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Abstract

A fundamental problem in bioinformatics is to charactetize secondary structure of
a protein, which has traditionally been carried out by exaingj a scatter plot (Ramachan-
dran plot) of the conformational angles. We examine two natoivariate von Mises dis-
tributions — referred to as Sine and Cosine models — whicle lisee parameters and, for
concentrated data, tend to a bivariate normal distribufidrese are analyzed and their main
properties derived. Conditions on the parameters arelestteth which result in bimodal
behaviour for the joint density and the marginal distribatiand we note an interesting
situation in which the joint density is bimodal, but the miagj distributions are unimodal.
We carry out comparisons of the two models, and it is seertiiea€osine model may be
preferred. Mixture distributions of the Cosine model are(itto two representative protein
datasets using the EM algorithm which results in an objegbartition of the scatter plot
into a number of components. Our results are consistentesiprirical observations; new

insights are discussed.

Keywords: Bivariate angular data, Bivariate circular mixture, @tienal statistics, Distribution

on Torus, Myoglobin, Protein conformational angles, Ramaaciran plots.
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1 Introduction

Protein shapes are often described using the (3-d) coaisdirof the backbone chain, which
consists of an ordered sequence of nitrogen and carbon &twws as peptide units. These co-
ordinates can be used to obtain a sequence of conformatingkds, known atorsional angles,
which form a natural pairindge, ) with each angle if—, 7]. These angles can be plotted in
a scatter plot — now known as a Ramachandran plot (Ramadciaetchl., 1963) — and these
have been used in the understanding of protein secondaigtiste, which describes a protein
in terms ofa helices, 5-sheets and loop motifs etc.. Branden & Tooze (1998, p. Qries
in more detail the uses of these very familiar plots, inahgdin indication of the approximate
segmentation into various motifs which was initially enngaily observed by Ramachandrein
al. (1963).

Recently, there have been attempts to parameterize theljstribution of (¢, v)) (Pertsem-
lidis et al., 2005) and this has been done using Fourier basis funcioaeptesent the bivariate
distribution of (¢, v) on the torus. This parameterization requires about a hdnglieameters
and does not seem to allow an easy interpretation from adizab(or statistical) perspective.

One of our motivations for this paper is to describe the pbdltg distribution on the torus,
but our approach is to use a different parameterizationhvisibased on a mixture of bivariate
von Mises distributions. The von Mises distribution on thele is well known; it has two
parameters (analogous to the normal distribution), thennjed and concentration parameter
() which is anti-variance. The density is given by (see, faregle, Mardia & Jupp, 1999,
p. 36)

(27 Io(k)) ™" exp{r cos(¢ — )}

wherel,(-) denotes the modified Bessel function of the first kind andrddand the parameter

1 1S the mean direction, ang is the concentration parameter. This distribution can lpgap



imated by the normal density for small “variance” (largg¢ In Section 2, we introduce two
bivariate von Mises distributions which, like the bivagatormal distribution, have 5 parame-
ters: two means, two concentrations (anti-variance), goarameter controlling “correlation”.
In Section 3 we describe some key properties, and make somparsons. In Section 4 we
return to our motivating example of fitting an appropriatetdibution to(¢, ¢») angles obtained
from a protein backbone. The model is extended to mixturessbfibutions which is fitted us-
ing an EM algorithm and some results for two proteins are ri@sd, A final discussion section

describes further possible extensions using MCMC.

2 Bivariatevon MisesDistributions

For the study of conformational anglés, v/), we need a bivariate angular distribution, which
extends the univariate von Mises distribution and has gyakath the bivariate normal distribu-
tion. Namely, two mean parameters, two parameters for vegiganti-variance) and a parame-
ter which determines the correlation. Mardia (1975) introed a bivariate circular distribution

for (@, ), with the probability density function (pdf) proportiortal

exp | 0s(9 — 1) + 1z cos(t) — ) + {cos(6 — 1), sin(6 — )} A{cos( — v), sin(vr — )}

