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Abstract

Introduction: Breast cancer subtypes are currently defined by a combination of morphologic, 

genomic, and proteomic characteristics. These subtypes provide a molecular portrait of the tumor, 

that aids diagnosis, prognosis, and treatment escalation/de-escalation options. Gene expression 

signatures describing intrinsic breast cancer subtypes for predicting risk of recurrence have been 

rapidly adopted in the clinic. Despite the use of subtype classifications, many patients develop 

drug resistance, breast cancer recurrence, or therapy failure.

Areas covered: This review provides a summary of immunohistochemistry, reverse phase 

protein array, mass spectrometry, and integrative studies that are revealing differences in biological 

functions within and between breast cancer subtypes. We conclude with a discussion of rigor and 

reproducibility for proteomic-based biomarker discovery.

Expert commentary: Innovations in proteomics, including implementation of assay guidelines 

and standards, are facilitating refinement of breast cancer subtypes. Proteomic and 

phosphoproteomic information distinguish biologically functional subtypes, are predictive of 

recurrence, and indicate likelihood of drug resistance. Actionable, activated signal transduction 

pathways can now be quantified and characterized. Proteomic biomarker validation in large, well-

designed studies should become a public health priority to capitalize on the wealth of information 

gleaned from the proteome.
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1. Introduction

Breast cancer is classified into subtypes to aid in diagnosis, prognosis, and treatment 

escalation/de-escalation options. Breast cancer subtype designations are based on clinical 

data, proteomic and genomic characteristics, and histomorphology. Subtype designations are 

clinically useful because breast cancer exhibits intra- and inter-patient tumor heterogeneity. 

Heterogeneity manifests itself in several biologically important forms: as variation in the 

proportion of cellular components within the tumor microenvironment, as spatial and 

temporal differences in biomarker expression, as tumor clonal populations, and as patient 

clinical variables (age, race, lymph node and menopausal status). Heterogeneity is the 

underlying reason that breast cancers possess different clinical behaviors and biological 

functions [1–5]. Based on histomorphology and growth patterns alone, 21 histological types 

of breast cancer have been defined by the World Health Organization [2]. Two broad 

categories of breast cancer are in situ carcinoma and invasive carcinoma. Ductal carcinoma 

in situ (DCIS) and lobular carcinoma in situ (LCIS) are differentiated by growth patterns and 

cytological features, and DCIS is further characterized by tumor architecture [3]. Invasive 

carcinoma histological subtypes are designated by their architecture, secretion (mucinous/

colloid), or structural form (medullary, tubular, papillary) [2,3]. Infiltrating ductal carcinoma 

(IDC) is classified into tumor grades (well, moderately or poorly differentiated) based on 

mitotic index, tubule formation, and nuclear polymorphisms, further aiding prognosis [3]. 

Infiltrating ductal carcinoma accounts for 70–80% of female invasive breast tumors and 

represents the majority of breast cancer cases in The Cancer Genome Atlas (TCGA) [6–8] 

and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) 

cohorts [9,10]. Other rare subtypes exist which are reviewed elsewhere [2,11].

1.1 Historical classification of breast tumors and breast cancer subtypes

Complex breast biology underscores the need for biomarkers that can differentiate indolent 

from aggressive growth and foretell treatment response. Breast tumor biology has 

historically been classified based on immunohistochemical (IHC) staining of proliferation 

proteins (Ki-67), hormone receptor status (estrogen receptor alpha (ER), progesterone 

receptor (PR) and/or androgen receptor (AR)), and the presence/absence of specific 

cytokeratins (CK) [11–17]. Ki- 67 expression is inversely correlated with outcome: high 

Ki-67 proliferation index correlates with poor outcome [18]. The clinical use of Ki-67 is 

controversial due to reported poor inter-laboratory reproducibility of Ki-67 assays, 

differences in thresholds for low and high proliferation indices, and differences in assay 

methods [18]. Despite these limitations, Ki-67 expression has demonstrated clinical 

prognostic value at the low and high thresholds.

ER and PR status predict endocrine therapy sensitivity. Two types of estrogen receptor exist, 

ERα and ERβ. An underappreciated fact is that both ERα and ERβ are biologically 

functional. The complex biology begins with ER cross-talk between epidermal growth factor 

receptor (EGFR or HER1) and HER2 [19]. ERα functions as a ligand (estrogen) dependent 

receptor for promoting cell proliferation, while ERβ can antagonize ERα [20]. 

Phosphorylation of nuclear ERα on Ser305 causes cyclin D1 transcription and 

phosphorylation on Ser118 and Ser167 results in increased transcriptional activity [19]. 
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Selective estrogen receptor modulators (tamoxifen and raloxifene) exhibit both ER agonist 

and antagonist activity [19]. A limitation of current estrogen receptor prognostic clinical 

evaluation is that only ERα has been validated for clinical value. ERβ is not measured 

despite availability of validated antibodies [21]. Therefore, except where noted in this 

review, ER refers only to ERα.

ER and PR are transcriptional regulators belonging to the nuclear receptor superfamily that 

includes receptors for steroid and thyroid hormones, vitamin D, and peroxisome proliferator- 

activated receptors [22]. ER and PR positive tumors are associated with a favorable 

prognosis [18] compared to a poor prognosis for patients with ER negative breast tumors 

[23]. ER/PR IHC scores consider both the percentage of positive cells and the staining 

intensity (Allred score) [12,15,24]. Currently the ER positivity threshold is ≥1% tumor cells 

[25]. ER positive tumors indicate a greater likelihood of response to endocrine therapy 

(estrogen receptor modulators, aromatase inhibitors, or estrogen receptor inhibitors), 

however treatment response is not uniform and treatment resistance develops in a subset of 

ER+ patients [16,18].Histomorphology and ER and PR status represent the main 

clinicopathological classification scheme for guiding endocrine therapy (Figure 1) [26].

Growth factor receptors and their ligands regulate cell proliferation, which is a key regulator 

of oncogenesis [27]. Growth factor receptors include EGFR, HER2, HER3 and HER4, 

platelet derived growth factor (PDGFβ), and insulin like growth factor 1 receptor (IGF1-R) 

[28]. These growth factor receptors regulate cellular proliferation via tyrosine kinase activity 

of plasma membrane proteins, with extensive dimerization and receptor cross-talk [28]. The 

discovery of the HER2 gene [27,29], its presence in a breast cancer cell line [30], and 

recognition of the role of HER2 in driving human breast tumor growth [31], transformed the 

subtype classification of breast cancer. HER2 overexpression is associated with aggressive 

tumors, poor prognosis, and response to chemotherapy [4,28,32–36]. HER2 testing is 

clinically validated to predict response to anti-HER2 therapies in neoadjuvant and adjuvant 

settings [18,36,37] (Figure 1).

1.2 Intrinsic gene expression signatures

Histopathologic and immunohistochemical classification of breast tumors undoubtedly 

provides diagnostic and prognostic value [38,39]. However, a discussion of breast cancer 

subtypes would be incomplete without considering the influence of gene expression 

signatures as subtype classifiers. More than 15 years ago, transcriptional profiling of breast 

tumors revealed a gene set whose expression varied significantly between tumors and this 

variation was not due to tissue sampling bias [26,40,41]. Hierarchical cluster analysis of this 

intrinsic 500 gene set revealed 5 gene expression profiles, which were labeled as luminal A, 

luminal B, basal-like, HER2+, and normal breast like (Figure 1) [26,40]. The luminal, basal, 

and normal subtype labels were derived from breast histomorphology. Luminal subtypes are 

associated with epithelial cells surrounding the duct lumen. Basal-like subtypes are 

associated with myoepithelial cells lining the basement membrane (basal layer of the duct) 

[42]. Normal-like signifies normal breast tissue, likely due to an abundance of adjacent 

normal breast tissue in heterogeneous tumor specimens. The HER2+ subtype represents 

amplification of the HER2neu gene and overexpression of the corresponding HER2 receptor. 
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The intrinsic subtypes were shown to correlate with overall survival, prognosis, and therapy 

response [26,43]. In 2008, Parker et al. proposed that recurrence risk could be further 

defined using a 50 gene subset of the original intrinsic genes plus a classification algorithm, 

the Prediction Analysis for Microarrays (PAM50) [44]. PAM50 was rapidly adopted in the 

clinical setting for predicting risk of recurrence in ER+/PR+/HER2neg, lymph node-negative 

(stage I or II) or node-positive (stage II) patients [37]. Due to the widespread adoption of the 

‘intrinsic subtype’ classification, many subsequent genomic and proteomic studies refer to 

this nomenclature.

New algorithms and subtype classification systems continue to be developed and refined. 

Using ensemble learning rather than a single sample predictor model, Milioli et al. 

developed a novel gene expression score to rank features between two different classes using 

a supervised univariate method [10]. Using this scoring system, they identified seven under-

explored genes that could potentially aid prognosis or predictive value [10]. The St. Gallen 5 

tier classification scheme removed the normal-like subtype and stratified luminal B and 

HER2 subtypes into luminal B HER2+, luminal B HER2 negative, and HER2 non-luminal 

[4]. Furthermore, enhancements to intrinsic subtype classifications have been proposed 

because factors other than tumor biology impact prognosis and risk of recurrence [45]. Age 

[1,45–47], race [46,48,49], metastatic site [46,50–53] and immune cell interactions [54–57] 

were shown to impact risk of recurrence, survival, or treatment options.

1.3 Male breast cancer

Molecular heterogeneity also exists between male and female breast cancers. Male breast 

cancer represents a mere 1% of the diagnosed breast cancer cases [58]. Male breast cancers 

are more likely to carry BRCA2 mutations and less likely to carry PIK3CA and TP53 
mutations compared to females with the same ER+/HER2- phenotype [58,59]. Male breast 

cancers are predominately ER+ and AR+, and are rarely triple negative (ER, PR, and HER2 

negative) [58]. Male breast cancers exhibited frequent expression of apoptotic (Bcl-2) and 

growth factor proteins (IGF1-R) compared to female breast cancers [58,60]. Using tissue 

microarrays and immunohistochemical stains, male breast cancers were found to cluster into 

four groups: (1) hormone receptor negative, (2) ER+ high grade, (3) ER+ intermediate 

grade, and (4) ER+ low grade [60]. The ER+ high and intermediate grade groups could be 

further stratified by BRST2 (gross cystic disease fluid protein 15 (GCDFP-15)) expression, a 

marker of apocrine differentiation. Classification into 4 subtypes based on ER expression 

clearly shows that the distribution of subtypes in male breast cancer is different compared to 

female breast cancers [61]. Due to the low incidence and limited literature regarding 

proteomic subtypes of male breast cancer, the remainder of this review focuses solely on 

female breast cancer subtypes.

1.4 Clonal heterogeneity

Breast cancer subtyping on the molecular level is now possible due to the convergence of 

technology, bioinformatics, and drug discovery. Categorizing biological features of breast 

tumors into subtypes provides clinically useful information to guide diagnosis, prognosis, 

therapy, and estimate recurrence risk [4,26,33,37,62]. Molecular classification of breast 

tumors currently relies on a suite of genomic and proteomic analysis, including customary 
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histomorphology, IHC, and clinical data. However, even the newly proposed integrative gene 

cluster taxonomy fails to consider the complex positive and negative feedback loops in 

signal transduction pathways that reflect the underlying breast tumor clonal heterogeneity 

[63]. Intra tumor clonal heterogeneity is due to active maintenance of more than one tumor 

clone population [64,65]. Clonal heterogeneity is proposed to ensure survival of the entire 

tumor, even if one clone is killed during treatment or if it moves to a metastatic niche [26,66] 

(Figure 2). The spatial features of intra-tumoral heterogeneity can be appreciated when one 

considers the simple fact that Ki-67 is often highly expressed at the tumor periphery [67]. 

