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Abstract

Detecting protein complexes from protein-protein interaction (PPI) networks is a challenging task in computational biology.
A vast number of computational methods have been proposed to undertake this task. However, each computational
method is developed to capture one aspect of the network. The performance of different methods on the same network
can differ substantially, even the same method may have different performance on networks with different topological
characteristic. The clustering result of each computational method can be regarded as a feature that describes the PPI
network from one aspect. It is therefore desirable to utilize these features to produce a more accurate and reliable
clustering. In this paper, a novel Bayesian Nonnegative Matrix Factorization(NMF)-based weighted Ensemble Clustering
algorithm (EC-BNMF) is proposed to detect protein complexes from PPI networks. We first apply different computational
algorithms on a PPI network to generate some base clustering results. Then we integrate these base clustering results into
an ensemble PPI network, in the form of weighted combination. Finally, we identify overlapping protein complexes from
this network by employing Bayesian NMF model. When generating an ensemble PPI network, EC-BNMF can automatically
optimize the values of weights such that the ensemble algorithm can deliver better results. Experimental results on four PPI
networks of Saccharomyces cerevisiae well verify the effectiveness of EC-BNMF in detecting protein complexes. EC-BNMF
provides an effective way to integrate different clustering results for more accurate and reliable complex detection.
Furthermore, EC-BNMF has a high degree of flexibility in the choice of base clustering results. It can be coupled with existing
clustering methods to identify protein complexes.

Citation: Ou-Yang L, Dai D-Q, Zhang X-F (2013) Protein Complex Detection via Weighted Ensemble Clustering Based on Bayesian Nonnegative Matrix
Factorization. PLoS ONE 8(5): e62158. doi:10.1371/journal.pone.0062158

Editor: Vladimir N. Uversky, University of South Florida College of Medicine, United States of America

Received December 24, 2012; Accepted March 18, 2013; Published May 2, 2013

Copyright: � 2013 Ou-Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This project was supported in part by National Natural Science Foundation of China (NSFC) (11171354), the Ministry of Education of China (SRFDP-
20120171110016). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: stsddq@mail.sysu.edu.cn

Introduction

Protein-protein interactions (PPI) are fundamental to the

biological processes within cells [1]. Most proteins form complexes

to carry out biological tasks [2]. Protein complexes can help us to

predict the functions of proteins [3,4]. There is evidence that many

disease mechanisms involve protein complexes [5]. Therefore, in

the post-genomic era, predicting protein complexes is crucial. To

address this problem, several biological experimental methods

have been developed for detecting protein complexes. For

instance, Tandem Affinity Purification (TAP) with mass spec-

trometry [6] can capture stable protein complexes, whereas

Protein-fragment Complementation Assay (PCA) [7] can be used

to study temporal and spatial dynamics of protein interactions.

However, as mentioned in [2,8], these methods have some

inevitable limitations such as too much time consuming. Due to

these experimental limitations, it is quite necessary to develop

computational approaches which can be acted as useful comple-

ments to the experimental methods for detecting protein

complexes.

Recently, high-throughput methods such as two-hybrid sys-

tems[9] and mass spectrometry [10] have been developed to detect

a large amount of protein interactions, which enable the

construction of PPI networks and make it possible for us to

understand the cellular organization from the network level. A PPI

network can be generally modeled as an undirected graph, where

nodes represent proteins and edges represent pairwise interactions.

Previous studies analyzed the graph topology of PPI networks and

discovered that dense regions of the network may represent

complexes [11–13]. These observations indicate the rationality of

identifying protein complexes by detecting clusters from a PPI

network.

In recent years, a vast number of computational approaches

based on graph clustering have been applied to PPI networks for

protein complexes identification. These graph clustering algo-

rithms mainly depend on the structure topology analysis of PPI

networks to identify protein complexes, which can be roughly

divided into three categories: density-based approaches, graph

partition-based approaches and hierarchical clustering algorithms.

Several comprehensive reviews can be found in [2,8,14,15]. The

clustering result of a graph clustering algorithm is a set of clusters.

In PPI networks, these clusters correspond to two types of

modules: protein complexes and functional modules. A protein

complex is a group of proteins that interact with each other at the

same location and time. A functional module consists of proteins
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that participate in the same biological process or perform the same

cellular function while binding each other at the same or different

location and time [2,15]. Here, we do not distinguish protein

complexes from functional modules since we only use the PPI

network as the underlying dataset for the mining task and the

protein interaction data under consideration do not provided

temporal and spatial information.

