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Abstract

Protein homeostasis, or proteostasis, is essential for cell function and viability. Unwanted, damaged, misfolded and aggregated
proteins are degraded by the ubiquitin—proteasome system (UPS) and the autophagy-lysosome pathway. Growing evidence
indicates that alterations in these major proteolytic mechanisms lead to a demise in proteostasis, contributing to the onset
and development of distinct diseases. Indeed, dysregulation of the UPS or autophagy is linked to several neurodegenerative,
infectious and inflammatory disorders as well as cancer. Thus, modulation of protein clearance pathways is a promising
approach for therapeutics. In this review, we discuss recent findings and open questions on how targeting proteolytic mecha-

nisms could be applied for disease intervention.
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Introduction

The proteome of a mammalian cell contains thousands of
distinct proteins (Jayaraj et al. 2020). The intracellular levels
of individual proteins are adjusted to the particular needs
and status of every single cell in the organism (Jayaraj et al.
2020). Moreover, numerous proteins are prone to misfold-
ing and aggregation, leading to cell malfunction and death.
Thus, maintenance of protein homeostasis (proteostasis) is
essential for cell function and survival (Fig. 1). As such,
cellular integrity relies on proteolytic systems that not only
maintain the proper concentration of regulatory and struc-
tural proteins, but also scavenge damaged and misfolded
proteins (Saez and Vilchez, 2014; Sha et al. 2018; Vilchez
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et al. 2014). The evolutionary conserved ubiquitin—protea-
some system (UPS) and autophagy-lysosome pathway are
the two major protein clearance mechanisms in eukaryotes.
However, conditions such as cellular stress, metabolic alter-
ations, pathogens, environmental changes, disease-related
mutations and aging can influence proteolytic systems (Hipp
et al. 2019; Vilchez et al. 2014).

Deficits in protein folding and clearance mechanisms are
linked to multiple disorders that involve protein aggregation,
i.e., proteinopathies. The link is more compelling in neurode-
generative disorders such as Alzheimer’s, Huntington’s, Par-
kinson’s and amyotrophic lateral sclerosis (ALS). Although
the proteins involved in these diseases are different, they have
in common the accumulation of pathological protein inclu-
sions in neurons. In addition, these neurodegenerative dis-
eases share similar late temporal emergence patterns. Typi-
cally, familial mutation-linked neurodegeneration emerges
during the fifth decade of life, whereas the onset of sporadic
neurodegenerative disease usually occurs during the seventh
decade or even later (Cohen and Dillin 2008). For instance,
ALS is rare before the age of 40 years, but its incidence
increases exponentially thereafter with a peak at 70-79 years
of age (Ingre et al. 2015). With age, post-mitotic cells such
as neurons lose extensive control of the proteostasis equilib-
rium, including deficits in protein degradation machineries
(Vilchez et al. 2014). Loss of proteostasis is a hallmark of
aging, further strengthening a role of proteolytic deficits in the
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Fig. 1 Protein clearance mechanisms in health and disease. Misfolded
proteins that ensue from external and internal stressors are degraded
through two major protein clearance pathways, i.e., the ubiquitin—pro-
teasome system (UPS) and the autophagy-lysosome pathway. Dys-

onset of neurodegenerative diseases (Lopez-Otin et al. 2013;
Vilchez et al. 2014). In addition, patients with inflammatory
and infectious diseases as well as cancer also present changes
in proteolytic systems (Dang et al. 2021; Li et al. 2016; Wang
et al. 2021a, b). Current research efforts are focused on under-
standing how alterations in proteolytic systems can contribute
to the onset and prognosis of disease with the aim to identify
novel therapeutic approaches (Wang et al. 2021a, b). Here
we review recent discoveries and how they may develop into
promising therapies for proteinopathies.

The ubiquitin-proteasome system (UPS)

The UPS is the primary selective proteolytic system in mam-
malian cells, regulating numerous biological processes such as
development, gene transcription, signal transduction, metabo-
lism, apoptosis, cell cycle, DNA repair and inflammation (Chen
et al. 2008; Melino 2005; Wang and Maldonado 2006; Yao
and Ndoja 2012). In the UPS, lysine residues of proteins are
tagged with the small protein ubiquitin (Ub) to enable their
recognition by the proteasome (Hershko and Ciechanover 1998)
(Fig. 2). The covalent attachment of Ub to a substrate protein
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function of these pathways contribute to the accumulation of protein
aggregates, a hallmark of disorders such as Alzheimer’s disease, Hun-
tington’s disease, Parkinson’s disease and amyotrophic lateral sclero-
sis

is catalyzed by a sequential cascade of three enzymatic reac-
tions, starting with Ub activation by the Ub-activating enzyme
E1 (UBAL1) in an ATP-dependent reaction (Lambert-Smith
et al. 2020). Adenylation of Gly76 at the C-terminus of Ub
is followed by a thioester bond formation between UBA1 and
Ub (Lambert-Smith et al. 2020). Thereafter, Ub-conjugating
enzymes (E2s) are recruited by the C-terminal ubiquitin-fold
domain of UBA1 where Ub is transferred to the E2 enzyme
(Hershko and Ciechanover 1998). The resulting thioester inter-
mediate dissociates from UBA1 and, together with the target
protein, binds to a specific E3 ubiquitin ligase (Hershko and
Ciechanover 1998). Then, E3 ligases catalyze the covalent
attachment of Ub to the target protein. In humans, there are
more than 600 E3 enzymes which can be distinguished into
two main classes, i.e., RING-type and HECT-type E3s (Plech-
anovova et al. 2012). Whereas E3 ligases mark proteins with
Ub, deubiquitinating enzymes (DUBs) can reverse this process
(Wilkinson 2000). To date, 102 DUBs have been reported in
humans (Clague et al. 2019; Pinto-Fernandez et al. 2019). Thus,
the activities of E3 ligases and DUBs are tightly balanced to
maintain intracellular proteostasis and cellular function (Bax
et al. 2019; Choi and Baek 2018). In these lines, the landscape
of E3 and DUB enzymes undergo a profound rewiring during
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Fig.2 Modulation of the ubiquitin proteasome system (UPS) for dis-
ease intervention. Ubiquitin (Ub) binds to the Ub-activating enzyme
El by a thioester bond in an ATP-dependent manner and then is
transferred to the E2 enzyme. The attachment of Ub to the target

transformative processes such as cell differentiation or organis-
mal aging (Koyuncu et al. 2021; Saez et al. 2018).

Target proteins can be tagged with Ub at one lysine residue
or multiple lysine residues. Moreover, Ub itself harbors seven
internal lysine residues that can form polyUb chains. A Lys48-
linked polyUb chain is the primary signal for recognition and
degradation by the 26S proteasome, a multi-catalytic/multi-sub-
unit protease complex that degrades polyubiquitinated proteins
to small polypeptides (Hershko and Ciechanover 1998). In addi-
tion to lys48, other Ub linkages such as Lys63 or heterotypic
chains can also target proteins for degradation (Yau et al. 2017).

Autophagy

The autophagy-lysosome pathway has a central role in bio-
logical processes such as cell differentiation, proliferation,
and senescence. Autophagy transfers cytosolic substrates to
the lysosome for degradation either in a selective or non-
selective manner. The autophagy-lysosome pathway can be
distinguished into three types, namely macro-, micro-, and
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protein is catalysed by E3 ligases. This process can be reversed by
deubiquitinating enzymes (DUBs). Ub-tagged proteins are recognized
and degraded by the 26S proteasome. Inhibitors and activators of the
UPS are indicated with dashed lines

chaperone-mediated autophagy (CMA) (Fig. 3a—c) (Klion-
sky et al. 2011; Levine and Klionsky 2004; Mizushima
2007).

Macroautophagy

Macroautophagy is the most characterized pathway
of autophagy. Macroautophagy not only promotes the
recycling of damaged organelles such as mitochondria
(mitophagy) and the endoplasmic reticulum (reticulo-
phagy), but also degradation of protein aggregates that
cannot be cleared by the UPS (Tasdemir et al. 2007;
Youle and Narendra 2011). Macroautophagy is induced
by the inactivation of the mammalian target of rapamycin
complex 1 (mTORC1), a serine/threonine kinase com-
plex which is sensitive to intra- and extracellular nutri-
ent levels (Ben-Sahra and Manning 2017; Rabanal-Ruiz
et al. 2017). Concomitantly, TOR inhibitors such as
rapamycin and CCI-779 induce autophagy (Blommaart
et al. 1995; Dudkin et al. 2001; Yu et al. 2001). Mac-
roautophagy starts with the formation of a phagophore,
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Fig.3 Modulation of autophagy for disease intervention. a Sche-
matic overview of the macroautophagy pathway. Macroautophagy
is induced by inhibition of mTORC1 complex and starts with the
formation of a phagophore which matures into the autophagosome.
The autophagosome fuses with the lysosome to transfer its cargo.
Most inhibitors and activators target the mTORC1 complex either

a vesicle surrounding cytoplasmic material, which turns
into the so-called autophagosome. In yeast, autophago-
some formation requires 18 autophagy-related (Atg) pro-
teins. The pre-autophagosomal structure is formed by six
functional groups of Atg complexes which are highly con-
served among eukaryotes, i.e., the Atgl autophagy initia-
tion complex, Atg9, Atg2-Atgl8 complex, the autophagy-
specific phosphatidylinositol 3-kinase (Pi3K) complex,
the Atgl2-Atg-5 conjugation system, and the Atg8-Atgl8
Ub-like conjugation system (Suzuki et al. 2017). The clo-
sure of the autophagosome is driven by the endosomal
sorting complex required for transport (ESCRT) proteins,
with CHMP2A being the main regulator (Takahashi et al.
2018). Then, the autophagosome transfers its cargo such as
organelles and protein aggregates to the lysosome. During
this process, the outer membrane of the autophagosome
fuses with the lysosome which then degrades the inner
membrane through acidic hydrolases.
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directly or indirectly. b Schematic overview of chaperone-mediated
autophagy (CMA). Proteins harbouring a KFERQ motif are rec-
ognized by Hsc70 and translocated to the lysosomal lumen through
interaction with LAMP2A. ¢ Schematic overview of microautophagy.
Cytosolic substrates are directly transported to the lysosomal lumen.
Inhibitors and activators are indicated with dashed lines

Microautophagy

Microautophagy plays an essential role in cell survival. In
contrast to macroautophagy, which requires the formation of
an autophagosome, microautophagy transports cytosolic sub-
strates directly to the lysosomal or endosomal lumen (Mar-
zella et al. 1981). In yeast, some types of microautophagy
are driven by ESCRT machinery. Particularly, inhibition
of mTORCI1 upon starvation leads to dephosphorylation of
Vps27, a component of ESCRT-0, resulting in the initiation
of microautophagy through ESCRT-0 (Hatakeyama and Vir-
gilio 2019). However, the mechanisms underlying microau-
tophagy in multicellular eukaryotes remain elusive.