Temporal accumulation of common oncogenic mutations in TP53, PIK3CA, PTEN, HER2, 
FGFR1, and MYC genes in triple negative breast cancer have been shown to occur early in 

breast cancer development, whereas later developing clones may possess different mutations 

[67].

To improve and refine breast cancer subtyping for precision medicine, we must elucidate the 

‘omics’ of the tumor and its microenvironment [68]. Insights into the genome, epigenome, 

proteome, plus metabolome, will transform our understanding of individual tumor clones 

and overall tumor behavior [69]. In this review, we emphasize the contribution of protein 

biomarkers for classifying breast cancer subtypes based on functional phenotypes (Table 1). 

The plethora of literature on breast cancer subtypes limits our ability to summarize all the 

current papers. We have selected recent, representative studies, some which integrate multi-

omic methods, and some that include de novo protein biomarker identification, to highlight 

progress within the proteomic biomarker realm.

2. Protein biomarkers associated with breast cancer subtypes

Proteomic assays have rapidly matured beyond total numbers of proteins identified and lists 

of proteins and peptides identified in a specimen. We can now identify and quantify low 

abundance proteins, characterize and quantify their post-translational modifications, validate 

protein identity with antibody and antibody-free methods, and pinpoint potential therapeutic 

protein targets. Protein biomarkers emanating from the breast microenvironment may be 

detected within breast tissue itself, within hematogenous circulation, or within lymphatic 

circulation [70]. Nonetheless, it is important to know from which cell population these 

biomarkers were derived. Breast cancer protein biomarkers may originate from breast tumor 

cells, stromal cells, or tumor/stromal infiltrating immune cells. Due to varying levels of 

discordance between RNA and protein expression, functional biological features are not 

fully represented in intrinsic gene expression signatures [8]. Functional proteomic analysis 

provides complementary information that can be integrated with the genomic and 

transcriptomic data to enhance biomarker discovery [71]. Signaling pathways, potential 

biomarkers, actionable drug targets, and overall tissue biology can be discerned both within 

and across tumors and breast cancer subtypes by integrating genomic data with 

immunohistochemistry (IHC), reverse phase protein arrays (RPPA), and/or liquid 

chromatography mass spectrometry (LC-MS/MS) proteomic data.

Despite technological improvements, the number of clinically validated biomarkers is 

dismally small [68]. The perceived failure of proteomics has been attributed to biased 
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sample preparation, flawed experimental design, and inappropriate statistical data analysis 

[68,72].

Cell line models are appealing to use for pre-clinical biomarker studies. Cell lines have been 

classified into the intrinsic subtype categories as well as groups based on their protein 

receptor expression [73]. The major caveats to using cell lines for breast cancer subtyping 

studies are (a) the difference in genetic mutations in transformed cell lines compared to 

patient samples, i.e. the K-RAS mutation in the MDA-MD-453 cell line that is used as a 

model of apocrine breast cancer has not been identified in patient specimens [74], and b) a 

lack of mixed cell- type cultures that recapitulate the tumor microenvironment, and c) lack 

of protein expression concordance between cell lines and TCGA breast proteomic data for 

proteins other than ER, PR and HER2 [75]. Acknowledging and understanding these 

criticisms paves the way for extracting valuable information from existing breast cancer 

studies, as well as improving prospective proteomic analysis. Experimental factors and study 

design need to be critically evaluated for retrospective and prospective studies [76,77]. Pre-

analytical variability must be minimized by establishing consistent tissue collection, 

fixation, and processing procedures. Study participants must represent individuals with and 

without the disease being studied. Analytical methods must consider and reduce variability 

introduced into the data due to the heterogeneous nature of breast tissue. Potential 

biomarkers must be verified and validated in large numbers of people to improve predictive 

power. Designing studies that allow serial sampling of the tumor during neoadjuvant therapy 

may facilitate identifying proteomic biomarkers of treatment response and resistance 

[78,79].

With these experimental caveats in mind, we provide an overview of immunohistochemical, 

RPPA, and mass spectrometry studies that are addressing biomarker classification and 

biological heterogeneity within and between breast cancer subtypes. These proteomic 

studies are helping to clarify clinically relevant issues including better disease free and 

overall prognosis and predicting therapy response with the goal of limiting unnecessary 

toxicity and reducing development of drug resistance.

2.1 IHC4 score for rapid, inexpensive breast cancer prognosis

Rapid, inexpensive, widely available IHC assays can reduce overall health care costs and are 

amenable to standardized, reproducible methods. As individual biomarkers, ER, PR, Ki-67, 

HER2 have been used clinically as prognostic indicators of disease recurrence/clinical 

outcomes (Figure 3). Combining all 4 markers could have added prognostic value [80]. With 

this philosophy in mind, Cuzick et al. developed a 4 protein IHC panel as a prognostic tool 

to estimate residual recurrence risk for patients previously treated with hormone therapy 

[80]. IHC markers for ER, PR, Ki-67, HER2 were combined with nodal status, tumor size, 

grade and age, and type of drug treatment (anastrozole versus tamoxifen) to generate the 

IHC4 algorithm. Compared to the Oncotype Dx genomic recurrence scores, IHC4 was 

slightly more prognostic for distant recurrences, whereas Oncotype Dx performed better for 

all recurrences [80]. This study was performed with two clinical cohorts, using Ki-67 

antibody clone SP6 or MIB-1, and an ER positivity cut-off of H>10. The IHC4 score has 

since been evaluated in a larger clinical cohort using different IHC detection methods [81], 
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and in a setting with a multidisciplinary clinical decision team for recommending adjuvant 

chemotherapy [82]. Both studies reported improved prognostic value of the IHC4 score.

Biomarkers for predicting response or resistance to radiotherapy are urgently needed. 

Lakhanpal et al. evaluated whether IHC4 algorithm, which includes nodal status, tumor size, 

grade and age, and type of drug treatment (IHC4+CTS score), could accurately predict the 

risk of locoregional recurrence in women who had breast conservation surgery (BCS) for 

early invasive breast cancer [83]. The study consisted of 3 groups: 1) the study group who 

had BSC but no adjuvant radiotherapy (n=81), 2) the control group had both BCS and 

adjuvant radiotherapy (n=1406), and 3) the validation group included women from the 

control group who were post-menopausal and did not have adjuvant chemotherapy [83]. The 

IHC4+CTS score was divided into tertiles of low risk, intermediate risk, or high risk. The 

actual locoregional recurrence rate predicted by IHC4 + CTS scoring was 2.7% (1/37), 

22.2% (4/18) and 23.7% (6/26) for the low, intermediate, and high risk groups, respectively. 

At 5 year follow-up, 97% of the patients in the low-risk group, 79% of the patients in the 

intermediate-risk group, and 75.2% of the patients in the high risk group were recurrence 

free. The results suggest that the IHC4+CTS score shows promise for predicting patients 

with a low local recurrence risk, providing cost and quality of life benefits for those who can 

avoid adjuvant radiotherapy. However, others have not endorsed the IHC4 score for ER/PR 

positive/HER2 negative patients [37], highlighting the urgent need for large scale validation 

proteomic biomarker panel.

2.2 Immunocytochemical analysis of triple negative breast cancer

Triple negative breast cancers (TNBCs) are ER/PR/HER2 negative, with a high mitotic 

index, prominent lymphocytic infiltrate, and a high probability of recurrence and metastasis. 

TNBC has the poorest prognosis within breast cancer subtypes. The absence of biomarkers 

for predicting outcome or tailoring therapy, leaves surgery and adjuvant chemotherapy as the 

current treatment options for TNBC.

Four subtypes of TNBC have recently been defined by combining a histological assessment 

of lymphocyte invasion and stromal gene expression with transcriptomic data [84]. The 4 

subtypes reflect more intricate histomorphology designations compared to the previously 

published six TNBC subtype designations developed by the same group. The revised 

subtypes are: basal like 1, basal like 2, mesenchymal, and luminal androgen receptor (AR+). 

This retrospective study of publicly available data sets, including TCGA cases, revealed 

differences in clinical factors and distant disease progression based on the revised 4 subtype 

classification of TNBC [84]. In the same study, using a small cohort of specimens (n=10), 

transcripts from tumor and stroma were confirmed to be discordant, highlighting differences 

in homogenized tissue specimens versus enriched cell populations and the effect of using 

homogenized tissue for defining subtypes [84].

Triple negative breast cancer falls within the basal-like intrinsic subtype [41,85]. Despite the 

basal-like classification, not all TNBC is basal-like and not all basal-like tumors are triple 

negative. Basal-like and non-basal-like TNBC can be distinguished on a protein level by 

EGFR and CK5/6 expression. Basal-like TNBC expressing CK5/6, CK14, CK17 and/or 

EGFR have a poor prognosis [85,86]. A triple immunofluorescence test for CK5/6, AR and 
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p53 found that TNBC cells do not simultaneously express all three proteins, although each 

marker alone was expressed in specific cell populations as noted by IHC on formalin fixed 

paraffin embedded (FFPE) tissue sections (n=52) [86].

Immune cell activation has been documented in TNBC breast tumors. A subset of TNBC 

tumors was shown by IHC to express both programed cell death 1 (PD-1) protein and 

lymphocyte activation gene 3 (LAG-3) protein [54]. PD-1/LAG-3 expression could 

potentially be used to identify TNBC patients that could benefit from immunomodulatory 

therapy.

To further complicate the molecular portrait of TNBC, a subset of TNBC expresses AR [87]. 

AR expression has been correlated with EGFR and PDGFRβ phosphorylation indicating 

activation of receptor tyrosine kinase (RTK) mediated growth pathways [88]. Androgen 

receptor expression in TNBC has also been correlated with locoregional recurrence 

following radiation therapy and radioresistance [89]. Inhibiting AR with enzalutamide 

induced radiation sensitivity in MDA-MB-453 and ACC-422 TNBC cell line models which 

highly express AR. Enzalutamide induced radiosensitivity in a dose-dependent manner, 

similar to cisplatin. Radiosensitization was not observed in AR negative cell lines (T47D, 

MDA-MB-231, MDA-MB- 468) [89]. MDA-MB-453 mouse xenograft models treated with 

enzalutamide demonstrated radiosensitivity documented as delayed tumor doubling time. 

DNA damage repair genes, regulated by AR, were identified from gene set enrichment 

analysis [89]. Western blotting was used to determine protein expression of DNA-PKcs and 

phosphoDNA-PKCs Ser2056 with and without ionizing radiation in MDA-MB-453 cell 

lines, treated or untreated with enzalutamide. DNA-PKcs Ser2056 increased with ionizing 

radiation treatment but decreased over time following AR inhibition [89]. Large clinical 

studies are assessing the effects of breast cancer subtypes on radiosensitivity [90], but to be 

applicable to all TNBC subsets, the studies should include assessment of AR expression as 

well as ER/PR/HER2.