Unfortunately, due to the complex structure of the PPI network,

the inner structure of protein complexes is still elusive. Given a PPI

network, different protein complex identification algorithms may

obeys different optimization criteria and yield diverse clustering

results since each of them has been developed to capture one

aspect of the network and neglect other network properties.

Furthermore, the observed PPI networks obtained from high-

throughput methods are quite noisy and therefore they may not

represent the real situation. The performance of each protein

complex identification algorithm heavily depends on network

characteristics.

In fact, it is hard to find a protein complex identification

algorithm that can generally work well for various networks with

diverse properties [16]. Each algorithm has its own advantages

and limitations: density-based approaches focus on detecting

densely connected subgraphs in PPI networks. A typical example

in this category is CFinder [17] which detects the k-clique

percolation clusters as complexes. However, true complexes in the

organism are not limited to densely connected substructures [1].

As pointed out by Qi et al. [1], complexes with sparsely connected

substructures also exist in the PPI network. Therefore, traditional

density-based approaches may ignore many biological meaningful

complexes with low density. Additionally, due to the lack of global

measurement, density-based algorithms can not produce satisfac-

tory results. Graph partition-based approaches such as MCL [18]

and RNSC [19] explore the best partition of a network. These

algorithms are not able to discover overlapping complexes since

they only support hard clustering. However, it is generally

accepted that some proteins may perform different biological

functions while interacting with different partners. Thus graph

partition-based approaches cannot accurately capture the real

structure of complexes in PPI networks. Hierarchical clustering

algorithms [20,21] can discover the hierarchical structure in a PPI

network, which is important for understanding the global structure

of functional organization. However, both bottom-up and top-

down hierarchical approaches are sensitive to noisy data, whereas

it is well known that the interaction data obtained from high-

throughput methods may be quite noisy and contain a consider-

able fraction of false positives [22]. Furthermore, like graph

partition-based approaches, hierarchical approaches cannot gen-

erate overlapping clusters [23] either.

In order to generate more reliable solutions, protein complexes

identification algorithms should ideally exploit all features of the

network and account for properties of the partitions, like overlaps

and hierarchy. However, very few algorithms are capable of taking

all these factors into consideration [24]. Note that the clustering

result of each algorithm can be regard as a feature of the PPI

network, which describes the network from one aspect. A natural

question is whether we can utilize these features. Thus, we study a

basic problem in this paper: provided that a PPI network is

described by several clustering results computed from different

computational methods, how to integrate these clustering results

for accurate and reliable complex detection?

Ensemble clustering [25,26] is a well known data analysis

technique to address this problem. In machine learning literature,

ensemble clustering has been proposed as an effective approach to

strengthen the quality of simple clustering algorithms. There are

reasons to believe that ensemble clustering may benefit from the

integration of base clustering results. Hence, we would like to

apply ensemble clustering to detect protein complexes in PPI

networks. In this paper, the base clustering results are obtained

from the application of different protein complex identification

algorithms on the same PPI network. However, most existing

ensemble clustering algorithms focus on naive combination

frameworks. That is, they treat each base clustering result equally.

But given a PPI network, some clustering results may be more

reliable while others may be less reliable. Thus, different base

clustering results should not be treated equally.

In light of the aforementioned challenges, to effectively utilize

the information contained in different clustering results, we

introduce a weighted ensemble approach which assigns a weight

to each base clustering result. But there is not prior information to

decide the values of these weights. Inspired by agglomerative fuzzy

k-means clustering algorithm [27] and ensemble manifold

regularization [28], we would like to automatically determine

the values of these weights through an optimization process such

that the ensemble clustering can produce better quality solution.

Clustering analysis by nonnegative matrix factorization (NMF)

[29] has achieved remarkable progress in the past decade.

Recently, it has been employed in cancer class discovery and

gene expression analysis [30]. As a matrix decomposition

techniques, NMF produces a low-dimensional approximation of

a nonnegative matrix, in the form of nonnegative factors, which

can be formulated as O~XY . The nonnegativity of these factors

allow them to be interpreted as a soft clustering of the data. As a

clustering algorithm, how to estimate the optimal number of

clusters (columns of X or rows of Y) is still a serious issue for NMF.