1)
where A is a2 x 2 matrix. This has more parameters{ 2 + 2 = 8) than we would often
require, there are difficulties of interpretation, and, estst for large concentrations, there is

redundancy. A sub-class has been introduced by Rivest {1@88h has pdf proportional to

exp {k1 cos(¢ — p) + ko cos(th) — v) + acos(¢p — p) cos(vp — v) + [Bsin(p — p)sin(y — v)}.
2)
However, both (1) and (2) are overparameterized in the sivagahere should only be 5

parameters by analogy with the bivariate normal. To overctims defect, Singkt al. (2002)

3



have recently concentrated on a special case of Equatiomh@yo = 0 and3 = A. We call

this theSne model whose pdf is given by

Js(d,¢) = Cexpirycos(¢p — p) + Kz cos(v — v) + Asin(¢ — p)sin(p —v)} - (3)

where the normalizing constant is given by

g > /2m A2 mn
C = in ;(m rred IR CACATASE

and I.(x) denotes the modified Bessels function of the first kind anérord

Another such a sub-model of Equation (2) with similar chasastics is whem = § =

—ks3. We will call this theCosine model and its pdf is given by

Je(d,¢) = {c(k, ko, k3) } exp{r cos(¢ — p) + kg cos(P — v) — kg cos(¢p —p— Y +v)} (4)

for k1 > k3 > 0, ke > k3 > 0. Here the normalizing constant is given by

c(kn, k2, kia) ™ = (2m){To(k1) To(k2) Io(5) + 2 Y Tp(k1) Ip(k2) Ip(3) }-

p=1

The marginal probability density af for the Cosine model (4) is given by

fe(¥) = (R, ko, k3) 2mlo(K13(YY — v)) exp{ ks cos(¢p — 1)} (5)

where k13(10)* = k3 + k2 — 2Kk1k3 cosyp. The marginal probability density af is given by
an analogous expression. This distribution is symmetraugb and is approximately a von
Mises distribution for small values of;. For x; = ko = k3 = 0, the distribution is uniform.
For k1 = ko = 0, the distribution is von Mises. Further, the conditional sign f.(¢|v) is von
Mises M(¢,, k13()), wheretan v, = —k3sin(¢ — v)/(k; — k3 cos(¢) — v)). An analogous
expression holds fof.(¢|¢).

Singhet al. (2002) have given the marginal and conditional distritngitor the Sine model

which we state here for comparison. The marginal density ¢ivhen , = 0) is proportional
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to
fs(¢) = [o(lﬁzx((?)) eXP{ffl COS ¢}7 (6)

where k) (¢)? = k3 + A?sin® ¢. This is symmetric about: = 0 but not von Mises. Using

Equations (3) and (6) we have the conditional probabilitysiy function of & given ® = ¢

as M(¢,,, kax(¢)) wheretan ¢, = (\/k2) sin ¢.

3 Propertiesof Bivariate Circular Models

3.1 Bimodality Conditions

In this section, we state some key results for the sine andeosodels. The proofs are given
in Web Appendix A.

Note that the joint density functiog®, V) in equation (4) (withuy = v = 0) is also a
bivariate von Mises forf, _, and f_, ,,. Also fs, and f; .. are univariate von Mises, and for

the Sine model we have similar results.

Theorem 1 For the Cosine density, when x; and k. arelarge, the randomvariable (®, V) is

approximately bivariate normal distributed if and only if k3 < k1k2/(k1 + ko).

Remark Derivations for bivariate normal approximations for th@&model yields similar

results and can be found in Singhal. (2002).

Theorem 2 Thejoint density function (®, W) of the Cosinemodel in Equation (4) isunimodal if

K3y < Hllﬁz/(ﬁll—i-/'iz) andisbimodal if K3 > Hllﬁz/(ﬁll—i-/'iz) when K1 > K3 > 0, Ko > K3 > 0.

Theorem 3 The joint density function of the Sne model in Equation (3) isunimodal if ko >

A2 and isbimodal if k;ks < A2, when k; > 0,k2 > 0 and — oo < \ < oo.



Remark We note that Singkt al. only discuss bimodality for the marginal distributions loét
Sine density, and not the joint distribution as given here.

The marginal distribution ofy for the Cosine model is given by Equation (5). It is easy to
construct an examples( = 1.5, ko = 1.7andx3 = 1.3) for which the marginal distribution is
unimodal even though the bivariate density is bimodal ferdamex values. This feature may
be surprising at first: that, for a given set of parameteré st the Cosine density is bimodal,
the corresponding marginal density may be unimodal. Thieviahg theorem describes the

conditions under which this occurs.