CD44, a transmembrane adhesion protein that binds hyaluronic acid, is often expressed in 

breast tumors and is associated with the cancer stem cell phenotype. CD44 acts as a 

coreceptor for HER2 and MET and a scaffold for heparin sulfate proteogylcans, whereby it 

can modify cell shape via linkages to the actin cytoskeleton. Using tissue microarray arrays 

from 240 stage 2 breast cancer patients representing all subtypes, CD44 expression was 

frequently associated (63%) with triple negative basal-like tumors that also expressed 

CK5/14 and EGFR, and with BRAC1 hereditary tumors [91]. HER2+ breast tumors 

exhibited the lowest CD44 expression. Alternatively spliced isoforms of CD44 have variable 

numbers of exons and specific isoforms have been associated with breast cancer subtypes 

[92]. Using tissue microarrays, western blotting, and qRT-PCR, isoform CD44v8-v10, 

containing three variable exons, and CD44S, without any variable regions, were associated 

with basal-like tumors [92].

3. Reverse phase protein arrays, antibody arrays, and western blotting

RPPA are ideally suited for quantifying and characterizing proteins and their post- 

translationally modified forms [93]. RPPA are utilized to identify and quantify changes in 
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levels of expressed proteins and to map the functional protein signal transduction pathways 

that represent actionable drug targets [94]. RPPA are not used for de novo protein 

identification, as in mass spectrometry, but instead provide high-throughput protein analysis 

using antibody based detection systems.

3.1 Signal kinase pathway regulation in triple negative breast cancer

In a small set of previously treated, metastatic TNBC tumors (n=14), a variety of genetic 

alterations were identified by whole genome and transcriptome sequencing [95]. Although it 

was a small study, the goal was to identify potentially actionable molecules. A large variety 

of inter-patient genomic alterations were discovered, but some commonalities emerged 

including alterations in genes regulating DNA repair and in genes driving the 

RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling cascades [95]. Concurrently, another 

group was also investigating actionable proteins in TNBC tumors by profiling receptor 

tyrosine kinases using antibody arrays (human phospho-RTK array kit (R&D Systems) and 

the PathScan RTK Signaling Antibody Array Kit (Cell Signaling) [96]. Co-activation of 

mTOR (mammalian target of rapamycin) and ERK1/2 (extra-cellular signal related protein 

kinases 1 and 2) in patient derived TNBC tumors and TNBC cell lines was shown by 

antibody arrays and western blotting to be modulated by BEZ235, a dual PI3K/mTOR 

inhibitor [96]. These two studies accentuate the inter-patient heterogeneity in TNBC and 

potential actionable drug targets within the protein translation and DNA repair pathways. 

Recently, two types of cluster analysis were applied to RPPA data generated from 80 TNBC 

tumors to decipher proteomic differences within the TNBC subtype [97]. The tumors 

consisted of invasive lobular or ductal breast cancer. 152 proteins (n=46 phosphorylated 

proteins) were quantified by RPPA. Clustering analysis showed 42 differentially expressed 

proteins in the two clusters. The clusters were dominated by inflammatory, hormone 

receptor, and MAPK pathway signaling, or by DNA damage, GADD45, and p53 pathway 

signaling [97]. The functional phenotypes highlight the heterogeneity within TNBC and 

identified two clusters representing patients that could benefit from different types of 

treatment

3.2 Proteomic heterogeneity within HER2 positive and negative breast tumors

Dynamic receptor switching, receptor cross-talk, and receptor activation without receptor 

overexpression complicate efforts to classify breast cancer subtypes [51,98,99]. Truncation 

of the HER2 extracellular domain results in a hyperactive receptor, p95HER2, due to the 

ability of the C-terminus fragment, which contains tyrosine kinase activity, to form stable 

homodimers. p95HER2 has been associated with trastuzumab resistance [51]. HER2 and 

HER3 readily form heterodimers that activate the AKT-mTOR protein translation and 

growth pathways. In Her2+ FFPE tumor specimens, high levels of p95 and/or HER3 were 

associated with poor response to trastuzumab [51]. Furthermore, plasma proteome analysis 

of patients with HER2 negative breast cancer revealed elevated plasma and tumor tissue 

levels of calpain-10 [100]. Calpains cleave the extracellular domain of HER2, thus forming a 

hyperactive, but phenotypically HER2 negative cell [100].

Wulfkuhle et al. reported HER2 signal pathway activation, via phosphorylated EGFR and 

HER3, in frozen and FFPE breast cancer tissues that were defined as HER2 negative by 
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fluorescent in situ hybridization (FISH) and IHC (HER2 <2+, FISH negative) [99]. 

Phosphorylated proteins were quantified using RPPA in microdissected breast tumors from 

patients enrolled in the ISPY-1 TRIAL (CALGB 150007/150012, ACRIN 6657). 

Assessment of phosphorylated HER2 (HER2 Tyr1248) levels in the FFPE surgical 

specimens revealed 46% of the HER2 cases that were IHC/FISH+ expressed HER2 Tyr1248 

compared to 26.5% of the IHC/FISH negative HER2 samples [99]. This pattern of HER2 

pathway activation was also present in the frozen specimens from the IHC negative/FISH 

negative/phosphoHER2 positive subset. Phosphorylation levels of HER2 Tyr1248, EGFR 

Tyr1173, and EGFR Tyr1148 were elevated (p=0.00002, 0.01, and 0.07, respectively) in the 

IHC negative/FISH negative /pHER2 positive population compared with the IHC/FISH/

pHER2 negative population. In addition, the HER2+ cluster of breast specimens in the 

TCGA showed over-expression of EGFR, EGFR Tyr992, HER2, and HER2 Tyr1248 [101]. 

The clinical implications regarding activated HER2 receptor, via phosphorylation rather than 

receptor amplification, could alter therapy recommendations for the subset of patients who 

are HER2 IHC/FISH negative but phosphoHER2 positive. Patients whose tumors are HER2 

negative based on IHC/FISH scores are currently not considered candidates for anti-HER2 

therapy. However, activation of HER2 family proteins and related downstream RTKs 

indicate that a subset of patients could potentially derive clinical benefit from molecular 

targeted inhibitors [99]. Furthermore, these HER2 receptor studies indicate that the internal 

domain drives the downstream signaling, either via hyperactivation of a truncated receptor or 

through phosphorylation via heterodimerization with HER3. Molecular profiling of HER2 

needs to include phosphoHER2 and p95HER2 to provide a complete snapshot of receptor 

status.

3.3 Heterogeneity within the iuminai A subtype

The luminal A subtype is considered highly heterogeneous but also has an overall good 

prognosis. However, despite hormone therapy a subset of patients relapse and other patients 

may receive unnecessary hormone therapy. Using integrative clustering of genomic and 

proteomic data for frozen primary breast tumors, a refinement of subtypes was undertaken to 

identify potential differences that could be exploited for therapeutic options [102]. RPPA 

data for 148 proteins from 173 specimens resulted in 5 groups: luminal, HER2+, basal, 

reactive 1 and reactive 2 [102]. The reactive groups exhibited proteins related to fibroblasts 

and the microenvironment. Based on RPPA functional protein classification, subtype 

differences were noted within the luminal A group. 6 proteins were statistically different 

between the RPPA- defined luminal A subgroups: Cleaved Caspase 9, 53BP1, AMPKa, 

GATA3, Rad51 and p90RSK Thre359/Ser363 [102]. A caveat of this study is the wide range 

of tumor content in the specimens (0–90% tumor, average 53%) that could potentially 

explain overlap between the reactive and luminal A classifications.

Another method for identifying disease recurrence in hormone positive breast cancer 

subtypes was designed using quantitative RPPA data and gene expression data [103]. Three 

classification methods were combined: support vector machines, random forests, and 

prediction analysis for microarrays. 3 proteins, NDKA, RPS6 and Ki-67 were highly 

expressed in high risk tumors and caveolin-1 was downregulated [103]. The data was 

confirmed in an independent set of specimens with good sensitivity and specificity.
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Although race has been associated with clinicopathological breast cancer risk factors, 

functional phenotype differences within breast cancer subtypes based on self-reported race/

ethnicity were not found in a small study of hormone positive, HER2 positive, and triple 

negative invasive breast tumors [104]. Fine needle aspirates were lysed for RPPA analysis. 

177 proteins were not considered differentially expressed (false discovery rate (FDR) <5%) 

among different races/ethnicities (n=255, 57.6% White, 18.4% Hispanic, 18.1% Black, 5.9% 

other) by breast cancer subtypes. The caveats to this study are; (a) the small sample sizes in 

each breast cancer subtype, (b) the potential paucity of tumor cells and/or overabundance of 

stromal cells in the fine needle aspirates, and (c) the lack of ancestry-confirmed race/

ethnicity [104].

3.4 Invasive lobular breast cancer subtypes

Invasive lobular cancer (ILC) represents about 10% of all breast cancers but ILC specimens 

are not well represented in most study cohorts or clinical trials studying prognosis and 

treatment response [105]. To address this lack of knowledge regarding ILC, a multi-omic 

study of 144 untreated ILC tumors was undertaken to improve the molecular 

characterization of ILC. As part of the Rational Therapy for Breast Cancer (RATHER) 

consortium, DNA sequencing of somatic variants, copy number variation, gene expression, 

and RPPA protein data were integrated to provide molecular portraits of ILC and identify 

potential subtypes [105]. Gene expression data elucidated two subtypes identified by 

pathway analysis as immune related and hormone related. The immune related group 

exhibited mRNA upregulation of lymphoid signaling/cytokine receptor transcripts [105]. 

Transcripts upregulated in the hormone related group included ER, PR, GATA3, and cell 

cycle. Somatic mutations were identified in both groups of ILC tumors including CDH1 (E-
Cadherin), PIK3CA, GATA3, MAPK, HER2, NF1, and TP53 [105]. Using comparative 

analysis between the TCGA and METABRIC breast subtype classifications, the immune 

related and hormone related subtypes of ILC were found to be unique classifiers [105]. 

RPPA analysis confirmed higher expression of HER2, ER, ER Ser118, PR, fibronectin, and 

GATA3 in the hormone related group of ILC [105].

Using a data integration tool, mutations, copy number variations, and RPPA data between 

the immune and hormone related groups revealed correlations only in the hormone group. 

Upregulation of PR, GATA3, fibronectin and down regulation of yes associated protein-1 

(YAP1) were verified at the transcript and protein level [105]. YAP1, a Hippo pathway 

protein, regulates growth and repair. Downregulation of YAP1 has been shown with in vitro 
models to lead to ER/PR overexpression [105]. The lack of correlations in the immune 

related group may be due to under-representation of immune signaling antibodies available 

for this particular RPPA [105]. Overall survival (10 years post diagnosis) was associated 

positively with higher expression of H2AX, while higher expression of eIF4B was 

associated with poor survival [105]. Furthermore, a decision tree based on mutation rate, 

eIF4B protein expression, and positive lymph node count were predictive of survival [105]. 

This comprehensive integrative study clearly shows the contribution of RPPA for validating 

gene expression data, quantifying protein expression, and characterizing post-translationally 

modified proteins.
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4. Emerging biomarkers

Emerging biomarkers have limited validation due to evaluation in small patient cohorts. 