Tan and Févotte [31] formulated a Bayesian approach to

determine the effective number of columns of X (or rows of Y)

via automatic relevance determination [32]. Recently, Psorakis et

al. [33] applied this model on social networks for community

detection. Compared with the previous algorithms, Bayesian NMF

model has several advantages: first, each node is associated with a

membership distribution over communities, which represent its

propensity of belonging to each community. Therefore, it supports

the overlap between communities. Second, it does not suffer from

the resolution limit. Third, it is easy to implement and fast enough

for large data sets. However, simple application of Bayesian NMF

model on PPI networks may not obtain competitive results since

many protein interactions detected by high-throughput methods

may be false positives which will mislead the detection of

complexes.

With these motivations, in this paper, we propose a novel

Bayesian Nonnegative Matrix Factorization-based weighted En-

semble Clustering (EC-BNMF), for the purpose of identifying

protein complexes. EC-BNMF can integrate multiple clustering

results (features) of a PPI network and produce a more accurate

and informative clustering. In addition, EC-BNMF allows proteins

to be shared among complexes, which is much closer to the reality.

By applying EC-BNMF on four yeast PPI networks, we show that

EC-BNMF has competitive performance with the state-of-the-art

algorithms in detecting protein complexes. Furthermore, the

experimental results well verify the effectiveness of EC-BNMF in

detecting multi-functional proteins.

Related Works
In recent years, several approaches based on ensemble

clustering have been applied to PPI networks for the purpose of

detecting protein complexes [34,35]. To weight edges of the PPI

network and measure the reliability of the corresponding

interactions, Asur et al. [34] first introduced two similarity

Protein Complex Detection
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metrics-clustering coefficient-based metric and betweenness-based

metric. After improving the quality of the data, they used three

conventional graph partition-based algorithms-repeated bisec-

tions, direct k-way partitioning and multilevel k -way partitioning

to generate six base clustering results. These base clustering results

all consist of k clusters, here k was the predefined number of

clusters of each base clustering. Then they described two different

techniques-pruning and weighting to eliminate noisy clusters.

Finally, they developed a consensus method based on principal

component analysis to solve the clustering problem. In order to

discover multi-functional proteins, they also designed an adapta-

tion to allow for soft clustering. However, the base clustering

algorithms are all partition-based methods. Thus they may not be

able to fully capture the structure of the network, and their

performance may heavily depends on the quality of the two

similarity metrics. What is more, the base clustering algorithms

and the consensus algorithm all need to predefine the number of

clusters, but the true number of complexes is always unknown.

Another ensemble framework for detecting protein complexes

was proposed by Greene et al. [35]. With different number of

dimensions, they first generated a collection of non-negative

matrix factorizations. Then they proposed a hierarchical meta-

clustering algorithm to aggregate these factorizations and produce

a disjoint hierarchy of meta-clusters. Finally, they transformed

these results into a soft hierarchical clustering of the original

dataset. Most recently, Lancichinetti and Fortunato [36] presented

a systematic study of consensus clustering in complex network.

They demonstrated that consensus clustering can be used to cope

with the stochastic fluctuations in the results of clustering

techniques. Given a network G and a clustering algorithm S, they

first applied S on G np times and obtained np partitions. Then they

computed a consensus matrix D which was based on the

cooccurrence of nodes in clusters of the base partitions. After

filtering out small entries in D, they applied S on D np times and

produced np partitions again, which could generated a new

consensus matrix. The procedure is iterated until a unique

partition is reached, which cannot be altered by further iterations.

Both these two algorithms focus on generating more accurate and

stable results out of a set of partitions delivered by a specific

method. Greene et al. developed an algorithm to identify protein

complexes from several clustering results, but they did not do

selection among base clustering results. Whereas Lancichinetti and

Fortunato extracted reliable information from base clustering

results and used the original algorithm to detect communities.

Methods

Given a PPI network with N proteins, we use an undirected

simple graph G~(V ,E) with a set of nodes V and a set of edges E

to model it, where nodes represent proteins and edges represent

pairwise interactions. The graph can be represented by an

adjacency matrix A, where Ai,j~1 if there is an edge between

protein i and j, and Ai,j~0 otherwise. In this way, the problem of

detecting protein complexes is cast into clustering the nodes into

groups.

The task of ensemble clustering is to obtain a comprehensive

consensus clustering by integrating np diverse and independent

clustering results (here we call them base clustering results):

B~fB1,B2, . . . ,Bnpg. Each base clustering result Bq is generated

by a computational algorithm (here we call them base clustering

algorithms). As some of the base clustering results do not cover all

proteins in the PPI network (i.e., MCODE), we set each of the

unclustered proteins to be a singleton cluster. Therefore, each base

clustering result contains all of the proteins in the PPI network.