Chaperone-mediated autophagy (CMA)

Degradation of proteins through chaperone-mediated
autophagy (CMA) is mediated by the cytosolic heat
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shock-cognate chaperone of 70 kDa (Hsc70), also known
as heat shock 70 kDa protein 8 (HSPAS8). HSPAS recog-
nizes substrates that contain a specific pentapeptide motif
(KFERQ) (Chiang et al. 1989; Dice 1988). This penta-
peptide motif becomes accessible when the target protein
changes its binding properties or conformation, exposing the
KFERQ-motif. The resulting complex interacts with the lys-
osome-associated membrane protein type-2A (LAMP2A).
The binding of LAMP2A to a substrate protein leads to a
high-weight multi-protein complex which is required for
translocation into the lysosomal lumen (Bandyopadhyay
et al. 2008). During the assembly of the LAMP2A-protein
complex, the target protein is unfolded to enter the lysosomal
lumen through a lysosomal membrane receptor/transloca-
tion complex, a process mediated by Hsc70 and heat shock
protein 90 (Hsp90).

Diseases triggered by protein misfolding
and aggregation

The pathological accumulation and aggregation of misfolded
proteins is a phenomenon observed in many disorders,
including distinct neurodegenerative diseases. Alzheimer’s
disease (AD), the most common cause of dementia, is char-
acterized by the deposition of two different protein aggre-
gates: (a) senile amyloid-p (AP) plaques and (b) neurofibril-
lary tangles of the microtubule-associated protein tau (Nie
et al. 2011; Penke et al. 2017; Selkoe, 2011; Snyder et al.
1994). These aggregates can result in synaptic dysfunction
and neurodegeneration (Selkoe 2011). Parkinson’s disease
(PD), the most common movement disorder with age, is
characterized by the aggregation of misfolded a-synuclein
(o-syn), leading to inclusions known as Lewy bodies (Arima
et al. 1998; Fares et al. 2021; Takeda et al. 1998). Malfunc-
tion of the UPS, CMA and lysosomes are observed in early
stages of the disease, suggesting that dysregulation of these
proteolytic systems is involved in the pathogenesis of PD
(Alvarez-Erviti et al. 2010; Leroy et al. 1998; McNaught
et al. 2001). Huntington’s Disease (HD) is caused by the
expansion of the polyglutamine (polyQ) tract of the hun-
tingtin protein (HTT). Whereas the wild-type HTT protein
contains less than 35 polyQ repeats, an expansion of > 35
polyQ repeats can lead to HD (Shannon 2011; Yushchenko
et al. 2018). Expanded polyQ-mutant HTT tends to aggre-
gate in different in vitro and in vivo models. Indeed, cumula-
tive evidence indicates that mutant HTT aggregates directly
contribute to neurodegeneration phenotype in HD (Brignull
et al. 2006; Djajadikerta et al. 2020; Gruber et al. 2018;
Koyuncu et al. 2018; Nagai et al. 2000).

Familial cases of ALS are linked with mutations in one
of > 25 different genes that act in a variety of cellular pro-
cesses. A handful of genes harbor the majority of familial

ALS mutations, including SOD1, TDP-43, FUS and C9orf72
(Bartoletti et al. 2019). Familial ALS-related mutations in
TDP-43 and FUS proteins induce their cytosolic aggregation
(Bentmann et al. 2013; Liu-Yesucevitz et al. 2010). Impor-
tantly, TDP-43 and FUS-immunoreactive aggregates are also
a common feature in sporadic ALS (Giordana et al. 2010; Hx
et al. 2010). Likewise, cytosolic inclusions of TDP-43 is also
a characteristic of frontotemporal dementia (FTD), the most
common form of early-onset dementia (Arai et al. 2006;
Neumann et al. 2006). Expanded hexanucleotide (GGGGCC
) repeats in the first intron of C9orf72 are the most common
cause of familial ALS, accounting for approximately 40%
of familial cases (Delesus-Hernandez et al. 2011; Renton
et al. 2011). The hexanucleotide expansions range between
100 and 4000 repeats in patients, generating homopolymeric
dipeptide proteins (e.g., poly-GR, GP, GA, PR) which are
prone to aggregation (Ash et al. 2013; Mori et al. 2013). In
these lines, C9orf72-associated cases exhibit neuropatho-
logical changes characterized by abundant protein inclusions
(Cooper-Knock et al. 2012), indicating a link with proteo-
stasis deficits.

Besides neurodegenerative diseases, other disorders are
also linked with protein misfolding and aggregation. For
instance, the protein p53 forms aggregates in several types
of cancer. Missense mutations in TP53, the gene encod-
ing for p53, have been reported in around 50% of cancer-
ous tumors (Carson and Lois 1995). Protein aggregation is
also observed in viral infections. For instance, the herpes-
viruses murine cytomegalovirus and herpes simplex virus
1 induce the aggregation and degradation of NF-kappa-B
essential modulator (NEMO) and receptor-interacting ser-
ine/threonine-protein kinase 1 (RIPK1) to block the innate
immune response (Muscolino et al. 2020). Furthermore, the
microtubule-associated proteins 1A/1B light chain 3B (LC3)
adaptor TBC1D5 was identified as an autophagy receptor for
virus-induced protein aggregates (Muscolino et al. 2020).

Given the extensive list of diseases characterized by pro-
tein aggregates, it is not surprising that many studies focused
on how protein clearance mechanisms impinge on disease
and their potential for therapeutics. In Table 1, we have sum-
marized reported components of the UPS and autophagy
which could be potential targets for disease intervention.
The following sections will provide an overview about
recent findings and ongoing trials based on protein clear-
ance mechanisms.

Ubiquitin—-proteasome system in disease

The UPS can modulate the levels of dysregulated proteins
and terminate aggregation-prone proteins. As such, UPS
dysfunction has been linked to multiple disorders. Since pro-
teasomal degradation of target substrates can be modulated
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Table 1 List of components of the UPS and autophagy related to proteinopathies

Gene name Model Abnormality/Disease Aggregated/Accumu- Mutation Source
model lated protein
PIK3C3 Zebrafish Postnatal lethality E-cadherin PIK3C3 knockout Zhao et al. (2018)
PTEN Mouse, COS-7 cells AD tau aggregation PTEN phosphatase-null Zhang et al. (2006a,b)
mutation
TRAF6 HEK cells PD alpha-synuclein, ubiquit- DJ-1%166P Zucchelli et al. (2010)
inated mutant DJ-1 TRAF6 overexpression
INS - AD AP1-42 - Long et al. (2019)
(insulin prevents Ap1-42
aggregation in vitro)
TBKI1 Mouse FTD, ALS p62 SOD1%%3A Gerbino et al. (2020)
TBK1R228H/R228H
IRS2 Mouse AD Reduction in aggregated =APPK670N. M67IL Killick et al. (2009)
Ap IRS2 knockout
HD Reduction in aggregated R6/2 mice Sadagurski et al. (2011)
HTT Brain specific, heterozy-
gous IRS2 knockout
TSC1 HEK cells TSC TSC1 Truncated TSC1 Hoogeveen-Westerveld
et al. (2010)
TSC2 HEK cells TSC Solubilizing TSC1 Truncated TSC1 Hoogeveen-Westerveld
aggregates TSC2 co-expression et al. (2010)
RAB39B  Human PD Lewy Bodies, alpha- Complete deletion of Wilson et al. (2014)
synuclein RAB39B
BECN Mouse, HeLa cells HIV, Chikunguya and PolyQ in HeLa Heterozygous deletion ~ Shoji-Kawata et al.
West Nile virus infec- of BECN in mouse (2013)
tion, HD Expanded polyQ in
HeLa
AD AB Human APP Pickford et al. (2008)
Heterozygous deletion
of BECN
HD PolyQ Expanded polyQ in Ashkenazi et al. (2017)
HeLa
ATG7 Mouse Neurodegeneration Accumulation of ubiqui- Conditional knockout of Komatsu et al. (2006)
tinated proteins ATG7
ATGS Mouse Cataracts Ubiquitin and p62 posi- Lens specific ATG5 Morishita et al. (2013)
tive aggregates knockout
RB1CC1 Mouse Neurodegeneration Ubiquitinated protein Neural-specific deletion Liang et al. (2010)
of RBICC1
ATG16L1 Mouse Crohn's disease like IREla aggregates ATG16L1 deletion in Tschurtschenthaler et al.
ileitis intestinal epithelial (2017)
cells
ATG2 HeLa cells - Aggregation of LC3 and siRNA knockdown of Velikkakath et al. (2012)
lipid droplets ATG2
ATG9 Mouse axon-specific lesions Accumulation of ubiqui- Conditional knockout of Yamaguchi et al. (2018)
tinated proteins ATG9
AMBRA1 Mouse Embryonic lethality Accumulation of ubiqui- AMBRAI gene-trapped Maria Fimia et al. (2007)
tinated proteins in LacZ
MTMR14  Fruit Fly AD and HD Knockdown of Knockdown of Xiao et al. (2019)
MTMR14 decreases MTMR14
AP1-42 and polyQ
aggregates
RUBCN Worm HD Knockdown of RUBCN  Knockdown of RUBCN Nakamura et al. (2019)
decreases polyQ
aggregates
ATG101 Fruit Fly Neurodegeneration Accumulation of ubiqui- Loss-of-function muta-  Guo et al. (2019)

tinated proteins

tion of ATG101

@ Springer



Protein clearance strategies for disease intervention

147

Table 1 (continued)