Theorem 4 For the Cosine model (4) with k3 # 0, the marginal distribution of ® is symmet-
ric around ¢» = p and unimodal (respectively bimodal) with mode at ;. (respectively with
the modes at 1 — ¢* and p + ¢*) if and only if A(|k; — k3|) < (respectively >)|k; —
r3lka/(K1k3) where ¢* is given by the solution to xyr3A(k13(¢))/k13(¢) — ke = 0, and

A(k) = (k) /Io(K).

3.2 Choosing a Model
Analytical Comparisons

Clearly, a change in the mean valugs gnd ) will just shift the origin, so we will consider
1 = v = 0 in what follows. We note the following comparisons, whicme@dl be obtained by

considering the joint pdf and conditional distributiohs:

lthroughout this table, we use the term “expected” as shodfar the directional mean



Sine model Cosine model

[ —

Changing the sign of simply reflects| Changing the sign of smakl; give an approx-
in an axis. imate reflection, but fotxs| large (relative to
K1, ko), bimodality occurs only for positives.

2 The expected value aeflyy = 0 is al- | The expectation is zero only when thg i =
ways 0 — for any values of;, xo, A. 1,2, 3 give a unimodal pdf.

3 The expected value obl|y is al-| For large (negative); the expected value of
ways constrained to lie in the range)|t) approximatesy over the full range of
[-7/2,7/2] — for any values of (—m, ).

K1, Ko, A andi.

4 A bimodal density occurs for large| | A bimodal distribution occurs only for large

(relative tokq, ko). positivexs.

5 Transforming (¢,v) to (¢, —¢) is | This transformation allows for rotations of the

equivalent to changing the sign &f | pdf (which cannot be achieved by changing.

The bivariate densities can be represented by contour whitsh can be used to illustrate
the above statements. However, the key features are mahg @aspared by plotting the log
of the density and omitting the normalizing constant. In eucal comparisons we noted that
for small A ~ x3 the two models are very similar.

Overall, we could conclude that, if we allow for the posstiibf transformations of the
form (¢, ) to (¢, ™ + ¢) and (¢, ¢) to (1, —¢) then the Cosine model gives a richer set of
possible contour plots (see point 5 above), and hence sheuddble to fit more closely a larger

class of distributions.



Numerical Comparisons

Another approach for comparing the Sine and Cosine moddls éxamine their moments.
Characteristic functions can be used to estimate the maneérihe two distributions and we
numerically computed the correlations for the Cosine amd $nodels in order to study their
behaviour in relation to the parameters and A. The parameter; for the Cosine model and
A for the Sine model were varied for fixed valueskgf and x, . Using some selected values of
k1 and ko, we observed that the correlation betweer ¢ and cosv and betweerin ¢ and
sin 1) were seen to be (mostly) decreasing functionsfor the cosine model, whereas for the
Sine model the correlation betweeim ¢ andsin ¢» was a monotonic increasing function df
and betweeros ¢ andcos v was always non-negative and has a “U”-shaped relationsitip w
A. Thus we believe that the Cosine model may be better ableptoreathe correlation between
¢ and ¢ as either correlation ofcos ¢, cos 1)) or (sin ¢,sin?). In the Sine model\ does
not measure the correlation @fos ¢, cos ), and his would seem to give the Cosine model an
advantage over the Sine model.

It is also of interest to empirically explore the relatioisbetween the bivariate normal
distribution and the Cosine and Sine models when the datagity concentrated. We estimate
the correlation under the assumption of normality inducgdligh concentration. We compare
this estimated correlation under the assumption of notynaith correlation evaluated from the
distributions by integration. Under high concentratidre approximate correlation between

and, for the Cosine model, is

re” \/(“1 — k3) (K2 — K3)

and for the Sine model Sing#t al. (2002) obtainp; = \//k1k2. We compared the values

of p. and p, with the correlation of(cos ¢, cos 1) and (sin ¢, sin ¢) for various large(x, k).

Overall, we found that the Cosine model has some advantageshe Sine model. Sometimes
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the Sine model can explain the presence of correlation onthé range of(0,0.4). In the
Cosine model, the “estimated correlation” tracks the \&lofethe parameters very well for

the entire range of values betwegenl, 1). For further details, see Subramaniam (2005).

