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Abstract

A fundamental problem in bioinformatics is to characterizethe secondary structure of

a protein, which has traditionally been carried out by examining a scatter plot (Ramachan-

dran plot) of the conformational angles. We examine two natural bivariate von Mises dis-

tributions — referred to as Sine and Cosine models — which have five parameters and, for

concentrated data, tend to a bivariate normal distribution. These are analyzed and their main

properties derived. Conditions on the parameters are established which result in bimodal

behaviour for the joint density and the marginal distribution, and we note an interesting

situation in which the joint density is bimodal, but the marginal distributions are unimodal.

We carry out comparisons of the two models, and it is seen thatthe Cosine model may be

preferred. Mixture distributions of the Cosine model are fitted to two representative protein

datasets using the EM algorithm which results in an objective partition of the scatter plot

into a number of components. Our results are consistent withemprirical observations; new

insights are discussed.

Keywords: Bivariate angular data, Bivariate circular mixture, Directional statistics, Distribution

on Torus, Myoglobin, Protein conformational angles, Ramachandran plots.
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1 Introduction

Protein shapes are often described using the (3-d) co-ordinates of the backbone chain, which

consists of an ordered sequence of nitrogen and carbon atomsknown as peptide units. These co-

ordinates can be used to obtain a sequence of conformationalangles, known astorsional angles,

which form a natural pairing(φ, ψ) with each angle in(−π, π]. These angles can be plotted in

a scatter plot — now known as a Ramachandran plot (Ramachandranet al., 1963) — and these

have been used in the understanding of protein secondary structure, which describes a protein

in terms ofα helices,β -sheets and loop motifs etc.. Branden & Tooze (1998, p. 9) describe

in more detail the uses of these very familiar plots, including an indication of the approximate

segmentation into various motifs which was initially empirically observed by Ramachandranet

al. (1963).

Recently, there have been attempts to parameterize the joint distribution of(φ, ψ) (Pertsem-

lidis et al., 2005) and this has been done using Fourier basis functions to represent the bivariate

distribution of (φ, ψ) on the torus. This parameterization requires about a hundred parameters

and does not seem to allow an easy interpretation from a biological (or statistical) perspective.

One of our motivations for this paper is to describe the probability distribution on the torus,

but our approach is to use a different parameterization which is based on a mixture of bivariate

von Mises distributions. The von Mises distribution on the circle is well known; it has two

parameters (analogous to the normal distribution), the mean (µ) and concentration parameter

(κ) which is anti-variance. The density is given by (see, for example, Mardia & Jupp, 1999,

p. 36)

(2π I0(κ))
−1 exp{κ cos(φ− µ)}

whereI0(·) denotes the modified Bessel function of the first kind and order 0, and the parameter

µ is the mean direction, andκ is the concentration parameter. This distribution can be approx-
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imated by the normal density for small “variance” (largeκ). In Section 2, we introduce two

bivariate von Mises distributions which, like the bivariate normal distribution, have 5 parame-

ters: two means, two concentrations (anti-variance), and aparameter controlling “correlation”.

In Section 3 we describe some key properties, and make some comparisons. In Section 4 we

return to our motivating example of fitting an appropriate distribution to(φ, ψ) angles obtained

from a protein backbone. The model is extended to mixtures ofdistributions which is fitted us-

ing an EM algorithm and some results for two proteins are described, A final discussion section

describes further possible extensions using MCMC.

2 Bivariate von Mises Distributions

For the study of conformational angles(φ, ψ), we need a bivariate angular distribution, which

extends the univariate von Mises distribution and has analogy with the bivariate normal distribu-

tion. Namely, two mean parameters, two parameters for variance (anti-variance) and a parame-

ter which determines the correlation. Mardia (1975) introduced a bivariate circular distribution

for (Φ,Ψ), with the probability density function (pdf) proportionalto

exp
[

κ1 cos(φ− µ) + κ2 cos(ψ − ν) + {cos(φ− µ), sin(φ− µ)}A{cos(ψ − ν), sin(ψ − ν)}T
]

(1)

whereA is a 2 × 2 matrix. This has more parameters (4 + 2 + 2 = 8) than we would often

require, there are difficulties of interpretation, and, at least for large concentrations, there is

redundancy. A sub-class has been introduced by Rivest (1988) which has pdf proportional to

exp {κ1 cos(φ− µ) + κ2 cos(ψ − ν) + α cos(φ− µ) cos(ψ − ν) + β sin(φ− µ) sin(ψ − ν)} .