Gene name Model Abnormality/Disease Aggregated/Accumu- Mutation Source
model lated protein
VMP1 Mouse PD LC3, p62, alpha-synu-  Deletion of VMPI in Wang et al. (2021a; b)
clein aggregation dopaminergic neurons
UVRAG Mouse Inflammation and Parkin and p62 positive  Inducible UVRAG Quach et al. (2019)
Tumorigenesis aggregates truncation mutant
CI90RF72 Mouse, Fruit Fly, Worm ALS DPR aggregation, RNA  Hexanucleotide repeat ~ Jiang et al. (2016),
foci expansion, expression Rudich et al. (2017),
of DPR constructs Xu and Xu (2018)
PSMD12  Yeast - Aggregation of Truncation of PSMD12  Peters et al. (2015)
PSMD12 in C-terminal
PSMDI11  Mouse Embryonic lethality Accumulation of ubiqui- Inducible PSMD11 Zhao et al. (2021)
tinated proteins knockout
PSMC4 Mouse Muscle atrophy Ubiquitin positive PSMC4 knockout in Kitajima et al. (2014)
aggregates muscle
PSMC6 HeLa HD PolyQ aggregation Expanded polyQ in Rousseau et al. (2009)
HeLa
PSMC6 overexpression
PSMC3 Human Cataracts and deafness ~ Accumulation of ubiqui- missense mutation of Kroll-Hermi et al. (2020)
tinated proteins PSMC3
PSMC5 HeLa HD PolyQ aggregation Expanded polyQ in Rousseau et al. (2009)
HeLa
PSMCS5 overexpression
PSMF1 Mouse Neurodegeneration, p62 aggregates at neu-  Inducible PSMF1 Minis et al. (2019)

embryonic lethality

romuscular junction,
accumulation of ubig-
uitinated proteins

knockout

The disease model, accumulated/aggregated proteins and the relevant mutations are indicated in the table. The list of selected genes were

obtained from Kyoto Encyclopedia of Genes and Genomes proteasome (map03050) and autophagy- animal (map04140)

at different steps from ubiquitination to proteolytic activity,
it provides a mean to prevent proteotoxicity through different
pharmacological and genetic approaches (Fig. 2).

Targeting the UPS in neurodegenerative diseases

Deficiencies in proteasome-mediated degradation contrib-
ute to neurodegenerative diseases, including AD, PD, ALS,
FTD and HD. For instance, tissue samples from patients
exhibit aggregates containing Ub (Lowe et al. 1988; Perry
et al. 1987). Parkin is one of the most studied E3 enzymes in
the context of neurodegeneration and proteotoxicity. Parkin
is a RING-between-RING E3 ligase which, together with
the serine/threonine kinase PINK1, has a crucial role in
mitochondrial quality control and mitophagy (Beasley et al.
2007; Capili et al. 2004; Fett et al. 2010). Under physiologi-
cal conditions, the two RING domains of parkin are blocked,
leading to its inactivation (Duda et al. 2013; Seirafi et al.
2015). Upon severe mitochondrial damage, the mitochon-
drial membrane becomes depolarized and recruits parkin.
The activation of parkin requires both binding of a phospho-
Ub and phosphorylation by PINK1 (Gladkova et al. 2018;
Koyano et al. 2014; Wauer et al. 2015). Activated parkin
ubiquitinates voltage-dependent anion-selective channel 1

(VDAC1), which is only exposed when mitochondria are
depolarized. Subsequently, the autophagy adaptors p62,
CALCOCO?2 and TAX1BP1 are recruited by parkin to initi-
ate the autophagosome formation (Sarraf et al. 2013). There
are more than 120 PD-relevant mutations reported in parkin
(Cruts et al. 2012; Seirafi et al. 2015). These mutations lead
to loss-of-function (LOF), either by compromising parkin
integrity or preventing parkin from recognizing its substrates
(Wauer and Komander 2013). Cells derived from patients
are a useful resource for understanding the role of parkin in
PD. Fibroblasts obtained from a family with familial parkin
mutations display reduced ATP synthesis, total ATP levels
and membrane potential compared to control fibroblasts,
indicating mitochondrial dysfunction (Griinewald et al.
2010). Moreover, there is a global increase in oxidized pro-
teins in parkin mutants, a sign of increased reactive oxygen
species (ROS). An in vitro study by Jiang et al. successfully
produced dopaminergic neurons from iPSCs derived from
PD patient fibroblasts (Jiang et al. 2012). These neurons
have spontaneous dopamine release, decreased dopamine
intake, and elevated ROS levels.

Besides regulating mitochondrial function, parkin impacts
on PD-related neurodegeneration by interacting with a-syn,
which is one of the substrates of parkin (Norris et al. 2015).
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Several studies demonstrated that parkin overexpression can
have beneficial effects on a-syn toxicity in vitro and in vivo
whereas loss of parkin results in the accumulation of a-syn
(Meng et al. 2020; Petrucelli et al. 2002; Rana et al. 2013;
Shimura et al. 2001). Transduction of mutant a-syn in the
mouse midbrain leads to a sharp decrease in dopaminergic
neurons and proteasome activity, which is rescued by parkin
induction (Petrucelli et al. 2002). A similar study conducted
in fruit flies overexpressing both mutant a-syn and parkin
in dopaminergic neurons showed that even though parkin
improves the survival of these neurons, the levels of a-syn
levels remained similar when compared to flies that did not
overexpress parkin (Yang et al. 2003).

The impact of parkin on the clearance of aggregated pro-
teins extends beyond PD models. A plaques, which are a
common hallmark of AD, can cause mitochondrial swell-
ing, decreased cristae and impaired mitophagy in HEK293
human cell lines. Importantly, parkin overexpression suc-
cessfully restores mitophagy and reverses mitochondrial
fragmentation in Af-treated HEK293 human cell lines
(Wang et al. 2020a,b). Moreover, parkin can diminish tox-
icity and aggregation of ALS-related SOD1 mutant variants
in SH-SYS5Y neuroblastoma cells. In particular, parkin pro-
motes Lys63-linked polyubiquitination of misfolded SOD1
in cooperation with UbcH13/Uevla E2 enzyme, triggering
the clearance of aggregation-prone SOD1 through autophagy
(Yung et al. 2016). In these lines, in vivo studies on parkin
also led to promising results. Overexpression of parkin in D.
melanogaster extends longevity, without affecting reproduc-
tivity, organismal activity and food intake (Rana et al. 2013).
Parkin-overexpressing flies have more Lys48-linked poly-
ubiquitinated proteins and less protein aggregates compared
with their wild-type counterparts. The ameliorative effects
of parkin could be partially explained by its role in degra-
dation of mitofusin, a protein that induces mitochondrial
fusion and could eventually promote mitochondrial impair-
ment when upregulated (Poole et al. 2010; Rana et al. 2013;
Tanaka et al. 2010). In Drosophila, the levels of mitofusin
protein increase during aging. However, overexpression of
parkin reduces mitofusin levels in aging flies, with subse-
quent changes in mitochondrial morphology and increased
mitochondrial activity (Rana et al. 2013). Given the poten-
tial beneficial role of parkin as a disease modifier, several
studies sought to define parking activators. These findings
led to the discovery and patent of US-2016/0160205A1 and
WO-2018/023029 as small molecule activators of parkin.
Currently, there are no in vitro or in vivo data available
regarding these molecules (Clark et al. 2020; Miller and
Mugit 2019).

Whereas several findings indicate a protective role of
parkin, it is important to note that parkin activity could also
have negative effects depending on the disease model. For
instance, parkin deficiency can slow down PD progression
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in transgenic mice harboring the disease-causing mutation
A30P in a-syn (Fournier et al. 2009; Lonskaya et al. 2013).
Furthermore, parkin appears to contribute to Lewy body
formation through K63-linked polyubiquitination of syn-
philin-1, a protein interacting with a-syn (Lim et al. 2005).
Conversely, overexpression of synphilin-1 can suppress the
neurotoxicity caused by a-syn mutation A53T (Smith et al.
2010). A study on ALS mouse models expressing mutant
SOD1 demonstrated that genetic ablation of parkin delays
disease progression and prolongs survival (Palomo et al.
2018). In this model, loss of parkin slows down neurodegen-
eration and ameliorates the loss of mitochondrial dynamics
induced by ALS-related SOD1 mutant protein. A potential
explanation for these unexpected effects is that the mito-
chondrial damage triggered by mutant SOD1 could lead to
a parkin-mediated chronic activation of mitochondrial qual-
ity control, which could inhibit mitochondrial biogenesis
and worsen mitochondrial dysfunction (Palomo et al. 2018).
Thus, modulation of parkin might have distinct effects
depending on the model organism and the proteinopathy.

UBRS is another potentially relevant E3 ligase in the con-
text of disease. Under normal conditions, iPSCs from HD
patients do not accumulate aggregates of polyQ-expanded
mutant HTT (Koyuncu et al. 2018). However, the treatment
with proteasome inhibitor triggers mutant HTT aggregation
in these cells, further supporting a role of the UPS in sup-
pressing the formation of HD-related aggregates. Indeed,
iPSCs express elevated amounts of UBRS compared with
their differentiated neuronal counterparts, promoting the
ubiquitination of mutant HTT and its degradation by the
proteasome. Notably, increasing the levels of UBRS in
HD models is sufficient to promote degradation of mutant
HTT and ameliorate its aggregation (Koyuncu et al. 2018).
In these lines, Yau and colleagues reported that polyQ-
expanded mutant HTT is heavily ubiquitinated by hetero-
typic K11/K48-linked chains in cancer cells, embryonic
stem cells and neurons. However, ubiquitination of mutant
HTT was abolished by co-depletion of UBR5 and UBR4
(Yau et al. 2017).

Carboxy-terminus of Hsc70-interacting protein (CHIP)
has the double function of E3 ligase and co-chaperone,
playing an important role in UPS-mediated degradation
(Ballinger et al. 1999; Jiang et al. 2001). Dysregulation of
CHIP has been linked to different neurodegenerative dis-
eases. Phosphorylation of tau is a signal for CHIP-mediated
ubiquitination, and clearance of tau by CHIP increases cell
survival in COS-7 cells transfected with constructs express-
ing both tau and CHIP (Shimura et al. 2004). In addition,
CHIP knockout mice that express P301L mutant tau exhibits
increased phosphorylated and caspase-3-cleaved tau accu-
mulation (Dickey et al. 2006). Further studies demonstrated
that the pathologic isoform of AP, namely Ap42, decreases
CHIP expression and leads to tau accumulation in 3xTg
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mice, which express 3 familial AD-associated mutant vari-
ants (amyloid-p precursor protein (APP) KM670/671NL,
MAPT P301L, and PSEN1 M146V) (Oddo et al. 2008).
A recent study on 3xTg mice reported that administrat-
ing sulforaphane, an isothiocyanate naturally found in
cruciferous vegetables, increases CHIP and Hsp70 levels
in mouse brains, correlating with elevated clearance of
tau and phosphorylated tau. Concomitantly, sulforaphane
alleviates learning and memory deficits in these mouse
models, supporting an effect of CHIP upregulation at the
physiological level (Lee et al. 2018a, 2018b). CHIP also
ameliorates protein aggregation in distinct HD models.
Zebrafish embryos injected with expanded-polyQ mutant
HTT die after 24 h, but co-injection with CHIP rescues this
phenotype. Moreover, deletion of a single allele of CHIP in
HD mouse models hastens the aggregation of mutant HTT
and the disease progression (Miller et al. 2005). A role of
CHIP was also observed in ALS transgenic mouse and cell
models that express mutant SOD1%%34 1n the cell model,
CHIP decreases mutant SOD1 levels by ubiquitinating Hsp/
HSC70, which is an interacting partner of SOD1. In vivo
proof of indirect interaction between CHIP and SOD1 was
evident by co-localization of CHIP, Ub and SODI in the
spinal cord of end-stage transgenic AD mice (Urushitani
et al. 2004).