4 Application: Mixture Modelsfor Proteins

4.1 Protein Data

Protein structures can be determined to an atomic level bgyXdiffraction and neutron-
diffraction studies of crystallized proteins, and moreergty by nuclear magnetic resonance
(NMR) spectroscopy of proteins in solution. In a proteire backbone chain N-Cand G,-C
bonds are relatively free to rotate. These rotations anesepted by the torsion anglesand

1, respectively.

A scatter planar representation of such torus data has aobeknown as &amchandran
plot (Ramachandramt al., 1963), and a study of these angles through directionakstat
methods has been one of our goals. Ramachandran used compdtgs of small polypeptides
to systematically varyy and > with the objective of finding stable conformations. For each
conformation, the structure was examined for close costzettiveen atoms. Atoms were treated
as hard spheres with dimensions corresponding to their galVdals radii. Therefore)p and
1) angles which cause spheres to collide correspond to dtgritsallowed conformations of
the polypeptide backbone.

We consider two datasets which correspond to these confimmahangles from the proteins
Malate dehydrogenase (7mdh in the protein database:/itypw.rcsb.org/pdb) and Myoglobin
(protein 101m). Myglobin is the smallest protein, consigtmainly of «-helices, and the first
protein whose structure was determined (Bennett & Kendt®?). Malate dehydrogenase is

an “average” protein, with various motifs.



The Ramachandran plot and the circular histograms of thginedrvariables for Malate
dehydrogenase are shown in Figure 1. These clearly indibatea mixture distribution may
be appropriate since there are obviously a number of distlosters corresponding to the sec-
ondary structure of the protein. The marginals show depaftom the von Mises distribution

which only has one mode.

[Figure 1 about here.]

4.2 Mixture Models

We can use the method of maximum likelihood to estimate tharpaters of a cosine density.

The log-likelihood function for Equation (4) is

Z (k1 cos(¢y — p) + Kacos(v; — v) — kgcos(p; — 1 + v — ) + nlog(c(ky, ko, k3)). (7)
i=1

and we can obtain starting values under the assumptionttbaharginal distributions are von

Mises. Then, for example, starting values foare given by

_ tan~1(S/C) if C>0;
b=
tan~}(S/C) +n if C <0

whereC' and S are the means of theos(¢) andsin(¢), respectively, and starting values for
v are similarly found from the)s. For k; an approximate solution due to Dobson (1978)
is used. The starting values are obtained #foand 5 in the same way. Fok; we use the
mean of(ky, ko). Our optimization program for maximizing the (log-) liketod was tried and
tested using data simulated from the bivariate Cosineibligion. For details of the simulation
method, see Web Appendix B.

However, it is clear from Figure 1 that a single Cosine mod#ll not fit these data —

even though a bimodal distribution can sometimes be oldairihe plot suggesté” > 3
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components in a mixture model, which can be parameterized by

K
Fra(@, ) =Y i fi(6, ) 8)
j=1
where f; denotes a Cosine density with parameters: (ki k = 1,2,3, p15,v4), j=1,..., K,
andry, ..., mx are the mixing proportions (with _ m; = 1).

4.3 EM Algorithm

We will investigate the use of the EM algorithm (McLachlan &shnan, 1997, pp. 71-72) to

fit (8). As usual, there are several steps which are iteratednvergence:

1. Estimation of membership probabilities using

(a) Dij :ijj((m,i/}i) for s = 1,...,n,j: 1,...,K

(b) Normalizationp;; = pi;/>_;pi fori=1,...,n

2. Use maximum likelihood to find thé; = (k;1, k)2, K3, 145, ;) Which maximizes the
weighted likelihood function
11 p: £ 00)
i=1

forj=1,...,K.
3. Obtain the mixing proportions; = >, p;;

However, in our use of the Cosine density we have increasedliility to model the data by
also considering transformations of all the data the formy)) — (¢, —¢) for estimating the
parameters of each mixture component. In practice this meaecking the likelihood (for each
j) at step 2., and choosing the rotation which gives the largkre.