(2)

However, both (1) and (2) are overparameterized in the sensethat there should only be 5

parameters by analogy with the bivariate normal. To overcome this defect, Singhet al. (2002)

3



have recently concentrated on a special case of Equation (2)whenα = 0 andβ = λ. We call

this theSine model whose pdf is given by

fs(φ, ψ) = C exp{κ1 cos(φ− µ) + κ2 cos(ψ − ν) + λ sin(φ− µ) sin(ψ − ν)} (3)

where the normalizing constant is given by

C = 4π2

∞
∑

m=1

(

2m

m

) (

λ2

4κ1κ2

)m

Im(κ1)Im(κ2),

andIr(κ) denotes the modified Bessels function of the first kind and order r .

Another such a sub-model of Equation (2) with similar characteristics is whenα = β =

−κ3 . We will call this theCosine model and its pdf is given by

fc(φ, ψ) = {c(κ1, κ2, κ3)} exp{κ1 cos(φ− µ) + κ2 cos(ψ − ν) − κ3 cos(φ− µ− ψ + ν)} (4)

for κ1 ≥ κ3 ≥ 0, κ2 ≥ κ3 ≥ 0. Here the normalizing constant is given by

c(κ1, κ2, κ3)
−1 = (2π)2{I0(κ1)I0(κ2)I0(κ3) + 2

∞
∑

p=1

Ip(κ1)Ip(κ2)Ip(κ3)}.

The marginal probability density ofψ for the Cosine model (4) is given by

fc(ψ) = c(κ1, κ2, κ3) 2πI0(κ13(ψ − ν)) exp{κ2 cos(ψ − ν)} (5)

whereκ13(ψ)2 = κ2
1 + κ2

3 − 2κ1κ3 cosψ . The marginal probability density ofφ is given by

an analogous expression. This distribution is symmetric about ν and is approximately a von

Mises distribution for small values ofκ3 . For κ1 = κ2 = κ3 = 0, the distribution is uniform.

For κ1 = κ2 = 0, the distribution is von Mises. Further, the conditional density fc(φ|ψ) is von

Mises M(ψν , κ13(ψ)), wheretanψν = −κ3 sin(ψ − ν)/(κ1 − κ3 cos(ψ − ν)). An analogous

expression holds forfc(ψ|φ).

Singhet al. (2002) have given the marginal and conditional distributions for the Sine model

which we state here for comparison. The marginal density ofφ (whenµ = 0) is proportional
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to

fs(φ) = I0(κ2λ(φ)) exp{κ1 cos φ}, (6)

whereκ2λ(φ)2 = κ2
2 + λ2 sin2 φ. This is symmetric aboutµ = 0 but not von Mises. Using

Equations (3) and (6) we have the conditional probability density function ofΨ given Φ = φ

as M(φµ, κ2λ(φ)) wheretanφµ = (λ/κ2) sinφ.

3 Properties of Bivariate Circular Models

3.1 Bimodality Conditions

In this section, we state some key results for the sine and cosine models. The proofs are given

in Web Appendix A.

Note that the joint density function(Φ,Ψ) in equation (4) (withµ = ν = 0) is also a

bivariate von Mises forfφ,−ψ andf−φ,ψ. Also fφ,0 andf0,ψ. are univariate von Mises, and for

the Sine model we have similar results.

Theorem 1 For the Cosine density, when κ1 and κ2 are large, the random variable (Φ,Ψ) is

approximately bivariate normal distributed if and only if κ3 ≤ κ1κ2/(κ1 + κ2) .

Remark Derivations for bivariate normal approximations for the Sine model yields similar

results and can be found in Singhet al. (2002).

Theorem 2 The joint density function (Φ,Ψ) of the Cosine model in Equation (4) is unimodal if

κ3 < κ1κ2/(κ1+κ2) and is bimodal if κ3 > κ1κ2/(κ1+κ2) when κ1 > κ3 > 0, κ2 > κ3 > 0.

Theorem 3 The joint density function of the Sine model in Equation (3) is unimodal if κ1κ2 >

λ2 and is bimodal if κ1κ2 < λ2, when κ1 > 0, κ2 > 0 and −∞ < λ <∞.
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Remark We note that Singhet al. only discuss bimodality for the marginal distributions of the

Sine density, and not the joint distribution as given here.