The E2 Ub conjugating enzyme UBE2K, also known as
huntingtin-interacting protein 2 (HIP2), is also a potential
modifier of neurodegenerative diseases. The yeast homo-
logue of UBE2K, Ubcl, modulates aggregation of prion
proteins in Saccharomyces cerevisiae. Deletion of Ubcl
increases prion aggregation by reducing degradation of the
stress-response protein Lsb2. In turn, Lsb2 cannot promote
the aggregation of prion precursor Sup35 (Chernova et al.
2011). By yeast two-hybrid system, it was discovered that
human UBE2K interacts with the N-terminus of HTT pro-
tein leading to its polyubiquitination, regardless of the length
of the polyQ tract (Kalchman et al. 1996). However, knock-
down of UBE2K does not lead to increased levels or aggre-
gation of mutant HTT in iPSCs from HD patients (Fatima
et al. 2020). Thus, further studies are needed to assess
whether UBE2K could be a modifier of HD. Besides its
interaction with HTT, a potential link between UBE2K and
Ap aggregation has also been explored. In a mouse model
of AD, AP plaques have increase UBE2K expression, which
leads to stabilization of caspase-12, eventually causing neu-
ronal death. Conversely, lowering UBE2K levels success-
fully induces Ap resistance in cortical neurons and reduces
activation of caspase-12 (Song et al. 2008). These results
indicate that, like parkin, modulation of UBE2K could have
positive or negative roles on protein aggregation depending
on the disease and the models analyzed.

DUBs, the enzymes that cleave ubiquitin from proteins,
are emerging as key modifiers of aging and disease. In C.

elegans, there is an increase in global DUB activity during
the aging process. Consequently, multiple proteins escape
the clean-up by the UPS and accumulate with age, leading
to protein aggregation and cellular dysfunction (Koyuncu
et al. 2021). Moreover, deregulation of DUBs is involved in
many different neurological disorders such as AD, PD, HD,
and ALS (Amer-Sarsour et al. 2021; Nazé et al. 2002; Sai-
goh et al. 1999; Setsuie and Wada, 2007; Zeng et al. 2019).
For instance, DUB activity can directly modulate the ubiq-
uitination levels of disease-related proteins such as a-syn
(Amer-Sarsour et al. 2021; Cartier et al. 2009; Guo et al.
2017; Oishi et al. 2016; Uddin et al. 2018). As such, DUBs
are targets for modulating protein clearance in neurodegen-
eration. USP14 is a proteasome-associated DUB that can
inhibit the degradation of ubiquitin-protein conjugates (Lee
et al. 2010). The treatment of mouse embryonic fibroblasts
(MEFs) with IU1, a small-molecule inhibitor of USP14,
improves the clearance of proteotoxic tau, TDP-43, ataxin-3
(ATXN3) and GFAP, which are disease-relevant proteins in
AD, ALS, Machado—Joseph disease and glia overactivation,
respectively (Lee et al. 2010). Moreover, overexpression of
catalytically dead USP14 reduces the levels of prion aggre-
gates in PrPC-overexpressing Neuro2a mouse neuroblas-
toma cells (Homma et al. 2015). Importantly, knockdown of
USP14 also has beneficial effects in a fruit fly model of PD,
where it rescues mitophagy defects caused by PINK1/Par-
kin mutation and the subsequent disease-related phenotypes
(Chakraborty et al. 2018). Whereas reducing USP14 activity
can have beneficial effects in distinct disease models, over-
expression of USP14 reduces mutant HTT aggregates and
counteracts cell degeneration in neural cell lines expressing
expanded-polyQ HTT constructs (Hyrskyluoto et al. 2014).
In addition, USP14 does not appear to have a robust effect on
the cellular levels of tau or TDP-43 in different human cell
lines models such as HEK293, U20S and SH-SY5Y (Ortuno
et al. 2016). However, this might be due to methodical differ-
ences between the distinct studies (Lee et al. 2010; Ortuno
et al. 2016). Nevertheless, these findings demonstrate that
USP14 is a potential disease modifier, but its activity could
have different effects depending on the disease or the cellular
and animal models used in the assays.

USPS is a relevant DUB in parkin-mediated mitophagy.
USPS8 removes K6 ubiquitination from parkin, which is
required for the recruitment of parkin to mitochondria (Dur-
can et al. 2014). In addition to its role in mitophagy, USPS8
also deubiquitinates K48 and K63-linked Ub chains on a-syn
(Alexopoulou et al. 2016). Importantly, the knockdown
of USP8 significantly reduces a-syn levels in SH-SYSY
human cells. This finding was further supported by a fruit
fly model which ectopically expresses A53T mutant a-syn
leading to a rough eye phenotype. The pathological pheno-
type was successfully rescued upon knockdown of USPS.
However, loss of USP8 does not prevent abnormalities
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caused by mutant HTT (Alexopoulou et al. 2016). A fur-
ther study demonstrated that USP8 can remove K11-linked
polyUb chains from p62 (Peng et al. 2020), a regulator of
autophagy-mediated clearance of ubiquitinated aggregates.
USP8 overexpression leads to deubiquitination of p62 pro-
tein, suppressing its autophagic activity (Peng et al. 2020).
However, further studies will be necessary to assess whether
the impact of USPS8 on autophagy influences disease-related
protein aggregation. In addition to USP14 and USPS8, other
DUBs are also linked with neurodegenerative diseases. For
instance, UCH-L1 is downregulated in patients with PD
and AD (Setsuie and Wada 2007). Although the impact of
UCH-L1 on disease is still enigmatic, it has been reported
that UCH-L1 not only can function as a DUB, but also as
an E3 ligase that extends Lys63-polyUb chains in a-syn
(Liu et al. 2002). An expanded polyQ mutation in the DUB
ataxin-3 causes spinocerebellar ataxia type 3 (SCA3), pro-
viding a direct link between DUBs and neurodegeneration
(McLoughlin et al. 2020).

Beyond modulation of E3 or DUB enzymes, a global
induction of proteasome activity can also prevent the accu-
mulation of disease-related protein aggregates. For instance,
increasing the levels of PSMD11/RPNG®, a central regulator
of proteasome assembly, is sufficient to increase proteasome
activity (Vilchez et al. 2012a). Overexpression of rpn-6, the
worm orthologue of PSMD11, decreases expanded-polyQ
aggregation and neurotoxicity in a worm model of HD.
Conversely, knockdown of rpn-6 hastens disease-related
changes, underlining the importance of PSMD11/RPN6 in
removal of disease-relevant protein aggregates (Vilchez et al.
2012b). Another publication demonstrated that cAMP-medi-
ated phosphorylation and subsequent activation of PSMD11
promotes the degradation of disease-related mutant variants
of TDP-43, SODI1 and Tau (Lokireddy et al. 2015).

Targeting UPS in cancer

Cumulative evidence demonstrates that proteasomal activ-
ity is elevated in human cancers (Arlt et al. 2009; Chen and
Madura 2005; Zhang et al. 2004). Given that high prolifera-
tion rates rely on proteasome activity, proteasome upregula-
tion is consistent with the particular requirements of malig-
nant cells. Moreover, the elevated degree of cell divisions
and mutation rates characteristic of cancer cells can lead to
the accumulation of misfolded proteins, which can activate
stress responses and apoptosis. Distinct studies reported pro-
tein aggregation in malignant cells (Chen et al. 2017; Chiu
et al. 2019; Chou et al. 2019; Huo, 2010; Kanapathipillai
2018; Yang-Hartwich et al. 2015a,b). For instance, p53, one
of the most frequently mutated proteins in human cancers,
can form aggregates in cancer cells (Chen et al. 2017; Chou
et al. 2019; Yang-Hartwich et al. 2015a,b). Since the protea-
some eliminates aberrant or damaged proteins that otherwise
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would be toxic for the cell, upregulation of proteasome
activity could provide an advantageous feature for cancer
cells to survive amidst proteotoxic conditions (Whitesell and
Lindquist 2005). Indeed, inhibition of proteasome activity is
a promising therapeutic approach for the treatment of certain
types of cancer (Deng et al. 2020; Devoy et al. 2005; Du
and Mei 2013; Zhang et al. 2020). Although it is not clear
how inhibition of the proteasome particularly affects cancer
cells, a number of identified compounds that inhibit protea-
some activity can induce apoptosis of malignant cells (Ling
et al. 2002; Pei et al. 2003), kill tumor cells (Teicher et al.
1999), enhance radiation sensitivity (Teicher et al. 1999) and
overcome drug resistance (Frankel et al. 2000; Hideshima
et al. 2001). A potential explanation for this selectivity is
that malignant cells show greater sensitivity to the cytotoxic
effects of proteasome inhibition compared with non-cancer
cells (Delic et al. 1998; Orlowski et al. 1998; Soligo et al.
2001) Bortezomib, a proteasome inhibitor that reversibly
inhibits proteasome activity, is approved for the treatment
of multiple myeloma (Orlowski and Kuhn 2008; Richard-
son et al. 2008). Multiple myeloma cells produce elevated
amounts of aberrant immunoglobins and, subsequently,
rely on proteasomal function for the continual clearance of
abnormal proteins (Nencioni et al. 2007; Richardson et al.
2008). Bortezomib is also efficient against hematological
malignancies such as Waldenstrom's macroglobulinemia and
mantle cell lymphoma (Belch et al. 2007; Chen et al. 2007;
Fisher et al. 2006; Treon et al. 2007). Two second-generation
compounds have entered phase II trials; i.e., NPI-0052 and
carfilzomib, which also inhibit proteasome activity but have
improved pharmacological properties (Chauhan et al. 2005;
Kuhn et al. 2007).