However, emerging biomarkers may be extremely useful in research settings for deciphering 

drug sensitivity and resistance, or developing additional clinical disease monitors and 

treatment monitors. Several studies have recognized the forkhead box transcription factors as 

potential predictive biomarkers for overcoming trastuzumab resistance or for the need for 

adjuvant chemotherapy [106–109]. FOXA1 has been positively correlated with good 

prognosis in ER/PR positive breast cancer, and negatively correlated with Ki-67 and nuclear 

grade [106,107]. GATA-3, transacting T -cell specific transcription factor, has also been 

found to be associated with luminal A and luminal B subtypes [110]. GATA-3 correlated 

with FOXA1 but FOXA1 remained the better independent marker for prognosis and 

prediction for adjuvant chemotherapy [106,107].

The Rac activator, P-REX1, was found by mass spectrometry profiling of MCF7 cell lines 

during a screening for phosphatidylinositol 3,4,5-triphosphate (PIP3) regulated proteins 

[111]. Using the RPPA data from the TCGA primary breast cancer cohort [112], P-REX1 

was found to be inversely correlated with PI3K pathway inhibition and P-REX1 levels 

decreased with loss of PTEN. Both protein and mRNA levels of P-REX1 were positively 

correlated with ER [111]. P-REX1 was also shown to be elevated in ER+ luminal breast 

tumors. P-REX1 will need to be verified in larger cohorts of microdissected tumors to fully 

assess its tumor or stroma related biology.

Numerous potential biomarkers languish in the literature due to the need for rigorous 

validation studies prior to clinical adoption. Other emerging biomarkers relevant to breast 

cancer subtypes awaiting validation are mentioned here. A biomarker of interest is 

heterochromatin protein 1 family (ΗΡ1β), which regulates gene expression and DNA 

damage, as a potential prognostic and predictive biomarker for chemotherapy and PARP 

inhibitor treatment [113], Evidence from gene expression, IHC, and MCF7 cell lines 

indicate that overexpression of HP1 β was associated with poor prognosis [113]. A 

biomarker for radio-iodine treatment of breast cancer may potentially be found in sodium-

iodine symporter protein. Sodium-iodine symporter is over-expressed in ER+ breast cancer, 

with staining intensity equivalent to thyroid tissue [114]. Invasive tumors and DCIS express 

sodium iodide symporter more frequently than the normal adjacent tissue indicating that it 

could be a marker for radio-iodine therapy [114]. Two studies indicate the EpCAM 

expression was associated with worse overall survival [115,116]. Using IHC and 

clinicopathological data, EpCAM expression was shown to confer a poor prognosis in basal-

like and luminal B HER2+ breast tumors [115,116]. Another extra cellular matrix associated 

protein, collagen 10a, has been shown by gene expression and IHC to be associated with 

poor prognosis in ER+/HER2+ breast tumors [117]. Sparse tumor infiltrating lymphocytes 

also correlated with lower frequency of pathological complete response. The combination of 

collagen 10a expression and the amount of tumor infiltrating lymphocytes had a higher 

predictive value [117].
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5. Mass spectrometry

5.1 Pioneering mass spectrometry based studies of the breast proteome

For over 16 years, there has been evidence that multi-directional cellular interactions within 

the breast microenvironment influence breast tumor biology [118]. The challenge then, and 

now, is finding specific, reproducible biomarkers within the 19,000 proteins of the human 

proteome. Initial studies characterizing the breast tumor interstitial fluid using 2-D gel 

electrophoresis identified a total of 1,147 proteins [118]. Fresh mastectomy specimens 

containing invasive ductal carcinoma were used to extract tumor interstitial fluid as a fluid 

repository representative of the tumor microenvironment. Matrix assisted laser desorption 

ionization time of flight (MALDI-TOF) mass spectrometry and/or western blotting 

confirmed the protein identification [118]. Similar proteins were discovered in all 16 

specimens, including proteins related to cell proliferation, invasion, inflammation, protein 

synthesis, and the actin cytoskeleton. However, differences were noted between specimens 

including immunoglobulins, Apo A-I, and actin which reflected interpatient heterogeneity. 

Two additional studies by the same group investigated the correlation between 

histomorphology and cancer phenotype in apocrine metaplasia of the breast [119,120]. 

These studies have elucidated proteomic alterations in the progression from benign lesions 

to apocrine cancer. A third of pre-menopausal women have breast cysts which are associated 

with an increased breast cancer risk. Apocrine cysts, also known as blue dome cysts, are 

generally ERneg/PRneg/ARpos, HER2 negative and Bcl-2 negative. Apocrine metaplasia 

arises from ductal epithelium that is ER+/PR+ but the apocrine cells loose hormone receptor 

expression and begin to express 15-hydroxyprostaglandin dehydrogenase (15-PGDH) [120], 

supporting the concepts of dynamic receptor switching in breast cancer cells and intra-tumor 

heterogeneity. The apocrine cyst fluid exhibits a high potassium:sodium ratio compared to 

serum [120], suggesting the presence of mutations in solute transporter genes. 15-

hydroxyprostaglandin dehydrogenase (15-PGDH) and 3- hydroxymethylglutaryl-CoA 

reductase were discovered to be present only in apocrine type I cysts, apocrine metaplastic 

cell in type II cysts, terminal ducts and papillary lesions, but not in normal breast epithelium 

or type II flat cysts adipose tissue [120]. 15-PGDH was verified in a larger study to be 

expressed solely in invasive apocrine breast cancer but lacked expression in other breast 

cancer subtypes [119]. Vitamin D binding protein, cathepsin D, and Hsp60 were also found 

in apocrine cysts. Vitamin D binding protein is regulated by AR, thus suggesting a metabolic 

link between vitamin D levels and apocrine breast cancer.

In a follow-up study, Gromov et al. discovered two additional protein biomarkers, brain fatty 

acid binding protein (FABP7) and hydroxymethylglutarate-CoA synthase 2 (HMGCS2), that 

enhanced the classification of apocrine breast [121]. Apocrine phenotype could be defined 

by combining HMGCS2, ACSM1 and 15-PGDH. Furthermore, adding HMGCS2 to 

hormone the standard IHC profile decisively delineated invasive apocrine breast cancer with 

a phenotype of HMGCS2+/AR+/ERneg/PRneg [121].

5.2 Mass spectrometry proteome profiling of cell lines

Surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-

TOF) and MALDI-TOF were used to profile the proteome of 27 breast cancer cell lines to 
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demonstrate the utility of mass spectrometry-based proteomics for delineating proteomic 

complexity [122]. The cell line protein profiles were distinguishable as two groups, ductal 

carcinoma or mixed ductal, mesenchymal, medullary, and non-cancerous. These two clusters 

had previously been defined as luminal-like and basal-like, respectively. 10 proteins were 

differentially expressed in the basal-like cell lines (GATA3, CK19, EGFR, CD10, Met, 

CK5/6, Caveolin-1, Moesin, CD44, and ETS1 [122]. Ubiquitin was associated with luminal 

cell lines, whereas S100A9 was associated with basal-like cell lines. S100A9 was verified on 

a tissue microarray of 547 breast cancer tumors to be present in the basal-like tumors and 

was associated with poor prognosis [122]. This study confirmed that mass spectrometry-

based proteomic profiling could recapitulate the intrinsic breast cancer subtype 

classifications.

Cell lines are often used as models of breast cancer subtypes, therefore it is useful to 

determine functional biological differences between the cell lines. Global protein 

abundances were evaluated using LC-MS/MS in 4 cell lines representative of normal, 

luminal, triple negative, and luminal/HER2+ breast cancer subtypes [123]. The MCF10A 

cell line represented normal mammary epithelial cells for comparison to MCF7 (ER+, 

luminal-like), SKBR3 (HER2+), and MDA-MB-231 (mesenchymal, triple negative) cell 

lines. Spectral counting was used to determine differentially expressed proteins. The relative 

protein abundance was calculated by normalizing the sum of the spectral counts for all 3 

tumor cell lines to the spectral counts for MCF10A cells [123]. 68/82 differentially 

expressed proteins were decreased in the tumor cell lines compared to MCF10A, whereas 

only 13 proteins were increased in abundance [123]. Filamin C gamma was increased in 

mesenchymal cell line MDA-MD-231, but was decreased in MCF7 and SKBR3 cells, 

consistent with epithelial to mesenchymal transition [123]. Bioinformatic pathway analysis 

revealed loss of several proteins involved in cell development and cell morphology/adhesion, 

including loss of key basement membrane proteins, including collagens, neprilysin, tenascin 

C, and integrin alpha 11 [123]. Focal adhesion kinase (FAK) was inferred by pathway 

analysis to be included in the protein network of the 82 differentially expressed proteins. 

FAK regulates adhesion, motility, spreading, and cell survival via phosphorylation of six 

sites [124] FAK links the extra cellular matrix to the cytoskeleton via a complex protein 

scaffold with integrins, and integrins in turn induce FAK auto-phosphorylation [125]. FAK 

was inferred to be within the same pathway network as many of the down-regulated proteins 

identified via global protein abundance comparison emphasizing the role of adhesion and the 

extracellular matrix in tumor invasion across breast cancer cell types [123].

Another study of breast cancer subtypes using cell line models was conducted through the 

Chromosome-Centric Human Proteome Project [126]. This project integrated RNA-Seq 

(Illumina TruSeq) from Chromosome 17 and LC-MS/MS data to examine splice variants in 

HER2+ breast cancer cell lines (n=3) with different phenotypes. The models were SKBR3 

(HER2+ adenocarcinoma), SUM190 (HER2+ inflammatory breast cancer), and SUM149 

(low HER2 expression, inflammatory breast cancer) [126]. Chromosome 17 is of interest in 

breast cancer due to its high density of protein coding genes, including TP53, HER2, and 

BRAC1. HER2 splice variants were found in all three cell lines, five EGFR variants were 

found in SKBR3, 6 in SUM149, and no EGFR variants were discovered in SUM190 [126]. 

STAT3 variants were present in SKBR3 and SUM190. MAPK1 variants were found in 
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SUM149 and SUM190 [126]. Splice variants can alter protein function, therefore identifying 

cell line models with specific isoforms can facilitate drug testing to determine which 

isoforms are preferentially susceptible to specific therapeutic compounds.

Predicting therapy response for patients with TNBC is a high research priority for precision 

medicine. Three groups have used quantitative mass spectrometry for biomarker discovery 

in patient derived tumor samples [127,128] and/or cell lines [129]. Using MCF10A wild 

type and PIK3CA knock-in mutants, Young et al. observed 72 altered proteins between the 

two models, with secreted, extra cellular matrix interaction, cell surface receptors, 

intermediate filaments, mitochondrial proteins to be differentially expressed [129]. PIK3CA 

mutations are common in basal-like cancer [95,129] and are associated with poor prognosis 

and therapy response. PIK3CA mutations often occur in the helical domain (E545K, E542K) 

or the catalytic domain (H1047R) which activate the PI3K-PTEN-AKT signal transduction 

kinases, resulting in growth and proliferation [129]. Key up-regulated proteins expressed in 

the PIK3CA mutant cell lines included peroxidasin (PXDN), laminin y2, fibronectin, 

EphA2, and TGM2, with decreased expression of PTPRF, a protein tyrosine phosphatase 

receptor. Silencing of PTPRF with shRNA and upregulation of EphA2 cooperated to allow 

EGFR activation in the MCF10A mutant cell lines [129]. Based on the above data, using 

cetuximab to block EGFR, and decrease phosphoERK and proliferation in PIK3CA mutant 

cell lines appears to be a rationale treatment. However, cetuximab+cisplatin have failed to 

meet the primary endpoint in two clinical trials, although an improvement in overall 

response was noted in TNBC patients [130,131]. The failure of cetuximab could be due to 

receptor cross-talk between EGFR and amphiregulin, which was elevated in the MCF10A 

PIK3CA mutants and EGFR is frequently over-expressed in TNBC [129]. A comparison 

with proteomic data in the TCGA breast cancer cohort showed PIK3CA mutations were 

associated with elevated levels of EGFR and EGFR Tyr1068. Increased expression of 

peroxidasin mRNA, an extra cellular matrix protein involved in collage crosslinking, has 

been associated with decreased recurrence free survival [129].

