-

resent potential therapeutic targets.

Conclusions

Protein aggregation in affected motor neurons is a central 

hallmark of ALS, and recent genetic, cellular and histo-

logical studies have enlarged our understanding of the 

molecular composition of these aggregates. This has led 

to the identification of new ALS causing genes, has linked 

the composition of aggregates to specific genetic defects, 

and has provided starting points for further investigation 

of underlying molecular pathways. Unique pathological 
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features have now been identified that distinguish FUS, 

SOD1 and C9ORF72 mutation carriers from other ALS 

cases. It is likely that with future discoveries further clas-

sification will be possible. TDP-43, FUS, p62, OPTN and 

UBQLN2 show a widespread distribution in ALS-linked 

aggregates. This could reflect a general role in pathogen-

esis or, on the contrary, question their specific relevance 

to disease. However, the fact that mutations in the genes 

encoding these proteins segregate with disease in FALS 

supports the idea that their dysfunction is linked to motor 

neuron degeneration and disease pathogenesis. The pro-

teins identified to be present in ALS aggregates play a role 

in a wide range of cellular processes with a marked over-

lapping role for TDP-43, FUS and ATXN2 in RNA metab-

olism and for OPTN, UBQLN2 and VCP in protein qual-

ity control and degradation (Fig. 2). How a disturbance of 

these ubiquitously expressed proteins can result in motor-

neuron-specific degeneration remains an unresolved issue 

in the field of ALS research. Although cellular and animal 

models confirm a role for aggregation in ALS, results are 

often contradictory and models fully recapitulating ALS 

pathogenesis are mostly lacking. This may in part be 

explained by the fact that many of these models rely on 

overexpression of the protein. New model systems, such as 

iPSC-generated patient-derived cell lines or inducible ani-

mal models, may help to overcome these problems. So far, 

TDP-43 and FUS have been investigated most extensively; 

future studies on the role of OPTN, UBQLN2, ATXN2 and 

C9ORF72 will further enlarge our understanding of the 

cellular processes underlying ALS. Processes underlying 

aggregation in ALS include enhanced intrinsic aggregation 

propensity of ALS proteins, RNA granule dysregulation 

and dysfunction of protein degradation pathways. A fur-

ther understanding of these processes will not only deepen 

our understanding of ALS pathogenesis, but also may aid 

the development of novel therapeutic strategies for this 

disease.
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