Besides global proteasome activity, other components
of the ubiquitin—proteasome system can also be a poten-
tial therapeutic target for cancer. Of particular interest is
UBAL, the first enzyme in the sequential ubiquitination
cascade. In vitro assays with TAK-243, an inhibitor of
UBAI1, led to global reductions of ubiquitinated protein
levels, impaired signaling, arrested cell cycle and cell
death due to proteotoxic stress, which was also supported
by xenograft models of cancer (Hyer et al. 2018). In 2014,
the pharmaceutical company Takeda Oncology started a
phase I trial with TAK-243 in patients with advanced
solid tumors (NCT02045095). However, the trial was
terminated due to realignment of the sponsor's pipeline
program, without a publication of the existing results.
Nevertheless, a new phase I trial is currently ongoing
to assess TAK-243 efficiency in patients with different
kinds of recurrent leukemia (NCT03816319). Distinct
tripartite motif (TRIM) E3 ligases that modulate protein
aggregation and proteasome activity in cancer cells are
also potential therapeutic targets (Hatakeyama 2011; Mer-
oni and Diez-Roux 2005). Among them, the E3 ligase
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TRIM?2S is strongly upregulated under endoplasmic retic-
ulum (ER) stress in colon and liver carcinoma cells (Liu
et al. 2020a,b,c). Increased TRIM25 levels promote the
removal of a transcription factor Keapl, which itself is
an inhibitor of Nrf2, a regulator of antioxidant responses.
In turn, Nrf2 improves survival of tumor cells under ER
stress. Notably, mice grafted with stable TRIM25-knock-
down cells have slower tumor progression and increased
lifespan (Liu et al. 2020a,b,c). Another study revealed
that TRIM11 overexpression in the colon cancer cell line
HCTI116 facilitates removal of both misfolded and nor-
mally folded proteins by suppressing the DUB activity
of UPS14, increasing the overall proteasome activity.
TRIM11 overexpression also increases cell survival after
proteotoxic conditions such as heat-shock stress. When
immunodeficient mice are grafted with HCT116 overex-
pressing TRIM11, the tumor volume expansion is signifi-
cantly higher. Conversely, grafts overexpressing USP14
exhibit a slower expansion than those with endogenous
levels of USP14 (Chen et al. 2018a,b). Although USP14
activity ameliorates pathological changes in this cancer
model through inactivation of the proteasome, USP14 can
also have pro-malignant effects in other cancer types. For
instance, USP14 is upregulated in patients with lung or
breast cancer. The combination of enzalutamide, a non-
steroidal antiandrogen, with either knockdown or phar-
macological inhibition of USP14 promotes arrest of cell
cycle progression and induces apoptosis (Xia et al. 2019).
When lung cancer cells are treated either with USP14
inhibitor or USP14 siRNA, they have decreased prolif-
eration and invasion (Han et al. 2019). Moreover, mice
models with either homozygous or heterozygous deletion
of p53 display slower tumor progression and increased
lifespan when treated with the USP14 inhibitor IU1. In
these mouse models, IU1 induces senescence, cell cycle
arrest and apoptosis in malignant cells (Ma et al. 2020).

Autophagy in disease

Deficits in autophagy are associated with multiple diseases
(Frake et al. 2015; Jin and Zhang, 2020; Nixon 2013; Park
et al. 2020; Towers et al. 2020; White 2015; Yin et al.
2018; Yun and Lee 2018; Zhou et al. 2019). Addition-
ally, autophagy can be induced in many different cell
types through inhibition of mTOR with different avail-
able inhibitors, most famously rapamycin (Sehgal et al.
1975). Due to its involvement in many different diseases
along with the possibility of pharmacological manipula-
tion, autophagy has been a favorable target for therapeutic
approaches (Fig. 3).

Targeting autophagy in neurodegenerative diseases

A plethora of evidence demonstrates that autophagy is
involved in the clearance of aggregated proteins character-
istic of neurodegenerative disorders, establishing autophagy
as a central point of interest for therapeutics (Bjgrkgy et al.
2005; Jung et al. 2020; Luo et al. 2020; Ravikumar et al.
2002, 2004; Sarraf et al. 2020; Webb et al. 2003). Multiple
studies assessed whether induction of autophagy through
rapamycin can alleviate hallmarks of AD such as protein
aggregation and neuronal loss. In a mouse model for AD,
which overexpresses a V717F mutant variant of human APP,
rapamycin-supplemented diet improves learning and mem-
ory deficits in Morris water maze (MWM) tests. Moreover,
rapamycin-treated animals have less Ap1-42 aggregates, a
clear indication of functional restoration in parallel with pro-
tein aggregation clearance (Spilman et al. 2010). An intrigu-
ing follow-up study using 3xTg-AD mice revealed that rapa-
mycin can prevent AD only when administrated early in life,
and has negligible effects on AP and tau aggregates when
administered in advanced stages of the disease (Majumder
et al. 2011). Since AD begins to develop in patients decades
before the first symptoms appear, it is important to deter-
mine an administration regimen for therapeutic compounds
in AD (Beason-Held et al. 2013; Lloret et al. 2019).

Recent studies on the interplay of diabetes mellitus with
AD also led to promising results. Rat models of type 2 diabe-
tes mellitus (T2DM) induced by streptozotocin (STZ) have
increased dystrophic neurites together with aggregation of
APP, phosphorylated tau and Ap, mimicking AD symptoms
(Li et al. 2007). However, rapamycin alleviates AD-related
protein aggregation and learning deficits in these rat models
through inhibition of AMPK-mTOR signaling (Sun et al.
2019). An independent study further supported these results
in STZ-induced T2DM rats (Ding et al. 2021). STZ leads to
hyperactivation of the mTOR/p70S6k pathway, which can
be attenuated by rapamycin treatment. Rapamycin further
protects against hippocampal oxidative stress damage, dys-
regulated mitochondrial activity, and memory impairment
along with reduction of AB1-42 and hyperphosphorylated
tau levels in the hippocampus. Despite the evidence sup-
porting a positive correlation of autophagy induction with
amelioration of AD, currently no clinical data trial data are
available.

Similar to AD, cellular and animals models of HD treated
with rapamycin and other mTOR inhibitors exhibit reduced
protein aggregation (King et al. 2008; Ravikumar et al.
2004; Rubinsztein and Nixon 2010). A study using COS-7
cells expressing polyQ-expanded exon 1 of HTT indicates
that mTOR can be sequestered into polyQ aggregates. Inter-
estingly, sequestration of mTOR increases autophagy, as
supported by increased levels of the autophagosome marker
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LC3-II. Moreover, the rapamycin analog CCI-779 promotes
clearance of protein aggregates and ameliorates motor defi-
cits in mice expressing mutant HTT (Ravikumar et al. 2004).
A recent study demonstrated that a small molecule inhibi-
tor of serine/threonine kinase GSK-3 can promote clearance
of expanded-polyQ HTT aggregates (Rippin et al. 2021).
GSK-3 was initially identified as a central kinase involved
in glucose metabolism, which phosphorylates glycogen syn-
thase, insulin receptor 1, phosphoenolpyruvate carboxykin-
ase and glucose 6-phosphatase (Embi et al. 1980; Liberman
and Eldar-Finkelman 2005; Lochhead et al. 2001). Further
studies reported that inhibition of GSK-3 leads to increased
autophagy in distinct cell types, mainly cancer cells (Gavi-
lan et al. 2013; Marchand et al. 2015; Ren et al. 2018; Ryu
et al. 2021). Notably, the GSK-3 inhibitor L807mts enhances
clearance of aggregates through elevated autophagy in SH-
SYSY cells expressing mutant HTT. Moreover, L807mts
improves motor function and coordination in R6/2 mice, a
widely used mouse model for HD (Rippin et al. 2021).
Besides AD and HD, induction of autophagy via mTOR
inhibition could also be a modifier of other neurodegen-
erative diseases. In PD models, mutant a-syn can impair
autophagy itself (Xilouri et al. 2009). Rapamycin reduces
death of PC12 neuronal cells treated with 6-hydroxydo-
pamine (6-OHDA), a compound that selectively destroys
dopaminergic and noradrenergic neurons mimicking the
neurodegeneration characteristic of PD. Moreover, rapa-
mycin also prevents neuronal death in mice treated with
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a
compound that causes selective destruction of dopaminergic
neurons in substantia nigra used for PD modeling (Malage-
lada et al. 2010). Beyond pharmacological-induced models,
rapamycin can also have beneficial effects on PD genetic
models. For instance, rapamycin improves motor function
in mice that express the PD-associated A53T mutant vari-
ant of a-syn, without altering the total levels of a-syn (Bai
et al. 2015). A more recent study indicated that rapamycin,
but not PF-4708671, a molecule that inhibits a downstream
target of mMTORCI (i.e., ribosomal protein S6 kinase), can
attenuate depression/anxiety-like behavior in 6-OHDA-
treated mice (Masini et al. 2018). Another agent enhancing
autophagy is resveratrol, which activates the AMPK/SIRT1
pathway. In a PC12 cell line overexpressing mutant a-syn,
resveratrol treatment leads to increased clearance of a-syn
(Wu et al. 2011). The therapeutic potential of AMPK activa-
tion is further supported by experiments in D. melanogaster
models for PD, whereby using the agent 5-amino-1-p-p-
ribofuranosyl-imidazole-4-carboxamide (AICAR) to acti-
vate AMPK reduces cell death (Ng et al. 2012). Likewise,
the AMPK activating agent metformin results in decreased
cell death in both MPTP-treated mice and a D. melanogaster
model for PD (Ng et al. 2012; Patil et al. 2014). In mice
overexpressing A30P mutant a-syn, the PREP-inhibitor
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KYP-2047 enhances the clearance of a-syn via induction of
beclin-1 and subsequent enhancement of autophagy (Savol-
ainen et al. 2014). In N2A cells overexpressing A30P and
AS53T a-syn, beclin-1 activation through isorhynchophyl-
line treatment has similar effects (Lu et al. 2012). Moreover,
activation of the transcription factor EB (TFEB) induces
autophagy and clearance of a-syn aggregates in human neu-
roglioma cells overexpressing a-syn (Kilpatrick et al. 2015).
An extensive discussion on autophagy-enhancing agents that
ameliorate PD in various models can be found in the review
published by Moors and colleagues in 2017 (Moors et al.
2017).