It is well-known that the EM algorithm can get stuck in localgions, and there can also

be a problem with singularities in which one of the compos&ansists of only a single obser-
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vation. In our implementation, we tried several startinlyiga, and chose the best final solution,
excluding any solutions with very high concentrationsgéss).

The choice of the number of componemtS will obviously affect the final likelihood.
Adding another component will increase the number of pataraéy 6, and this was done
incrementally (starting with'’ = 1) until the first minimum of AIC, and it is this value ok
which is then reported. After convergence to the final sotutve can note the mixing propor-
tions my, ..., 7k, the parameter estimatés, j = 1,..., K and the membership probabilities

pij. Then, for each observatidip;, ;) we can assign it to the group which maximizegs.

4.4 Results

The EM algorithm has been used to fit mixtures of the cosineattodoth Malate dehydroge-
nase and Myoglobin conformational angles.

For Myoglobin, the algorithm selected = 3 components, all of which used the rotated
parameterization. The contour plots of the log densitieshown in Figure 3, and the parameter
estimates are given in Table 1. We note that the first and secomponents have fit a cosine
model which results in a bimodal density, and in this caseofdra 4 can be used to locate
the modes exactly. Further, we note that the third compofvelnich contains nearly /4 of
the observations) has formed a very tight cluster about @amm [As a rough guide; values
around5 are considered as “moderate concentration”, and valueslévare considered as
“high concentration”.] Myoglobin is known to contain neadll helices, and this dominance of

one of the components is consistent with this fact.

[Figure 2 about here.]

[Table 1 about here.]
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Historically, describing protein secondary structure beasn somewhat subjective, but the
DSSPprogram (Kabsch & Sander, 1983; http://swift.cmbi.kufswift/dssp) was designed to
standardize the assignment from protein database coatedino secondary structures. This
program will convert a protein database file(i@ ¢/) angles and assigns each pair of angles to

one of:
“loop or irregular” (for which no label is given,e. blank)
B residue in isolated beta-bridge
E extended strand, participates in beta ladder
G 3-helix (3/10 helix)
H alpha helix
I 5 helix (pi helix)
S bend

T hydrogen bonded turn

It is of interest to compare the clusters formed by our 3-orxtmodel with the classifications
given bybsspand these are shown in Table 2. Almost all of the “helix” (Hykes are contained
in the third cluster, which is the most highly concentrateslg; indeed the third cluster (which
has very high concentration) contains only angles labafiddlpha helix), or G (3/10 helix),
and one hydrogen bonded turn. Figure 2 shows the Ramacimapididor Myoglobin with the

DSSPclassifications used as labels.

[Table 2 about here.]
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The second protein for which we present results is Malatgdi®lgenase, which is some-
what larger (343 angles), with several motifs, includifigheets. Th@sspclassifications are
shown in a Ramachandran plot in Figure 1. In this case, the gbrithm was used to find
solutions forK = 1,2, ...,6 in which AIC selectedk’ = 5 components, of which three used
the parameter rotations. The contour plots of the log dieissiire shown in Figure 3, and the
parameter estimates are given in Table 1. Again, we noteot@bf the components (4) has
formed a very tight cluster about its mean, and that comptdhéas a bimodal density . Com-
parison of our cluster labels with those obtained frogsPis given in Table 2. In this table we
see that cluster 4 is almost all alpha helix, but that manicéelare also in cluster 3.

For both proteins we observe that the mean values of the coemp® in the mixture mod-
els are consistent with the traditional partitions giverthie Ramachandran plots based on an
empirical distribution analysis (e.g. Branden & Tooze, 899. 9). Moreover, we note that the
model selection has fit more components to Malate dehydesgefwhich contains more types

of secondary structures) than for Myoglobin (which doesawnuttain anys-sheetssspclass

E)).

[Figure 3 about here.]

5 Discussion

There are various future directions which are possible. éxample, we could take account
of any serial correlation between the conformational angleand v;,,, or betweeny; and
¢i+1, Since we may not have i.i.d. data. This serial correlatmuld be modelled (for example
by some sort of Markov Chain) or a simpler solution would derfhing” in which only every
fourth (say) observation was retained. Serial correlatimuels could also be used to adjust

the posterior probabilities of membership, so that isolated angle membership was made less
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likely than an independence assumption would permit. Thessubjects of ongoing research.
Note also, the possibility of allowing for two additionalskifications: a class “doubt” if all
pi; < t for some threshold, and a class “uncertain” if the two largest probabilities almost
equal.