The marginal distribution ofψ for the Cosine model is given by Equation (5). It is easy to

construct an example (κ1 = 1.5, κ2 = 1.7 andκ3 = 1.3) for which the marginal distribution is

unimodal even though the bivariate density is bimodal for the sameκ values. This feature may

be surprising at first: that, for a given set of parameters such that the Cosine density is bimodal,

the corresponding marginal density may be unimodal. The following theorem describes the

conditions under which this occurs.

Theorem 4 For the Cosine model (4) with κ3 6= 0 , the marginal distribution of Φ is symmet-

ric around ψ = µ and unimodal (respectively bimodal) with mode at µ (respectively with

the modes at µ − φ∗ and µ + φ∗ ) if and only if A(|κ1 − κ3|) ≤ (respectively >)|κ1 −

κ3|κ2/(κ1κ3) where φ∗ is given by the solution to κ1κ3A(κ13(φ))/κ13(φ) − κ2 = 0 , and

A(κ) = I1(κ)/I0(κ) .

3.2 Choosing a Model

Analytical Comparisons

Clearly, a change in the mean values (µ and ν ) will just shift the origin, so we will consider

µ = ν = 0 in what follows. We note the following comparisons, which can all be obtained by

considering the joint pdf and conditional distributions:1

1throughout this table, we use the term “expected” as shorthand for the directional mean
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Sine model Cosine model

1 Changing the sign ofλ simply reflects

in an axis.

Changing the sign of smallκ3 give an approx-

imate reflection, but for|κ3| large (relative to

κ1, κ2), bimodality occurs only for positiveκ3.

2 The expected value ofφ|ψ = 0 is al-

ways 0 – for any values ofκ1, κ2, λ.

The expectation is zero only when theκi, i =

1, 2, 3 give a unimodal pdf.

3 The expected value ofφ|ψ is al-

ways constrained to lie in the range

[−π/2, π/2] – for any values of

κ1, κ2, λ andψ.

For large (negative)κ3 the expected value of

φ|ψ approximatesψ over the full range of

(−π, π).

4 A bimodal density occurs for large|λ|

(relative toκ1, κ2).

A bimodal distribution occurs only for large

positiveκ3.

5 Transforming (φ, ψ) to (ψ,−φ) is

equivalent to changing the sign ofλ.

This transformation allows for rotations of the

pdf (which cannot be achieved by changingκ3).

The bivariate densities can be represented by contour plotswhich can be used to illustrate

the above statements. However, the key features are more easily compared by plotting the log

of the density and omitting the normalizing constant. In numerical comparisons we noted that

for smallλ ≈ κ3 the two models are very similar.

Overall, we could conclude that, if we allow for the possibility of transformations of the

form (φ, ψ) to (ψ, π + φ) and (φ, ψ) to (ψ,−φ) then the Cosine model gives a richer set of

possible contour plots (see point 5 above), and hence shouldbe able to fit more closely a larger

class of distributions.
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Numerical Comparisons

Another approach for comparing the Sine and Cosine models isto examine their moments.

Characteristic functions can be used to estimate the moments of the two distributions and we

numerically computed the correlations for the Cosine and Sine models in order to study their

behaviour in relation to the parametersκ3 andλ. The parameterκ3 for the Cosine model and

λ for the Sine model were varied for fixed values ofκ1 andκ2 . Using some selected values of

κ1 andκ2 , we observed that the correlation betweencosφ and cosψ and betweensinφ and

sinψ were seen to be (mostly) decreasing functions ofκ3 for the cosine model, whereas for the

Sine model the correlation betweensinφ andsinψ was a monotonic increasing function ofλ,

and betweencosφ andcosψ was always non-negative and has a “U”-shaped relationship with

λ. Thus we believe that the Cosine model may be better able to capture the correlation between

φ and ψ as either correlation of(cosφ, cosψ) or (sin φ, sinψ). In the Sine model,λ does

not measure the correlation of(cos φ, cosψ), and his would seem to give the Cosine model an

advantage over the Sine model.

It is also of interest to empirically explore the relationship between the bivariate normal

distribution and the Cosine and Sine models when the data arehighly concentrated. We estimate

the correlation under the assumption of normality induced by high concentration. We compare

this estimated correlation under the assumption of normality with correlation evaluated from the

distributions by integration. Under high concentration, the approximate correlation betweenφ

andψ , for the Cosine model, is

ρc =
−κ3

√

(κ1 − κ3)(κ2 − κ3)

and for the Sine model Singhet al. (2002) obtainρs = λ/
√
κ1κ2 . We compared the values

of ρc andρs with the correlation of(cosφ, cosψ) and (sinφ, sinψ) for various large(κ1, κ2).