In addition to compounds that inhibit mTOR and induce
autophagy, several studies investigated agents that can affect
the lysosome (Bourdenx et al. 2016; McNeill et al. 2014;
Richter et al. 2014). Mutations in GBAI, a gene encoding
for the lysosomal enzyme f-Glucocerebrosidase (GCase),
is a risk factor for PD (Sidransky et al. 2009; Sidransky and
Lopez 2012). These mutations can lead to functional loss of
GCase and thereby to lysosomal dysfunction and accumula-
tion of a-syn (Bae et al. 2015; Yap et al. 2011). Ambroxol,
a substrate targeting GCase, increases GCase activity and
restores the lysosomal function in GBAI mutant fibroblasts
(McNeill et al. 2014). Another substrate that targets GCase
is isofagomine. Notably, the treatment with isofagomine
reduces the levels of a-syn and neuroinflammation in mice
overexpressing a-syn, improving their motor performance
(Richter et al. 2014).

Importantly, mutations in distinct autophagy-related
genes, such as p62/SQSTMI1, OPTN, C9orf72, ALS2,
UBQLN?2 can cause ALS (Renton et al. 2014). Indeed,
defective autophagy has been reported in ALS patients and
models, supporting the potential of autophagy enhancement
as a therapeutic approach in ALS (Chen et al. 2018a, b;
Goode et al. 2016; Lee et al. 2018a,b; Majcher et al. 2015).
Nonetheless, ALS models treated with mTOR inhibitors
have showed conflicting results. For instance, rapamycin
does not alleviate the accumulation of protein aggregates in
mutant SOD1-expresssing mice, and hastens motor neuron
degeneration and organismal death in these animals (Zhang
et al. 2011). A following study using a different mutant
SOD1 mouse model confirmed that rapamycin do not have
beneficial effects on ALS pathology, while dietary restric-
tion increases lifespan and delays the onset of the disease
(Bhattacharya et al. 2012). Nevertheless, a report using a
microphysiological 3D model of ALS-related mutant TDP-
43 consisting of motor neurons and muscle fibers differenti-
ated from patient-derived iPSCs revealed that the treatment
with rapamycin restores the functionality of motor neurons.
Moreover, rapamycin decreases TDP-43 aggregation and
apoptosis in these cells (Osaki et al. 2018). A different study
using mutant OPTN-expressing mice as a model for ALS
also supported the idea of rapamycin as a potential candidate
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for ALS treatment. Indeed, administering mutant OPTN-
expressing mice with rapamycin leads to a rescue in their
behavioral deficits as well as decreased TDP-43 aggregation
(Zhang et al. 2021a).

Since rapamycin is a potent immunosuppressor which is
also contraindicated for people with renal insufficiency, it is
important to develop alternatives for autophagy induction
(Baroja-Mazo et al. 2016; Ruggenenti et al. 2016). Recent
advances on autophagy regulation allowed researchers to
enhance autophagy through mTOR-independent pathways
such as lithium administration, which is also used to treat
bipolar and major depressive disorders (Motoi et al. 2014;
Sarkar et al. 2005). Lithium activates autophagy pathway
by inhibiting inositol phosphatase-phosphatase (IMPase).
Under physiological conditions, IMPase facilitates the
hydrolysis of inositol monophosphate into free inositol
(Maeda and Eisenberg 1980). Inhibition of IMPase by
lithium leads to depletion of free inositol, and ultimately
decreases inositol triphosphate (IP3) levels (Sarkar et al.
2005). Subsequently, IP3 receptor is less active, impairing
intracellular Ca®*-sensing mechanisms, a process that com-
promises mitochondrial function and ATP production. Then,
increased AMP/ATP ratio activates autophagic pathways
through AMPK kinase (Céardenas et al. 2010; Decuypere
et al. 2011). The treatment of AD mice models with lithium
has led to mixed results. An earlier report demonstrated that
the chronic treatment with lithium improves spatial learning
deficiencies in rats injected with pre-formed A (De Ferrari
et al. 2003). Lithium also induces a significant reduction of
phosphorylated tau levels in 3xTg-AD mice, but it does not
has beneficial effects on AP aggregation or memory deficien-
cies (Caccamo et al. 2007). More recent studies supported
that microdosing of lithium is beneficial for AD models.
Mutant APP-expressing rats treated with NPO3, a micro-
dose formulation of lithium, exhibit reduced AP} aggregation,
improvements in working memory, decreased inflammation
and lower oxidative stress (Wilson et al. 2020). Another
study reported that APP transgenic mice treated with low
doses of lithium exhibit a recovery in spatial learning. The
same study found decreased levels of phosphorylated tau
and A aggregates in the brain of mice treated with low-
dose lithium (Liu et al. 2020a,b,c). In addition, low-dose
lithium treatment can also have anti-pathological effects in
HD models. NPO3-treated YAC128 mice, which express
human expanded-polyQ mutant HTT, have improved motor
function and decreased neuropathological deficits in the
brain. Moreover, NPO3 diminishes insoluble mutant HTT
aggregates and phosphorylated tau (Pouladi et al. 2012).

In different models of PD, lithium treatment produces
varying outcomes. When dopaminergic N27 cells are treated
with H,O,, they have decreased survival compared to cells
treated with both H,O, and lithium, as a consequence of oxi-
dative stress. Moreover, lithium treatment prevents oxidized/

nitrated a-syn accumulation in brains of PD mice that over-
express mutant a-syn (Kim et al. 2011). In contrast, Yong
and colleagues reported that 6-OHDA-induced models of
PD mice do not exhibit increased survival of dopaminergic
neurons upon lithium treatment. Although phosphorylated
tau levels were decrease in this mouse model upon lithium,
the treatment did not have any effect on PD neuropathol-
ogy (Yong et al. 2011). However, another study showed
enhanced dopaminergic differentiation when neural stem
cells (NSCs) treated with lithium were transplanted into
6-OHDA-induced PD rat models when compared with
NSCs treated with vehicle (Qi et al. 2017). In addition,
NSCs treated with lithium rescue motor function in this PD
model (Qi et al. 2017). Together, these data indicate that
even though lithium treatment alone may not be sufficient
therapy for PD, it can have complementary beneficial effects
in combination with an effective treatment.

Lithium can also lead to different results depending on the
ALS model. In mutant SOD16%3A. transgenic mice, lithium
treatment prevents neurodegeneration, increases lifespan
and delays the disease onset, correlating with a reduction in
aggregates containing Ub and SOD1. The same study also
reported a clinical trial, where ALS patients were treated
with either only riluzole or riluzole combined with lithium
and showed that combined therapy could have beneficial
effects (Fornai et al. 2008). However, a following study
refuted these claims using SOD1%%*A-mutant mice in two
different genetic backgrounds. Pizzasegola et al. (2009)
found no significant differences between vehicle- or lithium-
treated mice in terms of disease duration or neuroprotec-
tion. Instead, they observed an early onset of the disease and
decreased survival.

Targeting autophagy in cancer

The link between autophagy and cancer has been known
since decades. However, the specific role of autophagy
in cancer development remains elusive. As discussed in
previous sections, mutations in the protein p53 lead to its
misfolding and aggregation in cancerous cells (Carson and
Lois 1995). Under physiological conditions, p53 serves as
a tumor suppressor and regulates the autophagy-lysosomal
pathway. Whereas nuclear p53 induces autophagy by acti-
vating the sestrin-AMPK-mTOR pathway, cytosolic p53
acts as an autophagy inactivator through mTOR (Budanov
and Karin 2008; Chollat-Namy et al. 2019; Tasdemir et al.
2008). A study of Haque et al. (2018) linked cytosolic p53
aggregates with lung cancer. Using a human lung cancer cell
line, they observed cytosolic p53 aggregation despite that
TP53, the gene encoding for p53, did not harbor any muta-
tion. The autophagic protein ATG5 co-aggregates with p53
and, subsequently, loses its physiological function. Treat-
ing lung cancer cells with the compound emodin diminishes
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the interaction between aggregating p53 and ATGS, leading
to an increase in the autophagy flux that reduces protein
aggregates. Intriguingly, induction of aggregate formation
could also support anti-cancer therapies. A novel histone
deacetylase inhibitor TMU-35435 can induce aggregation of
misfolded proteins and thereby autophagy in triple-negative
breast cancer (TNBC) (Chiu et al. 2019). Remarkably, treat-
ing mouse models of orthotopic breast cancer with both,
TMU-35435 and irradiation, suppresses tumorigenesis
through autophagy induction. Thus, either inhibition or acti-
vation of autophagy could have beneficial effects for cancer
therapy depending on the type of cancer and the aggregated
proteins.

Targeting autophagy in inflammatory
and infectious diseases

Many viruses have been reported to impinge on the
autophagy-lysosome pathway. However, not all these viruses
cause an infection that correlates with protein aggregation. A
virus which could promote protein aggregation is the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which causes COVID-19. Patients with COVID-19 are pre-
dicted to have a higher risk to develop neurodegenerative
diseases (Chana-Cuevas et al. 2020; Dolatshahi et al. 2021;
Tavassoly et al. 2020). The analysis of potential effects of
SARS-CoV-2 proteins indicates that the infection interferes
with autophagosome-lysosome fusion (Miao et al. 2021;
Zhang et al. 2021b). Particularly, the open reading frame
3a (ORF3a) of SARS-CoV-2 blocks the fusion between
autophagosomes and lysosomes and thus the autophagic
flux. ORF3a was found to interact with VPS39, a process
that prevents the assembly of fusion machinery, leading to
the accumulation of autophagosomes (Miao et al. 2021;
Zhang et al. 2021b). Notably, disruption of ORF3a-VPS39
interaction by a point mutation diminishes the blocking
effect of ORF3a. These new insights could enable research-
ers to develop therapies that target the fusion between the
autophagosome and lysosome to diminish infection and
the resulting protein aggregation. In 2019, Masaki and col-
leagues found protein aggregates triggered by Theiler’s
murine encephalomyelitis virus (TMEV) infection. The
protein TDP-43, which aggregates in ALS and FTD, exhib-
its abnormal cellular localization and phosphorylation upon
infection with TMEV (Masaki et al. 2019).