Clearly other submodels are also possible such as the &tigakirapped normal, Cauchy,
but these are not members of the exponential family. Howevien applied to the protein
data, it is clear that several mixture components will baumragl. In our case the number of
parameters for’ mixtures is6K — 1, so for the larger 5 component model we have 29 pa-
rameters. However, we think that there is still good intetability — and standard errors are
also available. This contrasts with the model of Pertsaméidal. (2005) who used about 100
parameters which cannot easily be intrepreted. The finalum@xmodel and corresponding set
of clusters is objective, and has much similarity with batitial subjective classifications, and
the output fronDSSP

Extending to more than 2 dimensions is clearly possible fmtthe Sine model and Cosine
model, but is somewhat easier to express for the Sine modehéd¥ work in higher dimensions
is in progress. Finally, we note that the methods of this pape be used in other applications

with bivariate angular data, for example wind directionsier, 1993).

Supplementary Materials

Web Appendices referenced in Sections 3 and 4 are availaller the Paper Information link

at the Biometrics website http://www.tibs.org/biomedric
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2 Mixture model for Myoglobin. Top three panels correspondhe three com-
ponents, with contour plots of the log density, and poinliscated to the most
probable mixture. The locatior (sometimes obscurred in a cluster of points)
marks the meariu, v) for each mixture. Bottom: Ramachandran plot of Myo-
globin, withbsspPclassifications. (The unlabelled points, given by openes;c
are “blank” iNDSSR) . . . . ..

3 Mixture model for Malate dehydrogenase. Five panels spord to the five
components, with contour plots of the log density, and oatiocated to the
most probable mixture. The location (sometimes obscurred in a cluster of
points) marks the meafu, v) foreach mixture. . . . . . .. .. ... ... ..
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Myoglobin

component K1 Ko K3 1 v m R modes

1 est.| 8.459 13.544 8.081 -0.191 0.093 0.138 Y B
SE 1.881 3.243 1.819 0.129 0.073 0.028

> est.| 8.340 3.989 2.872 -1.858 1843 0.124 Y B
SE | 2.546 1.340 1.230 0.094 0.220 0.027

3 est.| 89.075 39.679 -38.603 -1.124 -0.689 0.738 Y U
SE | 14.700 10.181 10.108 0.009 0.012 0.036

M alate dehydrogenase

component K1 Ko K3 1 v m R modes

1 est.| 27.759 9.491 -8.669 -1.136 2.449 0.115 Y U
SE 7.283 4.407 4.325 0.028 0.040 0.017

> est. 2495 2434 -2.119 -2.063 2.367 0281 Y U
SE 0.509 0.504 0.484 0.058 0.059 0.024

3 est. 7.075 3.741 -5405 -1486 -0.335 0.219 Y U
SE 1.529 1.215 1.354 0.039 0.046 0.022

4 est.| 134.897 83.831 28.405 -1.08 -0.699 0.336 N U
SE | 18.960 12900 7.769 0.01 0.013 0.025

5 est.| 70.840 62.464 34960 1.378 0.197 0.050 N B
SE | 22557 19.917 11.525 0.061 0.069 0.012

Table 1: Estimates)( and v are given in radians) and standard errors for the mixture-com
ponents fitted to Myoglobin (top; three components) Malabydirogenase (bottom; 5 com-
ponents). The final two columns indicat® = Y that the component parameters are fitted
to rotated data (otherwis® = N) and modes= B that the density is bimodal (otherwsie
unimodal (V)).
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Myoglobin

Gp \ G H S T

1] 3 2 4 1 10

2 114 2 0 2 1

3|1 0 8 104 0 1

M alate dehydrogenase

Gp B E G H S T
1129 0 5 O 0O 5 4
2130 1 51 O 0 11 O
319 0 1 4 26 6 20
4,1 0 0 0 2 113 1 8
512 0 0 O 0O 5 10

Table 2: Cross-classification based on the labels frombib&r program (columns) and the
clusters obtained from th& -mixture cosine distribution model. Togk = 3 for Myoglobin.
Bottom: K = 5 for Malate dehydrogenase.
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