Wu et al. used phospho-tyrosine targeted mass spectrometry, siRNA knockdown, and gene 

expression data to identify RTKs associated with aggressive breast cancer phenotypes [132]. 

Using 26 triple negative cell lines, seven phospho-tyrosine peptides were associated with 

aggressive phenotypes. Inhibition of aggressiveness was greatest with siRNA knock down of 

AXL and TNK2. AXL is a cell surface receptor that transmits signals from the extra cellular 

matrix via growth factor GS6. AXL ligand binding phosphorylates PI3K subunit, Grb2, 

resulting to AKT activation. AXL gene expression was increased in TNBC and was 

inversely correlated with patient relapse-free survival [132]. Phospho-AXL correlated with 

anchorage independent growth and invasiveness in the cell line models. [132]. 4/7 cell lines 

(MCF10A, MCF12A, HCC1187, SUM225) were categorized as non-aggressive based on 

phosphotyrosine profiling. 5 cell lines, MDA-MB-231, HCC-1569, HCC-1395, BT549, 

SUM159, exhibited hyperphosphorylation of AXL, DYRK2, TYK2, EphA2, and TNK2 

[132]. AXL could potentially be a biomarker of poor prognosis in TNBC patients or as an 

indicator for AXL targeted therapy [133].

In a pre-clinical cell line study, proteogenomic technologies were combined by Lawrence et 

al. to identify actionable protein components in TNBC. Shotgun mass spectrometry using 
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intensity based absolute quantitation revealed significant differences in protein expression 

across the cell lines (n=16 TNBC, n=3 Luminal, and n=1 non-tumorigenic) [134]. The 

MDA- MB-453 triple negative cell line expressed HER2+ 20-fold greater than the median 

expression, which does not correspond to the IHC data for MDA-MB-453 [73,74]. Two 

possible explanations for this discrepancy are: (1) functional cross-talk between AR, HER2, 

and/or downstream kinases such as AKT and p70S6 since MDA-MB-453 expresses AR 

[74,88]; and (2) Dynamic receptor switching of HER2, altering the functional state of the 

receptor [51,98,100,135]. Heterogeneous protein expression was noted across all cell lines. 

However, two groups and four clusters of cell lines emerged using hierarchical clustering 

integrated with frequent mutations and copy number variation. The groups were defined by 

differences in TP53 mutation status and insulin signaling, nucleotide excision repair, focal 

adhesion, ubiquitin-mediated proteolysis and extra-cellular matrix interactions [134]. 

Comparing the cell line data to TNBC tumor specimens (n=4), the most abundant proteins in 

the patient tumors were highly abundant serum proteins and blood cell proteins. The 

centroid of each cell line cluster was used to correlate the tumor sample proteomic data. As 

expected due to the influence of the microenvironment, the tumor samples contained more 

proteins involved in extracellular matrix interactions and antigen expression [134]. NF-κΒ 
p65, an isoform that lacks the IKKB regulatory region, was found in all four tumor 

specimens. NF-κΒ modulates inflammatory responses, which are known to be involved in 

invasion and TNBC has a high metastatic rate [134].

5.3 Mass spectrometry profiling of human breast tissue

Cha et al. developed Protein Set Enrichment Analysis (PSEA) to discern protein pathway 

patterns from data generated by shotgun proteomics and quantified via spectral index of 

protein abundances [110]. PSEA is a modification of gene set enrichment analysis. PSEA 

employs the spectral index abundance of differentially expressed proteins to highlight 

proteins with similar biological function but different expression levels [110]. Using this 

approach, they compared nine human normal breast samples to nine non-patient matched ER

+ luminal subtype tumors.

Normal breast or tumor epithelial cells were procured by laser capture microdissection to 

reduce interference from stromal and immune cells. 298 differentially expressed proteins 

were applied o PSEA to render functional protein maps of normal and luminal breast 

epithelium [110]. Based on PSEA, tumors exhibited decreased levels of cytoskeletal 

proteins, collagens, fibrinogen, laminins, hemopexin, 14–3-3σ, lumican, TGF-β, and serpin 

peptidase inhibitor. Enrichment of proteins related to transcription binding factor motifs, 

including p53, SMAD, NF- kB were also found. Using spectral index abundance for the 

tumor cohort, elevated levels of fibronectin and mitochondrial isoleucyl-tRNA synthetase 

were discovered [110]. Exploiting the wealth of IHC information in the Human Protein 

Atlas (HPA) [136,137], Cha el al. visually quantified IHC breast images in the HPA to verify 

expression levels and subcellular location for 25 of their differentially expressed proteins. 

75% concordance was noted with the spectral index abundance. The lack of complete 

concordance was surmised to be due to the limited dynamic range of IHC 

immunoperoxidase staining intensity, or lack of breast cancer subtype annotation in version 

5.0 of the HPA [110].
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Panis et al. expanded on this work using label-free mass spectrometric analysis of human 

breast tumors representing each of the four intrinsic breast cancer subtypes, plus normal 

human breast tissue [138]. Each cancer subtype consisted of 20 patients enrolled in the 

REMARK trial (The Reporting Recommendations for Tumor Marker Prognostic Studies). 

All four cancer subtypes exhibited changes in cytoskeletal proteins and cell adhesion [138].

Fresh frozen breast tissue from 477 sporadic and hereditary breast tumors has helped to 

further confirm biological differences in breast cancer subtypes on a proteomic level [139]. 

Homogenized tumor tissues were analyzed with 2D-DIGE and LC-MS/MS, using pooled 

specimens. The breast cancer subtype pools consisted of normal-like (n=4), luminal A 

(n=14), luminal B (n=4), HER2 (n=5), and basal-like (n=15) [139]. Pathway analysis 

demonstrated chromatin upregulation in luminal A and B tumors. Cytoskeletal remodeling 

proteins, clathrin, and vesicle transport were upregulated in luminal B tumors. Integrins were 

down-regulated in basal tumors, whereas PARP1, poly ADB-ribose polymerasel was 

upregulated. As expected, HER2+ tumor over-expressed HER2, but they also were found to 

have down-regulation of TRAF2, TRADD, and NEMO [139]. Using pooled specimens 

allows faster analysis time, but the caveat is the inability to discern individual patient 

differences.

The merits of top-down and bottom-up mass spectrometry were recently illustrated using 

two patient derived mouse xenograft models of basal and luminal B breast cancer. WHIM2, 

Washington University Human in Mouse, is a basal-like TNBC xenograft, and WHIM16 is a 

ER+/PR+/HER2neg luminal B xenograft [140]. Top-down proteomic analysis allows direct 

analysis of small intact proteins (less than 30kDa), whereas the bottom-up approach detects 

enzymatically digested peptides for database matching to intact proteins. After removing 

mouse proteins and human proteins homologous to mouse proteins, the bottom-up approach 

detected 3,519 protein groups, with elevated levels of α-endosulfine in WHIM2 [140]. The 

top down method quantified 982 proteoforms matching 358 proteins, but also revealed a 

diphsophorylation of α-endosulfine only in WHIM16 [140]. Phosphorylation significantly 

changes the secondary structure of α-endosulfine and its protein-protein interactions, 

highlighting the complementary information of each mass spectrometry method.

Stable isotope labeling with amino acids in cell culture (SILAC) was improved by including 

a different SILAC labeled cell line as an internal standard to quantify peptides 

(SuperSILAC) [141]. SuperSILAC was utilized to quantify proteins from human tumors to 

create functional network maps based on breast cancer cell type [142]. FFPE breast tissue 

was macrodissected to enrich the lysate with tumor cells from ER+, HER2+, or TNBC 

specimens. Integrated genomic and proteomic data was used to find molecular signatures 

that are differentially expressed between breast cancer subtypes. Annotation matrix analysis, 

a type of 1- dimensional enrichment test, was applied to the data. The distribution of mean 

differences of all proteins ina category was statistically analyzed for shifts compared to the 

global distribution of values in a breast cancer subtype [142]. Heterogeneity within the 

subtypes was clearly evident in more than 7000 proteins. Energy metabolism related proteins 

were different between the subtypes. The average protein fold change between the 3 tumor 

subtypes was compared to the Molecular Signatures Database for 706 genes that are 

significantly enriched in breast cancer subtypes [142]. The HER2 cluster revealed increased 
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interferon and immune signaling (IRF3) targets. The TNBC cluster showed increased EGFR 

and CD44 [142]. Functional pathway mapping demonstrated distinct difference in energy 

metabolism between ER+ (upregulated) and HER2+ (downregulated) subtypes. The TNBC 

subtype exhibited upregulation of translation, ribosome biogenesis, tRNA synthetase, cell 

growth, replication and DNA damage repair, with downregulation of PTEN [142]. A 

subsequent report from the same lab used SuperSILAC to identify biomarkers with clinical 

utility during breast cancer progression [143]. Proteins were quantified in 88 untreated ER+/

HER2neg FFPE breast tissue specimens. The specimens represented lymph node negative 

tumors (n=21), tumors with lymph node metastasis (n=20), lymph nodes (n=25), and 

uninvolved adjacent breast ducts. Proteins were highly correlated between the primary tumor 

and lymph node metastasis, more so than with the adjacent breast ducts [143]. Extensive 

metabolic pathway modulations were detected between the cancer and adjacent normal 

tissue. DNA repair proteins and aminoacyl tRNA synthetases were down-regulated in 

tumors. However lysosomal and proteasome proteins were upregulated in the tumors 

compared to adjacent normal tissue. By IHC, two proteins, Acyl-CoA Thioesterase 1 and 

Glutamate-Ammonia Ligase were increased in tumors, but absent in normal tissue [143]. 

The lymph node proteome showed six downregulated proteins and 4 upregulated proteins, 

compared to the 563 upregulated and 406 downregulated proteins between tumor and 

normal adjacent tissue [143].

Recently, global proteome profiling utilizing LC-MS/MS of microdissected lymph node 

negative, therapy naive TNBC patients was used to develop an 11-protein prognostic 

signature [144]. This protein signature was verified in a multicenter (training set n=63, 

multicenter verification set n=63). The 11 protein signature was developed by selecting the 

protein model that showed 100% sensitivity in the area under the curve of the receiver 

operating characteristic curve (0.83) and a reversed model size. The 11 proteins represent 

cytoplasmic/cytoskeleton, Golgi apparatus, endoplasmic reticulum, nucleus and 

mitochondria subcellular compartments. Of note, catenin alpha-1 was included in the 11 

protein signature and its corresponding gene, CTNNA1, was also associated with metastatic 

TNBC in the Craig et al. study [95]. The protein score for good (free of distant metastasis 

for 5 years post surgery) versus poor prognosis was compared to the consensus NIH and St. 