Overall, we found that the Cosine model has some advantages over the Sine model. Sometimes
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the Sine model can explain the presence of correlation only in the range of(0, 0.4). In the

Cosine model, the “estimated correlation” tracks the values of the parameterκ3 very well for

the entire range of values between(−1, 1). For further details, see Subramaniam (2005).

4 Application: Mixture Models for Proteins

4.1 Protein Data

Protein structures can be determined to an atomic level by X-ray diffraction and neutron-

diffraction studies of crystallized proteins, and more recently by nuclear magnetic resonance

(NMR) spectroscopy of proteins in solution. In a protein, the backbone chain N-Cα and Cα -C

bonds are relatively free to rotate. These rotations are represented by the torsion anglesφ and

ψ , respectively.

A scatter planar representation of such torus data has come to be known as aRamchandran

plot (Ramachandranat al., 1963), and a study of these angles through directional statistics

methods has been one of our goals. Ramachandran used computer models of small polypeptides

to systematically varyφ and ψ with the objective of finding stable conformations. For each

conformation, the structure was examined for close contacts between atoms. Atoms were treated

as hard spheres with dimensions corresponding to their van der Waals radii. Therefore,φ and

ψ angles which cause spheres to collide correspond to sterically disallowed conformations of

the polypeptide backbone.

We consider two datasets which correspond to these conformational angles from the proteins

Malate dehydrogenase (7mdh in the protein database: http://www.rcsb.org/pdb) and Myoglobin

(protein 101m). Myglobin is the smallest protein, consisting mainly ofα-helices, and the first

protein whose structure was determined (Bennett & Kendrew,1952). Malate dehydrogenase is

an “average” protein, with various motifs.
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The Ramachandran plot and the circular histograms of the marginal variables for Malate

dehydrogenase are shown in Figure 1. These clearly indicatethat a mixture distribution may

be appropriate since there are obviously a number of distinct clusters corresponding to the sec-

ondary structure of the protein. The marginals show departure from the von Mises distribution

which only has one mode.

[Figure 1 about here.]

4.2 Mixture Models

We can use the method of maximum likelihood to estimate the parameters of a cosine density.

The log-likelihood function for Equation (4) is

n
∑

i=1

(κ1 cos(φi − µ) + κ2 cos(ψi − ν) − κ3 cos(φi − ψi + ν − µ)) + n log(c(κ1, κ2, κ3)). (7)

and we can obtain starting values under the assumption that the marginal distributions are von

Mises. Then, for example, starting values forµ are given by

φ =



















tan−1(S/C) if C ≥ 0;

tan−1(S/C) + π if C < 0;

whereC andS are the means of thecos(φ) and sin(φ), respectively, and starting values for

ν are similarly found from theψs. For κ̂1 an approximate solution due to Dobson (1978)

is used. The starting values are obtained forν and κ̂2 in the same way. For̂κ3 we use the

mean of(κ̂1, κ̂2). Our optimization program for maximizing the (log-) likelihood was tried and

tested using data simulated from the bivariate Cosine distribution. For details of the simulation

method, see Web Appendix B.

However, it is clear from Figure 1 that a single Cosine model will not fit these data —

even though a bimodal distribution can sometimes be obtained. The plot suggestsK ≥ 3
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components in a mixture model, which can be parameterized by:

fM(φ, ψ) =
K

∑

j=1

πjfj(φ, ψ) (8)

wherefj denotes a Cosine density with parametersθj = (κjk, k = 1, 2, 3, µj, νj), j = 1, . . . , K ,

andπ1, . . . , πK are the mixing proportions (with
∑

πi = 1).

4.3 EM Algorithm

We will investigate the use of the EM algorithm (McLachlan & Krishnan, 1997, pp. 71–72) to

fit (8). As usual, there are several steps which are iterated to convergence:

1. Estimation of membership probabilities using

(a) pij = πjfj(φi, ψi) for i = 1, . . . , n, j = 1, . . . , K

(b) Normalizationpij = pij/
∑

j pij for i = 1, . . . , n

2. Use maximum likelihood to find theθj = (κj1, κj2, κj3, µj, νj) which maximizes the

weighted likelihood function
n

∏

i=1

pijfj(φi, ψi)

for j = 1, . . . , K .

3. Obtain the mixing proportionsπj =
∑

i pij

However, in our use of the Cosine density we have increased the ability to model the data by

also considering transformations of all the data the form(φ, ψ) → (ψ,−φ) for estimating the

parameters of each mixture component. In practice this means checking the likelihood (for each

j ) at step 2., and choosing the rotation which gives the largervalue.