Patients of the genetic disorder cystic fibrosis (CF) typi-
cally present chronic inflammation in their lungs. Inter-
estingly, CF patients display the accumulation of protein
aggregates in their airways hinting to a possible role of pro-
tein clearance mechanisms such as autophagy (Brockman
et al. 2017; Luciani et al. 2010). CF is caused by mutations
in the cystic fibrosis transmembrane conductance regula-
tor (CFTR) (Ratjen and Doring 2003). In 2010, Luciani
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and colleagues linked defective CFTR with dysfunctional
autophagy and reduced clearance of aggresomes (Luciani
et al. 2010). Since then, many studies sought to understand
the link between CFTR and autophagy to develop thera-
peutic approaches. Targeting macroautophagy by silencing
BAGS3, a co-chaperone that mediates selective macroau-
tophagy, corrects trafficking defects caused by the disease-
related F508del-CFTR mutant variant. A similar effect was
reported for other disease-causing mutations in CFTR, i.e.,
G85E, R560T and N1303K. Although targeting the UPS
by silencing BAG1 also has beneficial effects, targeting
autophagy provides more promising results (Hutt et al.
2018).

Clinical trials on proteolytic systems
to prevent protein aggregation

One of the challenges for the clinical treatment of pro-
teinopathies is the selection of targets and drugs. The UPS,
autophagy, and the aggregating proteins themselves might be
a potential target for disease intervention (please see Table 2
for a summary of clinical trials and preclinical studies dis-
cussed in this section). Furthermore, the rationale on how a
drug would affect the course of the disease is also different
for cancer and neurodegeneration. Regarding cancer, the pri-
mary goal is to prevent protein clearance mechanisms from
functioning properly with the aim to induce a proteostasis
collapse in malignant cells, leading to reduced proliferation
and invasion (Almond and Cohen, 2002; Crawford et al.
2011; Liu et al. 2020a,b,c; Manasanch and Orlowski 2017;
Mulcahy Levy et al. 2017; Mulcahy Levy and Thorburn
2020). In neurodegenerative diseases that involve protein
inclusions, many approaches seek to upregulate or rescue
protein clearance systems to prevent pathological protein
aggregation (Corti et al. 2020; Menzies et al. 2017; Nah
et al. 2015; Schmidt et al. 2021; Watanabe et al. 2020). As
ongoing therapies and clinical trials for cancer have been
discussed in previous sections, here we will focus on inter-
ventions that could alleviate neurodegenerative diseases.
The disparities between the pathophysiology of distinct pro-
teinopathies led to exploring many different types of inter-
ventions for preventing protein aggregation (Arosio et al.
2014; Hyun and Shin 2021; Lashuel 2021; Salahuddin et al.
2021). Such interventions can be classified as antibodies,
protein stabilizers, nanoparticles, sequestering monomers
and small molecule inhibitors of aggregation.
Immunization with antibodies against toxic protein aggre-
gates provided promising results in preclinical studies. An
early study demonstrated that immunization against Ay,
reduces neuronal Af-plaque deposition and ameliorates
behavioral deficits in AD mouse models that overexpress
human APP (Schenk et al. 1999). Two further independent
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Table 2 List pre-clinical and clinical trials to prevent protein aggregation and ameliorate neurodegenerative diseases

Disease Agent

Effect

Clinical Phase

Trials

Publication

AD Immunization against Ap42 Reduced neuronal Pre-Clinical — —/- Schenk et al. (1999)
Ap-plaque deposition;
ameliorates behavioral
deficits
AD Curcumin Prevent aggregation of tau, Pre-Clinical — —/- Pandey et al. (2008), Rane
AP and a-syn et al. (2017), Sharma and
Nehru (2018), Yang et al.
(2005)
AD Aducanumab Monoclonal antibody Approved NCT02484547 Dunn et al. (2021)
targeting Ap
AD Tafamidis meglumine Prevents amyloidogenesis ~ Approved —/— Unpublished
AD sulforaphane /- Recruiting NCT04213391 Unpublished
AD Rapamune /- Early phase 1 NCT04200911 Unpublished
AD Trehalose /- Phase 1 NCT04663854 Unpublished
AD Curcumin No clinical or biochemical  Phase 2 NCT00099710 Ringman et al. (2012)
improvements
AD Epigallocatechin-Gallate Prevents the aggregation of Phase 2 NCT00951834 Unpublished
beta-amyloid
AD Lithium Carbonate Mitigated cognitive decline; Phase 2 NCTO01055392 Forlenza et al. (2019)
modified AD-related CSF
biomarkers
AD Methylene blue; TRx0014  Improvement of cognitive ~ Phase 2 NCT00515333 Wischik et al. (2015)
function
AD Rapamycin —/— Phase 2 NCT04629495 Unpublished
AD 5-HT6 antagonist; Improvement of cognitive ~ Phase 2 NCT00348192; Maher-Edwards et al. (2015,
SB-742457 function NCT00710684; 2010)
NCT00708552
AD Hydralazine hydrochloride = —/— Phase 3 NCT04842552 Unpublished
AD Leucomethylene blue; /- Phase 3 NCT03446001
TRx0237
AD Leucomethylene blue; Reduced brain atrophy Phase 3 NCT01689246 Wilcock et al. (2018)
TRx0237
ALS Colchicine —/— Phase 2 NCT03693781 Cadwell (2016), Mandrioli
et al. (2019), Zhao et al.
(2015)
ALS Rapamycin /- Phase 2 NCT03359538 Unpublished
ALS Tamoxifen Moderate effects on ALS Phase 2 NCT02166944 Chen et al. (2020)
score of functional scale
PD Nilotinib Improved cognitive and Early Phase 1 NCT02281474 Pagan et al. (2016)
motor functions
PD Ambroxol Improvement of cognitive ~ Phase 2 NCT02914366; Mullin et al. (2020)
function NCT04388969
PD Nilotinib No symptomatic benefits Phase 2 NCT03205488 Simuni et al. (2021)

The disease, molecular agent and its effects as well as the clinical trial status are indicated. Trial numbers derived from clinicaltrials.gov

studies supported these findings, boosting the confidence in
immunization studies (Janus et al. 2000; Morgan et al. 2000).
A potential explanation for these beneficial effects is that
antibodies promote the clearance of amyloid plaques through
phagocytosis mediated by Fc receptor, which is a surface
protein found in many different types of immune cells (Bard
et al. 2003; Salahuddin et al. 2021). Unfortunately, these
studies came to a halt when early clinical trials resulted in

serious side effects, including a death due to meningoen-
cephalitis (NCT00021723) (Neugroschl and Sano 2010). In
June 2021, the United States Food and Drug Administration
(FDA) approved aducanumab, a monoclonal antibody target-
ing AP in brains of patients in early stages of AD, providing
a new hope for immunization against proteinopathies (Dunn
etal. 2021). A similar immunization strategy was also inves-
tigated for aggregated SOD1 in ALS. Active immunization
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against human SOD1%%*A induced the clearance of SOD1 in
the spinal cord of mice expressing SOD1%*"R and extended
their lifespan by more than 4 weeks. However, it only con-
ferred protection for SOD19%3A- expressing mice by passive
immunization, but not by active immunization (Urushitani
et al. 2007). Different studies for developing a vaccine using
either wild-type SOD1 or disease-related variants of SOD1
showed extension in lifespan and delay in disease progres-
sion (Takeuchi et al. 2010; Zhao et al. 2019). Yet, no clinical
trials have been conducted for SOD1 immunization.
Protein stabilizers can be described as other proteins, pep-
tides or small molecules that bind to a protein and prevent
it from unfolding or aggregation. For instance, phthalocya-
nine tetrasulfonate (PcTs) can interact with the N-terminal
region of a-syn, leading to its stabilization through salt
bridges and n—x stacking interactions (Bisi et al. 2021; Lee
et al. 2004). Importantly, PcTs can reduce cell death, fibril
formation and amyloidosis induced by wild-type or mutant
a-syn (Fonseca-Ornelas et al. 2014; Lamberto et al. 2009;
Lee et al. 2004). Although PcTs also appear to prevent
the formation of aggregates from PrP, Ap and tau, it has
not been investigated in clinical trials (Valiente-Gabioud
et al. 2016). Tafamidis meglumine is a successful protein
stabilizer that has been translated into a drug for disease
intervention. Particularly, it was developed as a stabilizer
for transthyretin (TTR), a serum transport protein. Under
physiological conditions, TTR transports thyroid hormone
T4 and retinol bound to retinol-binding protein as a tetramer
complex. Certain mutations destabilize TTR tetramers and
leads to its amyloidogenesis, which can cause rare diseases
such as amyloid cardiomyopathy, senile systemic amyloido-
sis and amyloid polyneuropathy (Ruberg and Berk 2012).
Tafamidis meglumine prevents TTR tetramer dissociation
and the subsequent amyloidogenesis (Connelly et al. 2010).
After successfully passing phase II and III of clinical trials,
it was approved by FDA for treatment of TTR amyloidosis.
Regarding nanoparticles, this approach has several advan-
tages over small molecules such as their ability to pass
through blood—brain barrier (BBB) as well as their flexibil-
ity in size, charge and release rate of their cargo (Mudshinge
et al. 2011; Patra et al. 2018). Many nanoparticles with dif-
ferent loads have been investigated for modifying distinct
disease-related changes, such as mitochondrial dysfunction,
inflammation and excitotoxicity, but here we will focus on
nanoparticles and nanobodies targeting protein aggrega-
tion (Baskin et al. 2021; Mushtaq et al. 2015; Wang et al.
2020a,b). An example is epigallocatechin gallate (ECGC),
a polyphenol which reduces the formation of a-syn aggre-
gates in cell-free environments, in vitro cultured neurons and
animal models (Bieschke et al. 2010; Caruana et al. 2011;
Kurnik et al. 2018; Xu et al. 2017). However, ECGC fell
short of a successful clinical trial because its high hepa-
totoxicity and inefficacy in patients with multiple system
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atrophy (NCT02008721) (Levin et al. 2019). This could be
partly attributed to poor blood—brain barrier penetration
of ECGC, and inefficient uptake by dopaminergic neurons
(Baskin et al. 2021). Li et al. addressed this issue using
self-assembled B6 nanoparticles, which are peptides with a
high affinity for transferrin receptor, coated with ECGC and
mazindol, a drug with high affinity for dopamine transporter.
Nanoparticle-delivered ECGC successfully accumulated
in substantia nigra, and improved behavioral deficits and
biomarkers in a mouse model of PD when compared with
free ECGC (Li et al. 2018). In addition to PD, nanoparticles
were also investigated as a potential approach to modify
disease-related protein aggregation in AD. In a recent study,
Zhang and colleagues described IS @NP/KH, a bifunctional
nanoparticle made of chitosan which is coated with both
an Ap oligomer-binding peptide and a brain-targeting pep-
tide. Nasal administration of IS@NP/KH to APP/PS1 mice,
which express both mutant APP and presenilin, attenuates
cognitive decline, improved motor function and decreased
amyloid plaques in the brain (Zhang et al. 2021c). In addi-
tion to multiple system atrophy, ECGC has also been inves-
tigated as a treatment for different aggregation pathologies.
A phase II trial using ECGC for treating light-chain amyloi-
dosis failed to demonstrate the efficacy of ECGC on improv-
ing the prognosis of the disease (Meshitsuka et al. 2017).
Furthermore, two different phase II trials using ECGC for
HD (NCT01357681) and AD (NCT00951834) have been
completed, but their results are yet to be published.