Gallen chemotherapy treatment criteria. Using the 11 protein score, 30% of the good-

prognosis group would have received potentially unnecessary adjuvant chemotherapy, 

compared to 91–95% of the good prognosis groups based on the consensus criteria [144].

Treatment naive, frozen TNBC tumors (n=83) were analyzed using iTRAQ-OFFGEL 

quantitative mass spectrometry by Campone et al. to identify protein drug targets. The 

tumors were classified as triple negative if <10% of the tumor cells expressed ER/PR/HER2. 

10% is higher than the current clinical recommendation of 1% for hormone receptor status 

[18,25]. Homogenized tumor containing tissues were found to possess three protein 

biomarkers of aggressive breast cancer that were validated by IHC in 42 tumors from the 

training set. Elevated levels of tryptophanyl-tRNA synthetase (TrpRs), and decreased levels 

of desmoplakin (DP) and thrombospondin-1 (TSP1) were predictive of five year overall 

survival, suggesting that these markers could evaluate tumor aggressiveness [127]. 

Desmoplakin forms adhesion junctions in desomosomes between epithelial cells, 

maintaining tissue integrity. Thrombospondin-1 is an extra cellular matrix protein that 
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exhibits anti-angiogenic and angiogenic behavior depending on the cell context. The caveat 

of this study is all study patients were treated with FEC100 chemotherapy and radiation. 

Therefore their overall survival may have been associated with factors other than expression 

patterns of TrpRS, DP and TSP1.

FFPE tissue sections (n=26) have also been used for targeted, label free proteomic discovery, 

with the goal of identifying prognostic protein biomarkers of chemotherapy response. 

Parallel reaction monitoring of one to four unique peptides was performed with a 

verification set of 114 TNBC tumors containing at least 50% tumor [128]. Shotgun 

proteomic data was used to correlate protein abundance with distant metastasis free survival. 

Transcriptomics data were available from 1,296 primary breast tumors for comparison with 

the proteomics data. From the 18 peptides originally identified that were associated with 

distant metastasis free survival, a panel of 5 peptides was verified to predict low and high 

risk of metastasis with a 70:30 ratio [128]. The proteins in the predictive panel were RAC2, 

RAB61, BLVRA, and IPYR [128]. RAC2 is proposed to regulate the actin cytoskeleton and 

is involved in invasion. BLVRA is biliverdin reductase A, and activated MAPK and IGF1-R 

signal transduction pathways. RAB6a regulates protein trafficking and IPYR is an inorganic 

pyrophosphatase [128]. The same group recently compared the proteome and mRNA of 

human FFPE ER+/PR+ tumors to TNBC using label free mass spectrometry, SRM, and a 

custom TaqMan Array MicroRNA card [145]. The homogenized tumors contained at least 

50% tumor. 224 proteins were differentially expressed, but hierarchical clustering split the 

specimens into two groups, with 26% of the ER+/PR+ tumors clustered with the TNBC 

tumors [145]. To decipher the differences in the two different clusters of ER+ tumors, 

significance analysis of microarrays was performed, excluding the TNBC specimens. 44 

proteins were differentially expressed between the true ER+ cluster and the triple negative-

like cluster in the discovery set (FDR<5%). The ER+ cluster contained 7 different small 

leucine-rich proteoglycans, cathepsin G, chymase, and mast cell carboxypeptidase A. The 

triple negative like ER+ specimens contained cell adhesion and chaperone proteins [145]. 

Using SRM of a verification cohort of 46 specimens, 14 proteins were identified that could 

discriminate ER+ tumors from ER+ triple negative-like tumors. However, the identity of the 

14 proteins was not provided [145]. Homogenized tissue was used in this study, which could 

either dilute or enrich the lysate with stromal and immune (mast cells). Thus, the ER+ triple 

negative like designation would need to be verified using microdissected tumor cells. 

Nonetheless, a common theme from the Young, Campone and Gamez-Pozo studies is the 

role of the extra cellular matrix in TNBC tumor proliferation and recurrence free survival 

[127–129,145].

Pre-clinical studies provide the basic research that is absolutely essential for discovering 

novel biomarkers. The mass spectrometry studies reviewed here are providing insights into 

biological processes that distinguish breast cancer subtypes and contribute to biomarker 

heterogeneity. As can be seen from the variation in specimen fixation and processing 

(homogenized tissue, macrodissection, or microdissection), the impact of biomarker study 

design is generally under-appreciated and under-implemented, although the concepts are 

well known [146,147].
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6. Rigor and reproducibility of biomarker studies

The first drafts of the Human Proteome [148,149] generated discourse within the proteomic 

community regarding the definition of quality peptide identifications [150]. The positive 

outcome of this debate has strengthened the quality of mass spectrometry biomarker 

identification and proteomics databases. Consensus guidelines and standards are available 

for mass spectrometry [151,152]. All major human mass spectrometry data sets available 

through ProteomeXchange are now reanalyzed via PeptideAtlas and global proteome 

machine and database (GPMDB) using rigorous quality control parameters with 

standardized procedures [153,154]. neXtProt [155], a compendium of the human proteome, 

curates and integrates mass spectrometry data, including post-translational modifications, 

siRNA data, population variants, and protein-protein interactions, to resolve the function of 

uncharacterized human proteins [154]. In addition, the proteomics community, including 

funding agencies and journals, are facilitating the rigor and reproducibility of proteomic 

studies by (a) establishing data deposition guidelines, (b) creating minimum information 

standards for proteomic studies (Minimum Information about a Proteomics Experiment 

(MIAPE)) [156], (c) developing reagents and protocols for quality control of mass 

spectrometry instruments [157,158], and (d) creating metrics for assessing the validity of 

previously unknown proteins [69].

However, new biomarkers and therapies will never be validated, verified, or advance to 

actual patient use without adequate rigor and reproducibility in both human and animal 

model pre-clinical studies [68,147]. For the biomedical community to actually succeed in 

delivering precision medicine, pre-clinical and clinical studies must include processes to 

reduce variability, ensure inclusion of appropriate control subjects with adequate statistical 

power for discovery, authentication of reagents and chemical, followed by verification and 

validation of the biomarkers. The promises of precision medicine are not simply performing 

molecular assays for each patient and describing therapy options. The true deliverables for 

precision medicine are the ability to analyze an individual patient’s diseased specimen, 

establish an optimal therapy regimen, and treat the patient with that optimal therapy, 

resulting in improved patient outcomes [68]. Fortunately, the importance of reproducibility, 

adequate statistical power, reagent verification, limiting pre-analytical and analytical 

variability, and including quality control processes in pre-clinical studies have renewed 

prominence in this era of precision medicine. European and North American agencies, such 

as the European Infrastructure for Translational Medicine, National Centre for the 

Replacement, Refinement and Reduction of Animals in Research (NC3Rs) and the National 

Institutes of Health, are addressing rigor and reproducibility through guidelines, granting 

agency requirements for funding, access to technology, and freely available software tools to 

assist with statistical and experimental design [146]. The NC3Rs recently published the 

ARRIVE guidelines (Animals in Research: Reporting of In Vivo Experiments) describing 

how to design and report pre-clinical animal studies to improve the model fitness [146].

The American Society for Clinical Oncologists and the College of American Pathologists 

continues to update guidelines for ER, PR, and HER2 IHC-based tissue testing [25,36,159]. 

Methods to circumvent issues with specimen processing [33,160–166] and analysis [161] 

are well-documented, with general guidelines including cold ischemia time less than 60 
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minutes, 672 hours fixation in 10% neutral buffered formalin, and storing cut tissue section 

slides for less than 6 weeks [25,36]. An important note regarding testing guidelines concerns 

differences/updates in positivity thresholds. For example, the current HER2 positivity 

threshold is 10% strong membranous staining for cells with an IHC score 3+, but the 

previous threshold was 30% [167]. Differences in positivity thresholds can potentially bias 

meta-analysis and prospective studies in comparison to previously published data.

6.1 Protein carry-over in LC-MS/MS

Individual laboratories and scientists are the first-line resource to identify sources of 

variability and technical issues that impact biomarker discovery. Empirical evidence in our 

laboratory has exposed sample carry-over issues with nanoflow HPLC columns used with 

LC-MS/MS. Consensus guidelines state that carry-over must be assessed and rectified in any 

mass spectrometry method development [151,152,168]. Several salient points should be 

noted that are applicable to all LC-MS/MS studies. Firstly, significant carryover of proteins 

can occur in simple samples (consisting of 1–3 pure proteins). Secondly, carryover can be 

independent of molecular weight, pI, and hydrophobicity [169]. Thirdly, changes in flow 

rate, both to 100nL/min (lowest range of the instrument) and the highest flow rate (500nL/

min) may not be sufficient to eliminate carry-over. Finally, protein concentration and 

physicochemical properties of specific proteins may enhance carry-over. For robust, 

reproducible clinical applications sample carry over issues must be systematically addressed 

(Figure 4).

7. Conclusion

Proteomic technologies contribute invaluable data for deciphering functional phenotypes and 

subsets within breast cancer subtypes. Widely available IHC markers (ER, PR, Ki-67, and 

CK) are relatively inexpensive, rapid assays that provide key diagnostic and prognostic 

information. Standardized protocols and interpretation guidelines implemented in 2011 

allow seamless comparison of HER2 and hormone receptor status between institutions/

across study sets. Technological refinements in mass spectrometry are enhancing the 

accuracy and precision of biomarker discovery and identification. RPPA are being used in 

clinical research and clinical trials to quantify biomarkers, and their post-translational 

modified forms, within functional signal transduction networks. Integration of genomic risk 

recurrence scores with the functional proteomic landscapes of breast cancer subtypes has the 

potential to significantly augment clinical management of breast cancer patients.

8. Expert commentary

Proteomic and genomic tissue and cellular analyses indisputably contribute to biomarker 

identification, drug discovery, and clinical management. The plethora of literature available 

regarding breast cancer subtypes attests to the rapid adoption of these technology platforms.

Integrative algorithms are being developed to further categorize this vast array of data into 

clinical management tools which will be invaluable for precision medicine and rationale 

therapy design. Nevertheless, even with our ability to apply molecular labels and 
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classification schemes to breast cancer, therapies continue to fail for patients due to either de 
novo resistance, acquired resistance, or unknown/under-explored molecular mechanisms.

Identifying and quantifying in vivo protein-protein interactions and signal transduction 

cascades are currently our best representation of the functional state of cells. Knowing which 

cell populations are present, the in vivo activity state of protein kinases, and the sub-cellular 

location of these proteins is only possible via proteomic analyses. However, these 

interactions are more complex than we are able to depict in 2-D network maps or through 

gene expression clustering algorithms. To illustrate this proteomic network complexity, 

consider a single protein, HER2, whose expression level is currently used to guide breast 

cancer therapy. HER2 readily forms homodimers or heterodimers due to structural similarity 

with other RTKs [28,35,170]. Recently, HER2 expression was shown to be a dynamic state 

in circulating breast cancer cells [98]. HER2 negative cells that were propagated as 

multicellular colonies produced HER2 positive daughter cells when the colonies reached a 

cell density of 5–9 cells [98]. These findings substantiate the temporal variation in TNBC 

mutations during clonal evolution [171], reflecting a yet unknown mechanism of dynamic 

mutation and receptor expression. Promiscuous dimerization and dynamic expression 

provide HER2 overexpressing breast cancer cells with multiple options for orchestrating 

downstream signal transduction cascades leading either to cell proliferation and potential 

therapy resistance, or alternatively, a lower proliferation rate [28,34,35]. The obvious, 

clinically relevant questions are: (a) How does the percentage of receptor positive and 

negative cells change over time?, (b) Does this percentage change during treatment?, (c) If 

receptor expression is temporal, can the timing of therapy be coordinated to the dynamic 

receptor expression?, and (d) Are the current ER, PR, and HER2 immunohistochemical 

expression thresholds truly adequate for guiding therapy decisions? These questions can 

only be addressed in large, well-designed proteomic-based studies that include resampling 

the residual tumor following neoadjuvant therapy [172].