It is well-known that the EM algorithm can get stuck in local solutions, and there can also

be a problem with singularities in which one of the components consists of only a single obser-
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vation. In our implementation, we tried several starting values, and chose the best final solution,

excluding any solutions with very high concentrations (largeκ).

The choice of the number of componentsK will obviously affect the final likelihood.

Adding another component will increase the number of parameters by 6, and this was done

incrementally (starting withK = 1) until the first minimum of AIC, and it is this value ofK

which is then reported. After convergence to the final solution we can note the mixing propor-

tions π1, . . . , πK , the parameter estimatesθj , j = 1, . . . , K and the membership probabilities

pij . Then, for each observation(φi, ψi) we can assign it to the group which maximizespij .

4.4 Results

The EM algorithm has been used to fit mixtures of the cosine model to both Malate dehydroge-

nase and Myoglobin conformational angles.

For Myoglobin, the algorithm selectedK = 3 components, all of which used the rotated

parameterization. The contour plots of the log densities are shown in Figure 3, and the parameter

estimates are given in Table 1. We note that the first and second components have fit a cosine

model which results in a bimodal density, and in this case Theorem 4 can be used to locate

the modes exactly. Further, we note that the third component(which contains nearly3/4 of

the observations) has formed a very tight cluster about its mean. [As a rough guide,κ values

around5 are considered as “moderate concentration”, and values over 10 are considered as

“high concentration”.] Myoglobin is known to contain nearly all helices, and this dominance of

one of the components is consistent with this fact.

[Figure 2 about here.]

[Table 1 about here.]
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Historically, describing protein secondary structure hasbeen somewhat subjective, but the

DSSP program (Kabsch & Sander, 1983; http://swift.cmbi.kun.nl/swift/dssp) was designed to

standardize the assignment from protein database co-ordinates to secondary structures. This

program will convert a protein database file to(φ, ψ) angles and assigns each pair of angles to

one of:

“loop or irregular” (for which no label is given,i.e. blank)

B residue in isolated beta-bridge

E extended strand, participates in beta ladder

G 3-helix (3/10 helix)

H alpha helix

I 5 helix (pi helix)

S bend

T hydrogen bonded turn

It is of interest to compare the clusters formed by our 3-mixture model with the classifications

given byDSSPand these are shown in Table 2. Almost all of the “helix” (H) angles are contained

in the third cluster, which is the most highly concentrated group; indeed the third cluster (which

has very high concentration) contains only angles labelledH (alpha helix), or G (3/10 helix),

and one hydrogen bonded turn. Figure 2 shows the Ramachandran plot for Myoglobin with the

DSSPclassifications used as labels.

[Table 2 about here.]
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The second protein for which we present results is Malate dehydrogenase, which is some-

what larger (343 angles), with several motifs, includingβ -sheets. TheDSSPclassifications are

shown in a Ramachandran plot in Figure 1. In this case, the EM algorithm was used to find

solutions forK = 1, 2, . . . , 6 in which AIC selectedK = 5 components, of which three used

the parameter rotations. The contour plots of the log densities are shown in Figure 3, and the

parameter estimates are given in Table 1. Again, we note thatone of the components (4) has

formed a very tight cluster about its mean, and that component 5 has a bimodal density . Com-

parison of our cluster labels with those obtained fromDSSPis given in Table 2. In this table we

see that cluster 4 is almost all alpha helix, but that many helices are also in cluster 3.

For both proteins we observe that the mean values of the components in the mixture mod-

els are consistent with the traditional partitions given tothe Ramachandran plots based on an

empirical distribution analysis (e.g. Branden & Tooze, 1998, p. 9). Moreover, we note that the

model selection has fit more components to Malate dehydrogenase (which contains more types

of secondary structures) than for Myoglobin (which does notcontain anyβ -sheets (DSSPclass

E)).

[Figure 3 about here.]

5 Discussion

There are various future directions which are possible. Forexample, we could take account

of any serial correlation between the conformational angles ψi andψi+1 , or betweenφi and

φi+1 , since we may not have i.i.d. data. This serial correlation could be modelled (for example

by some sort of Markov Chain) or a simpler solution would be “thinning” in which only every

fourth (say) observation was retained. Serial correlationmodels could also be used to adjust

the posterior probabilities of membershippij , so that isolated angle membership was made less
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likely than an independence assumption would permit. Theseare subjects of ongoing research.