Among small molecules, curcumin is a potential treat-
ment to ameliorate protein aggregation. Curcumin is a
natural phenol which can prevent aggregation of tau, Af
and a-syn in cell-free conditions, both in vitro and in vivo
(Pandey et al. 2008; Rane et al. 2017; Sharma and Nehru
2018; Yang et al. 2005). Unfortunately, the preclinical
success of curcumin did not warrant positive clinical out-
comes. A phase II study on AD patients showed no clinical
or biochemical improvements of subjects after 24 weeks of
curcumin administration (NCT00099710) (Ringman et al.
2012). Although the potential effects of curcumin on other
proteinopathies are yet to be explored in a clinical context,
it presents a challenge due to its inadequate efficacy ensued
from low bioavailability (Anand et al. 2007). Methylene
blue (MB) and leucomethylene blue (LMTM) has been long
known to inhibit the formation of tau and a-syn aggregates.
As such, these compounds can improve behavioral deficits
in mice models of tau and a-syn aggregation (Masuda et al.
2006; Melis et al. 2015; Schwab et al. 2018; Taniguchi et al.
2005; Wischik et al. 1996). A phase II study using MB for
treating mild or moderate AD showed the potential of MB
to improve cognitive function in AD patients after 24 weeks
of treatment (NCT00515333) (Wischik et al. 2015). A
phase III study demonstrated that LMTM can reduce brain
atrophy in patients after 9 months of drug administration
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(NCT01689246) (Wilcock et al. 2018). As of August 2021,
another phase III trial is being conducted to assess the safety
and efficacy of LMTM on AD patients (NCT03446001).

Due to a lack of availability of compounds that can acti-
vate the proteasome machinery, interventions to modulate
autophagy through small molecules are in more advanced
phases. For instance, 5-hydroxytryptamine receptor 6
(5-HT6) antagonists have gained attention as potential
candidates for AD treatment. Interestingly, 5-HT6 antag-
onists increase mTOR activity, and theoretically should
suppress autophagy (Meffre et al. 2012). Phase II trials
(NCT00348192; NCT00710684; NCT00708552) using a
5-HT6 antagonist, SB-742457, only showed slight improve-
ments in cognition of AD patients (Maher-Edwards et al.
2010, 2015). Likewise, lithium could not induce changes
in the concentration of cerebrospinal fluid (CSF)-derived
biomarkers and did not improve cognitive functions of AD
patients in a 10-week treatment regimen (ISRCTN72046462)
(Hampel et al. 2009). However, a 2-year treatment with lith-
ium of patients with amnestic mild cognitive impairment
(NCT01055392) mitigated their cognitive decline and also
modified AD-related CSF biomarkers (Forlenza et al. 2019).
Nonetheless, autophagy induction for AD treatment is still a
promising approach. In these lines, different clinical studies
using rapamycin (NCT04629495; NCT04200911), trehalose
(NCT04663854) and hydralazine (NCT04842552) are cur-
rently active with some of them still being in the recruitment
stage.

Nilotinib, an inhibitor of tyrosine kinase Abelson
(c-Abl), was tested as a disease-modifying compound due
to its enhancing effects on autophagy through activation of
the kinase AMPK (Hussain et al. 2019; Karim et al. 2020;
Karuppagounder et al. 2014; Yu et al. 2013). Particularly,
inhibition of c-Abl via Nilotinib may have beneficial effects
on PD patients. Induction of c-Abl can lead to the phospho-
rylation and inhibition of parkin E3 ligase activity, resulting
in the accumulation of Parkin Interacting Substrate (PARIS)
(Shin et al. 2011). The toxic increase of PARIS subsequently
leads to mitochondrial dysfunction and loss of dopaminergic
neurons (Shin et al. 2011). An early phase I trial of Nilotinib
(NCT02281474) with 12 patients presented favorable but
transient effects on PD patients. In this trial, patients were
treated with either 150 mg or 300 mg of Nilotinib daily for
24 weeks. Whereas cognitive and motor functions improved
transiently, they deteriorated again for both groups once the
treatment was discontinued. In addition, the treatment group
had serious adverse events such as urinary tract infection,
pneumonia, myocardial infarct and psychotic symptoms
which required further studies to clarify the potential thera-
peutic effects of Nilotinib (Pagan et al. 2016). A phase II
trial with 76 participants (NCT03205488) revealed that
Nilotinib did not provide any symptomatic benefits to PD
patients. Furthermore, they confirmed that the penetrance of

the drug in the CSF was low and that the levels of dopamine
metabolites were unchanged (Simuni et al. 2021).

The medication Ambroxol is also a potential therapeutic
approach for PD. Since Ambroxol has mucolytic activity, it
is typically used as a pharmacological chaperone for airway
diseases (Su et al. 2004). Interestingly, Ambroxol indirectly
enhances autophagy by raising the levels of GCase which in
turn decreases the levels of a-syn. Treatment with Ambroxol
results in increased LC3-II levels and lysosomal content
(Choi et al. 2018; Magalhaes et al. 2018; Moors et al. 2017).
A phase II trial on a small cohort of 17 PD patients dem-
onstrated that Ambroxol treatment for 6 months improved
their cognitive functions. Although the results are promis-
ing, this was a non-randomized, non-controlled trial which
requires further investigation (Mullin et al. 2020). Two addi-
tional studies aiming to elucidate the effects of Ambroxol on
PD pathology are in the recruitment stage (NCT02914366;
NCT04388969).

To enhance protein clearance mechanisms in ALS,
Chen and colleagues recently used Tamoxifen in a phase
II critical trial (NCT02166944) (Chen et al. 2020). Tamox-
ifen is an anti-cancer drug that binds to estrogen recep-
tor and inhibits cancer cell growth (Goodsell 2002; Shiau
et al. 1998). Tamoxifen can also upregulate autophagy
through both mTOR-dependent and -independent path-
ways (Cho et al. 2012; Kaverina et al. 2018; Torres-Lopez
et al. 2019). In their randomized double-blind trial, Chen
et al. could only detect modest and transient effects of
Tamoxifen treatment for 12 months. The decline in score
of functional scale for ALS (ALSFRS-R) was slower in
Tamoxifen-treated group for the first 6 months, but after
12 months the ALSFRS-R scores were identical between
placebo and Tamoxifen-treated groups (Chen et al.
2020). Mandrioli and colleagues are currently recruiting
patients with sporadic ALS for a phase II clinical trial
(NCT03693781) using Colchicine, an anti-inflammatory
drug. Besides its anti-inflammatory effects, Colchicine
increases the mRNA and protein levels of the heat shock
protein B8 (HSPBS8). HSPBS is a component of the chap-
erone-assisted selective autophagy machinery that pro-
motes the removal of ALS-related variants of SOD1 and
TDP-43 as well as aggregation-prone dipeptides derived
from mutant C9orf72 (Crippa et al. 2016; Cristofani et al.
2017, 2018). Similar to other neurodegenerative diseases,
the activation of inflammasome complexes in microglia
and astrocytes in response to protein aggregation causes
neuroinflammation that contributes to the neurodegenera-
tion characteristic of ALS (Cadwell 2016; Mandrioli et al.
2019; Zhao et al. 2015). Since autophagy can downregu-
late the inflammasome activity triggered by aggregation
of disease-related proteins, compounds such as Colchicine
that target both neuroinflammation and autophagy are a
promising approach for ALS treatment (Cadwell 2016;
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Mandrioli et al. 2019; Zhao et al. 2015). Another phase
IT study (NCT03359538) started in 2017 is assessing the
effects of rapamycin-induced autophagy on ALS patients.
Recently, this clinical trial completed primary data collec-
tion. However, the results are not yet publicly available.

Clinical data using molecules targeting UPS as a treat-
ment for proteinopathies are much more limited. As men-
tioned above, IU1, an inhibitor of DUB activity of USP14,
was reported to increase proteasomal degradation of sev-
eral disease-related proteins (Lee et al. 2010). However,
there are no clinical trials investigating the efficacy of
IU1 for neurodegenerative diseases. On the other hand,
a proteasomal enhancer sulforaphane is in early clinical
phases. Notably, sulforaphane enhances the three proteo-
lytic activities of the proteasome, i.e., chymotrypsin-like,
caspase-like and trypsin-like activities in the brains of
mice (Liu et al. 2014). Currently, a clinical trial conducted
by Zhejiang University is in the recruitment phase for AD
patients to assess the therapeutic potency of sulforaphane
(NCT04213391).

Conclusions

Proteinopathies are complex, multifaceted diseases that
lead to or exacerbate neurodegenerative and immune
system disorders as well as cancer (Grimaldi et al. 2018;
Kanapathipillai 2018; Kumar et al. 2016; Yang-Hartwich
et al. 2015a,b). Although the clearance of damaged and
aggregated proteins proves to ameliorate neurodegenera-
tive disease-related changes in cellular and organismal
models, a complete understanding of their regulatory
mechanisms and how they can be modified to prevent dis-
ease is far from understood. Having discrete models of
such proteinopathies is a first step, but researchers bear in
mind that a single model cannot encapsulate all the aspects
of a disease. This is evident by distinct models of neuro-
degenerative diseases responding differently to the same
drug regimens (Fornai et al. 2008; Kim et al. 2011; Piz-
zasegola et al. 2009; Yong et al. 2011). Further combined
endeavors from basic science and translational approaches
will continue elucidating potential mechanisms for treating
proteinopathies.
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