Proteomics also provides functional information regarding the state of post-translationally 

modified proteins and the subcellular location. Many proteins are able to translocate 

between sub-cellular compartments, with often disparate functions depending on the protein 

location [108,173]. ER, AR, and EGFR are just three examples of RTKs that translocate 

from the cytoplasm to the nucleus, where they exhibit enhanced transcriptional activity, 

ultimately enhancing cell proliferation [173–177]. The FOXO1 transcription factors 

functions as tumor suppressor in the nucleus [178]. However, phosphorylation causes FOXO 

to be expelled from the nucleus, thus inactivating its tumor suppressor function [132]. Low 

levels of phosphorylated FOXO1/O3A have been associated with pathologic complete 

response in HER2+ breast cancer patients treated with anti-HER2 therapy (trastuzumab/

lapatinib) [108]. From these examples, one can easily appreciate the contribution that IHC, 

mass spectrometry, and RPPA have in defining the functional state of cells. This suite of 

proteomic technologies illuminates the subcellular location, identifies the proteins, and 

provides quantitative expression of complex downstream signaling events, none of which are 

knowable from gene expression levels.

Despite our progress in deciphering breast tumor heterogeneity, critical analysis of pre- 

clinical and clinical trial results, with special emphasis on the study design and 

Mueller et al. Page 22

Expert Rev Proteomics. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



methodologies, are required to interpret the findings within the limitations of the study. To 

realize the promise of precision medicine, further research funding should be allocated to 

understand the molecular characteristics for the minority of patients that either are therapy 

responders or in whom therapy fails. Critically important biological information is waiting 

to be discovered in these ‘outlier’ patient populations. The key questions we should be 

asking are: What are the biological differences in the tumor and the tumor microenvironment 

between the responders and non-responders? and How do we harness this information to 

optimize treatment for all patients, at diagnosis, recurrence, and if metastasis occurs?

Discerning biological underpinnings of breast cancer requires the scientific and clinical 

communities to be aware of numerous factors that can potentially introduce bias in 

biomarker studies. Firstly, the widespread availability of large genomic and proteomic data 

sets must be evaluated not only on the data content, but also on specimen collection and pre-

analytical variables that directly impact data quality [8,160,165,179]. Large data sets such as 

TCGA [180] and METABRIC [9,10], provide well-annotated breast cancer data sets and 

provide opportunities to reanalyze the data using different methods and hypotheses. 

However, even in large, international specimen cohorts, pre-analytical variables are under-

appreciated regarding their effect on protein and phosphoprotein levels. Fixation conditions 

(formalin or freezing), cold ischemia time, and size of the tissue contribute to pre-analytical 

variability [160,163,166,181]. Furthermore, interpreting any breast cancer study requires 

critical evaluation regarding the number of specimens from each histomorphology category 

(Figure 1), race, and age. Each of these factors contributes to biological differences in breast 

cancer subtypes.

Molecular characterization of tumors, and specifically of tumor subtypes, requires 

enrichment of tumor cell populations [182,183]. Enrichment techniques drastically reduce 

the number of non-tumor cells, which can mask or confound the underlying proteomic 

biology [179,184–186]. Macrodissection may be performed manually using needles or 

scalpels. Laser capture microdissection, with dedicated instruments (available from 

ThermoFisher, Carl Zeiss, Molecular Machines & Industries, or Leica), enables precise 

selection of specific cell populations, including tumor, stroma, normal adjacent tissue, and 

immune infiltrates [182,183]. Enrichment of specific cell populations also allows direct 

comparison of the tumor to other tissue types. Numerous studies have demonstrated the lack 

of concordance in gene expression and proteomic signal transduction kinases between 

enriched and non-enriched cell populations [179,184,185,187]. Thus, even publicly 

available, well-annotated data sets should be assessed with the knowledge that homogenized 

tissue, without a priori cell population enrichment, may lack low abundance biomarkers or 

have notable molecular differences compared to tumor enriched specimens [8,187]. As 

additional proof, microdissected tumors have been shown to be highly concordant with the 

underlying genomic alterations [184,187]. Molecular characterization of specimens that 

have been macro or microdissected to enrich the tumor, stroma, and immune cell 

populations will undoubtedly yield more informative biological insights for predictive and 

therapeutic patient stratification [8].

Secondly, analytical methodologies must be accurately communicated with adequate details 

for interpreting the data in the context of the patient population, sample handling and 
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preparation, and analysis [69,188,189]. Meta-analysis and systematic reviews of numerous, 

large published datasets offer unprecedented opportunities for comparing and contrasting 

studies, identifying new biological information, and deciphering patterns or discordant 

results within the study data. Nonetheless, issues can arise with meta-analysis and 

systematic reviews, potentially leading to misinterpretation of data. Examples of issues that 

may be encountered include failure to account for pre-analytical variables such as using 

homogenized tissue and stroma [8], variations in cold ischemia times [190], over-

interpretation of data [191], bias in interpretation due to mistakes in the meta-analysis [192], 

or differences in analytical procedures prior to the publication of standard operating 

procedures [16], for example, non- standardized staining protocols for ER and PR prior to 

the 2010 publication of ASCO/CAP guidelines for IHC [25]. The same lack of standardized 

guidelines applies to HER2 testing prior to 2007 [159]. Updated HER2 testing guidelines 

were implemented in 2014 [36].

Thirdly, funding is urgently needed to systematically validate promising new biomarkers in 

large, well-annotated specimen cohorts which were collected and analyzed using appropriate 

standardized protocols. Biomarkers need to be evaluated in cohorts of patients that are both 

biomarker-positive and biomarker-negative. Inclusion of both populations, and control 

subjects with co-morbidities, in addition to healthy controls, can potentially improve 

approval rates by regulatory agencies such as the United States Food and Drug 

Administration (FDA) for “treatment-by-biomarker” compounds and companion diagnostic 

assays [193].

Two pressing unmet needs currently limit the widespread adoption of proteomic analysis in 

routine clinical patient management: (1) the lack of proteomic population data for normal 

and/or breast tumor cells, particularly for low abundance proteins and post-translationally 

modified proteins [194], and (2) computational tools for comparing individual patient’s 

proteomic data with population data. Recently, a genomic analysis tool (iCAGES) has been 

devised for ranking driver genes for individual patients [195]. To optimize delivery of 

precision medicine, physicians and scientists urgently need similar tools for ranking and 

prioritizing the functional status of proteins and protein pathways in individual patients.

9. Five-year view

Complete -omic integration, the true embodiment of precision medicine, looms on the 

horizon. Proteomic technologies are poised to be adopted into routine clinical practice, as 

clinical laboratory assays for patient management. Digital pathology and image recognition 

software enhancements reduce variability in inter-pathologist scoring of 

immunohistochemical stains. Despite improvements in proteomic assay sensitivity and 

reliability, clinical diagnostics is not keeping pace with biomarker research and discovery. 

For example, only ERα, and not ERβ, is routinely measured for characterizing the breast 

cancer subtype. Estrogen receptor isoforms ERα and ERβ exhibit different physiological 

outcomes and signaling interactions. ERβ protein expression potentially holds diagnostic 

and prognostic information that could help identify hormone resistant subclones to further 

tailor hormonal therapy options. Another understudied area is immune cell signaling in 

breast cancer subtypes. We often see large zones of stromal infiltrating immune cells 
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surrounding areas of DCIS. How do these immune cells influence the emergence or 

repression of invasive breast cancer? Does the immune cell composition reflect the breast 

cancer subtype? Hopefully, as multiplex phenotyping technologies evolve, the predictive and 

prognostic contribution of hormone receptor isoforms and immune cell phenotype will be 

realized [117,196].

In the near future, further integrative analyses including glycomic [197–202], metabolomic 

[203–205] and proteomic biomarkers, could yield wholly new types and combinations of 

biomarkers which reflect the biological state of the tumor microenvironment. Glycomic 

analysis has already highlighted glycoprotein profile differences between basal and luminal 

breast cancer cell lines [202] and the presence of high-mannose content glycans in mouse 

xenograft specimens [200].

Within five years, mass spectrometry-based proteomic assays will become clinically 

accepted companion diagnostic tests aiding breast cancer diagnosis, prognosis, and therapy 

decisions similar to IHC. Mass spectrometry biomarker validation, based on multiple 

reaction monitoring (MRM), provides antibody-free confirmation of protein/peptide identity. 

MRM assays are becoming more common and are readily adoptable in clinical laboratories.

Additional xenograft models, in a variety of species, such as canines, will aid pre-clinical 

investigation for studying breast cancer subtypes [206,207]. Shinoda et al. have shown 

prognostic significance of ER, HER2 and caveolin-1 IHC in canine mammary gland tumors, 

which mirrors prognostic data for humans [208]. An example of improved animal modelling 

is the currently available xenograft model of ER+ breast adenocarcinoma that maintains an 

intact microenvironment [209]. This model recapitulates breast architecture which is critical 

for decoding spatial and temporal tumor-stromal interactions. Patient derived xenograft 

models can also be used to investigate clonal tumor behavior, both as individual clonal 

populations or as heterogeneous tumor, thus elucidating optimal treatment schedules to 

eliminate all tumor subclones (Figure 1).

A new niche for proteomic assays will be in the area of biosimilar therapies. A biosimilar 

product is interchangeable with a FDA approved biological product if it can be shown that it 

is highly similar to an approved product [210]. However, ‘highly similar’ is not equivalent to 

identical and not all biosimilar products are interchangeable with their corresponding FDA- 

approved product. Biosimilar products may possess variant protein substitutions, such as 

glycosylation, which could potentially modulate their intended effect. These functional 

effects cannot be discerned via genomics or structural analysis of the compound. Proteomic-

based assays will be essential for confirming the on and off target effects of biosimilar breast 

cancer therapies. breast ca
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Key issues

▪ Breast cancer is a heterogeneous disease, both between patients and within a 

patient. Breast cancer subtypes reflect different underlying biology, creating a 

variety of functional phenotypes.

▪ Intra-patient tumor heterogeneity limits the clinical accuracy of current breast 

cancer subtyping due to tissue sampling methods and the spatial and temporal 

variations in the breast cancer microenvironment.

▪ Breast cancer subtypes should be considered dynamic, working 

classifications due to on-going genomic and proteomic biomarker 

discoveries. Receptor cross-talk between and within receptor families affects 

downstream signal transduction.

▪ HER2 receptor signaling can be active despite low HER2 expression by IHC 

or FISH. A truncated HER2 extracellular domain remains hyperactive due to 

homodimer formation of the catalytically active internal domain. 