Note also, the possibility of allowing for two additional classifications: a class “doubt” if all

pij < t for some thresholdt, and a class “uncertain” if the two largest probabilities are almost

equal.

Clearly other submodels are also possible such as the bivariate wrapped normal, Cauchy,

but these are not members of the exponential family. However, when applied to the protein

data, it is clear that several mixture components will be required. In our case the number of

parameters forK mixtures is6K − 1, so for the larger 5 component model we have 29 pa-

rameters. However, we think that there is still good interpretability – and standard errors are

also available. This contrasts with the model of Pertsemlidis et al. (2005) who used about 100

parameters which cannot easily be intrepreted. The final mixture model and corresponding set

of clusters is objective, and has much similarity with both initial subjective classifications, and

the output fromDSSP.

Extending to more than 2 dimensions is clearly possible bothfor the Sine model and Cosine

model, but is somewhat easier to express for the Sine model. Further work in higher dimensions

is in progress. Finally, we note that the methods of this paper can be used in other applications

with bivariate angular data, for example wind directions (Fisher, 1993).

Supplementary Materials

Web Appendices referenced in Sections 3 and 4 are available under the Paper Information link

at the Biometrics website http://www.tibs.org/biometrics.
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Figure 1: Ramachandran plot of Malate dehydrogenase (top),and Circular Plots ofφ, ψ (bot-
tom). The symbols used in the plot correspond to theDSSP classifications; see Section 4.4
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Figure 2: Mixture model for Myoglobin. Top three panels correspond to the three components,
with contour plots of the log density, and points allocated to the most probable mixture. The
location× (sometimes obscurred in a cluster of points) marks the mean(µ, ν) for each mixture.
Bottom: Ramachandran plot of Myoglobin, withDSSPclassifications. (The unlabelled points,
given by open circles, are “blank” inDSSP.)
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Figure 3: Mixture model for Malate dehydrogenase. Five panels correspond to the five compo-
nents, with contour plots of the log density, and points allocated to the most probable mixture.
The location× (sometimes obscurred in a cluster of points) marks the mean(µ, ν) for each
mixture.
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Myoglobin
component κ1 κ2 κ3 µ ν π R modes

1
est. 8.459 13.544 8.081 -0.191 0.093 0.138 Y B
SE 1.881 3.243 1.819 0.129 0.073 0.028

2
est. 8.340 3.989 2.872 -1.858 1.843 0.124 Y B
SE 2.546 1.340 1.230 0.094 0.220 0.027

3
est. 89.075 39.679 -38.603 -1.124 -0.689 0.738 Y U
SE 14.700 10.181 10.108 0.009 0.012 0.036

Malate dehydrogenase
component κ1 κ2 κ3 µ ν π R modes

1
est. 27.759 9.491 -8.669 -1.136 2.449 0.115 Y U
SE 7.283 4.407 4.325 0.028 0.040 0.017

2
est. 2.495 2.434 -2.119 -2.063 2.367 0.281 Y U
SE 0.509 0.504 0.484 0.058 0.059 0.024

3
est. 7.075 3.741 -5.405 -1.486 -0.335 0.219 Y U
SE 1.529 1.215 1.354 0.039 0.046 0.022

4
est. 134.897 83.831 28.405 -1.08 -0.699 0.336 N U
SE 18.960 12.900 7.769 0.01 0.013 0.025

5
est. 70.840 62.464 34.960 1.378 0.197 0.050 N B
SE 22.557 19.917 11.525 0.061 0.069 0.012

Table 1: Estimates (µ and ν are given in radians) and standard errors for the mixture com-
ponents fitted to Myoglobin (top; three components) Malate dehydrogenase (bottom; 5 com-
ponents). The final two columns indicate:R = Y that the component parameters are fitted
to rotated data (otherwiseR = N ) and modes= B that the density is bimodal (otherwsie
unimodal (U )).
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Myoglobin

Gp G H S T
1 3 2 4 1 10
2 14 2 0 2 1
3 0 8 104 0 1

Malate dehydrogenase

Gp B E G H S T
1 29 0 5 0 0 5 4
2 30 1 51 0 0 11 0
3 9 0 1 4 26 6 20
4 0 0 0 2 113 1 8
5 2 0 0 0 0 5 10

Table 2: Cross-classification based on the labels from theDSSP program (columns) and the
clusters obtained from theK -mixture cosine distribution model. Top:K = 3 for Myoglobin.
Bottom:K = 5 for Malate dehydrogenase.
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