Phosphorylated HER2 and truncated HER2 profiling should become standard 

clinical practice for assessing treatment efficacy.

▪ Pre-analytical and analytical variables must be addressed by researchers, 

clinical trial sponsors, and funding agencies. Tissue fixation methods, cold 

ischemia time, whole tissue lysates versus selected cell population lysates, 

and adherence to standard operating procedures effect biomarker data and 

ultimately patient management and outcomes.

▪ Revealing the multiple biological interactions within the tumor 

microenvironment requires upfront tumor/stroma enrichment by 

macrodissection or laser capture microdissection. Tumor-stromal interactions 

and the presence of tumor subclones cannot be assessed in homogenized 

tissue lysates. It is not possible to determine which cell population 

contributed a particular DNA, RNA, or protein molecule unless the tumor, 

stroma, immune cells, and normal adjacent cells are analyzed as distinct 

specimens.

▪ Biomarker studies for investigating breast cancer subtypes should be 

designed to include minorities, various ages, and more importantly, strive to 

procure specimens representing a variety of breast cancer histomorpholog

▪ Quality control initiatives to increase the reproducibility of pre-clinical 

studies are gaining support from the proteomic community. Mass 

spectrometry consensus guidelines are available from Clinical Laboratory 

Standards Institute. Proteomic reporting standards have been developed by 

the Human Proteome Organization. Metrics for data submission are required 

by journals.

▪ Emerging biomarkers require verification and/or validation in large patient 

cohorts. Research sponsors and funding are needed to discover new 
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biomarkers/drug targets, but also to support on-going validation of promising 

biomarkers with translation to clinical use.
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Figure 1. Current scheme for assigning breast cancer subtypes.
Histopathology is integrated with proteomic and genomic biomarkers to characterize breast 

tumors into clinically relevant subtypes. The first step is pathologist review of the tumor 

histology which is described as in situ or invasive, with the corresponding architectural 

pattern [2–4,11,211,212]. If the tumor is infiltrating ductal carcinoma, the stage of cellular 

differentiation is also described. Next selected protein biomarkers are semi-quantitatively 

scored based on the immunohistochemical staining pattern [4,18,26,83,213–215]. For ER

+/PR+/HER2neg, lymph node negative tumors the Predictive Analysis of Microarray 50 

gene signature (Prosigna, PAM50 assay) provides a predictive risk of recurrence score 

[40,41,44]. Integration of proteomic biomarker scores with gene expression signatures and 

clinical information aids therapy escalation and de-escalation decisions [33,37].
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Figure 2. Intra-tumor heterogeneity in breast cancer
Breast tumors may contain cellular sub-clones harboring a variety of genomic and proteomic 

alterations. Clonal cooperation and emergence of sub-clones during treatment have a 

profound influence on the biological phenotype of the tumor and treatment resistance. 

Combination treatment to simultaneously, or sequentially, eliminate every clonal population 

could potentially provide greater ther efficacy.
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Figure 3. IHC provides protein biomarker cellular context and subcellular location
Example IHC staining patterns for (a) Ki-67 and (b) HER2 using Ki-67 antibody clone 

MIB-1 and Dako HercepTest™, respectively. Positive staining, which appears brown, occurs 

via deposition of diaminobenzidine at the site of the antigen-antibody interaction. The 

subcellular location of the staining is used for quality control; Ki-67 should be localized in 

the nucleus, whereas HER2 should be localized to the plasma membrane. IHC scoring can 

be qualitative (0, 1+, 2+, 3+) or semi-quantitative, based on the intensity of the stain and the 

proportion of positively stained cells. All IHC biomarker scoring is interpreted within the 

context of appropriate positive and negative controls. HER2 scoring using the HercepTest™ 

(Agilent/Dako) is considered negative if the membrane staining score is 0 or 1+. A score of 

2+ is considered weakly positive. A score of 3+ is strongly positive. Note: HerceptTest™ 

staining is recommended for invasive cancers and any cytoplasmic staining should not be 

scored. The DCIS image depicted in panel B was for research use only and to illustrate IHC 

staining that is localized to the plasma membrane [216] (Ki-67 magnification 100x, HER2 

magnification 200x).
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Figure 4. Protein carry-overin liquid chromatography mass spectrometry potentially confounds 
results.
(a) Experimental procedure to assess protein carry-over in LC-MS/MS based on insertion of 

blank samples or adjustment of mobile phase flow rate. One human serum sample, used as a 

control, was analyzed by LC-MS/MS to ensure no E. coli contamination. A subsequent E. 
coli sample, consisting of recombinant E. coli DXP reductoisomerase (DXR) prepared in E. 
coli BL21 (DE3) RIL Codon Plus cells and purified to >90% purity, was analyzed for high 

and low abundance proteins. Carry-over of E. coli proteinswere examined in 5 subsequently 

analyzed human serum samples. All human serum samples were from the same serum 

aliquot. (b) Carry-over of E. coli proteins in subsequent human serum samples. No 

significant carryover of E. coli proteins were observed in any subsequent human serum 

samples using any of the five defined experimental protocols. (c) Carry-over of human 

serum proteins in E. coli samples. Carry-over was observed in all samples, with the greatest 

carry-over seen at the lowest volume in the blanking protocol and with the highest flow 

rates. (d) Human serum proteins carried over in E. coli samples. Albumin was found in all 

five E. coli samples, while apoliopprotein A-II preprotein, hemopexin, and trypsin-1 Isoform 

X1 were also found in the majority of the E. coli samples.
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Table 1.

Proteomic methodologies and emerging biomarkers for deciphering breast cancer subtypes/prognosis.

Protein biomarker Breast cancer subtype Specimen type/study set
Significance of protein 

biomarker Reference

Immunohistochemistry (IHC)

Programed cell death 1 
(PD-1) protein Lymphocyte 
activation gene 3 (LAG-3) TNBC FFPE Early stage tumors Immunotherapy benefit

[54] Bottai 
et al.

EGFR
Cytokeratin 5/6 TNBC FFPE surgical specimens

Increased levels associated 
with poor prognosis or 
recurrence

[86] Maeda 
et al.

Androgen Receptor (AR)
DNAPKcs
DNAPKcs Ser2056 TNBC MDA-MB- 453 cell line

Recurrence post radiation 
therapy

[89] Speers 
et al.

CD44 All subtypes
Frozen breast tumors and 
FPPE

Stem cell phenotype associated 
with TNBC, EGFR+, and 
CK5/14+

[91] Honeth 
et al.

CD44 isoforms: splice 
variant CD44v8-v10 Basal-like

Frozen, stage II breast 
tumors, FFPE, and cell 
lines

Association with HER2+, ER+, 
and PR+

[92] Olsson 
et al.

Forkhead box transcription 
factor A1
(FOXA1)
GATA binding protein 3
(GATA3) Hormone+/Her2 negative FFPE

Increased levels associated 
with good prognosis

[106] 
Hisamatsu et 
al. [107] 
Hisamatsu et 
al.

Heterochromatin protein 1 
family (HP1β) Ki67+ FFPE

Treatment response to PARP
+carboplatin and prognosis

[113] Lee et 
al.

Reverse phase protein microarray/antibody array

Mammalian target of 
rapamycin (mTOR)
Extracellular regulated 
kinase (ERK) TNBC

Frozen tumors, cell lines, 
animal models Treatment options

[96] 
Montero et 
al.

GADD45
MAPK
DNA damage proteins TNBC Frozen tumors

Biological features of 
inflammation, hormone 
responsive, or DNA damage 
response

[97] Masuda 
et al.

HER2 Tyr1248
EGFR Tyr1173 and Tyr1168
HER3 HER2+/HER2 negative Frozen tumors and FFPE

Treatment options for HER2 
negative patients

[99] 
Wulfkuhle et 
al.

Cleaved Caspase 9
53BP1
AMPKa
GATA3
Rad51
P90RSK Thr359 and Ser363 Luminal A Frozen tumors

Prognosis and functional 
differences within luminal A 
tumors

[102] Aure 
et al.

NME/NM23 Nucleoside 
Diphosphate Kinase 1 
(NDKA)
Ribosomal Protein S6 
(RPS6)
Caveolin-1 ER+ Frozen invasive tumors Risk stratification

[103] 
Sonntag et 
al.

ERa Ser118
Fibronectin
GATA3
Yes associated protein 1 
(YAP-1)
Elongation initiation factor 
4B (elF4B)
Histone 2 ΑΧ (H2AX) Invasive lobular carcinoma

Frozen tumor and FFPE 
from TCGA and 
METABRIC cohorts

2 sub-groups of invasive 
lobular carcinoma: hormone+ 
and immune related

[105] 
Michaut et 
al.
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Protein biomarker Breast cancer subtype Specimen type/study set
Significance of protein 

biomarker Reference

Phosphatidylinositol- 3,4,5-
trisphosphate dependent Rac 
exchange factor 1 (P-REX1)

TCGA breast cohort Cell 
lines PI3Kinase inhibitor response

[111] Dillon 
et al.

Mass Spectrometry

Immunoglobulins
Apo-A1
Actin
15-hydroxyprostaglandin 
dehydrogenase (15- PGDH)
Brain fatty acid binding 
protein (FABP7)
hydroxymethylglutarate-
CoA synthase 2 Apocrine breast cancer

Interstitial fluid Breast 
tissue

Identify functional phenotype 
of apocrine breast cancer

[118] Celis 
et al. [119] 
Celis et al. 
[120] Celis 
et al. [121] 
Gromov et 
al.

(HMGCS2)

Mitochondrial isoleucyl- 
tRNA synthetase Hemopexin 
14–3-3σ
Lumican
p53
SMAD
NF-κ ER+

Breast tumors and normal 
breast tissue

Identify functional protein 
pathways

[110] Cha et 
al.

Collagen
Filamin-C
Neprilysin
Tenascin

Normal Luminal Triple 
negative Luminal/HER2 Cell lines

Determine functional 
phenotypes in breast cancer 
cell line models

[123] 
Bateman et 
al.

EGFR splice variants
STAT3 splice variants
MAPK1 splice variants HER2+ Cell lines Facilitate drug testing

[126] Menon 
et al.

Trypbottomhanyl-tRNA
synthetase (TrpRs)
Desmoplakin (DP)
Thrombospondin-1 (TSP1) TNBC

Frozen tumors, treatment 
naive Identify drug targets

[127] 
Campone et 
al.

RAC2
RAB61
Biliverdin reductase A 
(BLVRA),
Inorganic pyrophosphatase 
(IPYR) TNBC FFPE Prognosis

[128] 
Gamez- 
Pozo et al.

Peroxidasin
Lamininy2
Fibronectin
EphA2
Transglutaminase 2 (TGM2) Basal-like MCF10A cell line

Prognosis and PI3Kinase 
inhibitor treatement

[129] Young 
et al.

AXL receptor tyrosine 
kinase (AXL) TNBC Cell lines Prognosis

[132] Wu et 
al. [133] Wu 
et al.

Interferon regulatory
factor 3 (IRF3)
EGFR
CD44
tRNA synthetase HER2+ TNBC ER+ FFPE

Identify functional protein 
differences within subtypes

[142] 
Tyanova et 
al.

11 protein signature with 
catenin alpha-1

Frozen tumors, treatment 
naive TNBC

Prognosis and chemotherapy 
decisions

[144] Liu et 
al.
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