Given a PPI network, there are several ways to obtain a collection

of clustering results. They can be generated by a given approach

with different initializations, or from different approaches.

In this section, we propose a novel Bayesian Nonnegative

Matrix Factorization-based weighted Ensemble Clustering (EC-

BNMF) to perform efficient protein complexes detection. EC-

BNMF consists of two phases: a generation phase which extracts

useful information from several base clustering results and

generates an ensemble PPI network, and a complex detection

phase in which a Bayesian NMF-based ensemble clustering is

employed to detect protein complexes from the ensemble PPI

network. The flow-chart of the algorithm is shown in Figure 1.

Constructing an ensemble PPI network
Given an original PPI network and a collection of base

clustering results, the goal of this phase is to extract useful

information from these data. Here, each base clustering result is

regarded as a ‘‘feature’’ of the original PPI network, which

provides a description of this network. In order to analyze these

‘‘features’’ from network perspective, we construct a feature

network through each base clustering result. In each feature

network, two proteins are connected if they have cooccurred in the

same cluster at least once. Therefore, if we buy the popular

definition of protein complexes as subgraphs with a high internal

edge density and a low external edge density, it is easy to identify

protein complexes from the feature network since it just consists of

a set of fully connected subgraphs. Furthermore, since the original

PPI network contains important information, we also treat the

original PPI network as a feature network. In this way, we obtain

np feature networks that describe the original PPI network from

different aspect.

We use a feature matrix Dq to represent the adjacency matrix of

the q-th feature network. According to the definition of the feature

network, each entry of Dq denotes whether the corresponding pair

of proteins has been clustered together. Thus Dq is a block-

diagonal matrix after some permutations (except the adjacency

matrix of the original PPI network). As mentioned above, the goal

is to extract useful information from these feature networks and

generate an ensemble PPI network that is rich in information.

Thus the task is turned into the problem of combining these

feature matrices into an ensemble matrix W which corresponds to

an ensemble PPI network. To effectively utilize the information

provided by these feature networks, we propose a novel weighted

combination framework to generate the ensemble PPI network.

We hope that the ensemble PPI network can approximate the

intrinsic of the original PPI network, thus we propose an

alternative approach by assuming that the ensemble PPI network

is a weighted combination of these feature networks. The above

assumption is equivalent to the following constrain:

W~

X

np

q~1

uqDq, s:t:
X

np

q~1

uq~1, uq§0 for q~1,2, � � � ,np: ð1Þ

Here W is an ensemble matrix corresponding to the ensemble

PPI network, and U~½uq�
np
q~1 is a vector of weights. Therefore,

the problem of generating an ensemble PPI network is turned into

the problem of learning the optimal linear combination of the

feature matrices.

In order to avoid the parameter U overfitting to one feature

network (one of the feature networks is weighted at 1 and all other

feature networks are weighted at 0), we introduce a regularization
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term R~
Pnp

q~1 uq log (uq) which represents the sum of the

negative entropy of the weight for each feature matrix. It can

penalize solutions with maximal weight on a single feature

network. We will later show how to automatically estimate the

optimal weights.

Detecting protein complexes from the ensemble PPI
network via Bayesian NMF-based clustering algorithm
It is worthy to stress that Wi,j represents the evidence provided

by base clustering results that protein i and j belong to same

complexes. Therefore, in the ensemble PPI network, the stronger

the interaction between two proteins, the more likely they perform

the same biological functions. In other words, if two proteins have

strong interaction, they have high propensities on the same

complexes. Based on the characteristics of the ensemble PPI

network, we develop a Bayesian NMF-based clustering algorithm

to detect protein complexes from this network, which can utilize

the group information provided by the edges. In this section, we

outline the main idea of this algorithm.

Assuming we have obtained the ensemble matrixW through the

generation phase, then the task is to detect protein complexes from

the ensemble PPI network to which W corresponds. In other

words, given a protein, we attempt to exploit the groups it belongs

to. Since such group memberships are always unknown, we can

only infer them from the observed network. Here, each entry Wi,j

of W denotes the nonnegative count of interactions between

proteins i and j. Suppose there are K complexes in the PPI

network. For each protein i, similar to [33], we introduce a

parameter hi,z to indicate the strength of protein i’s membership of

complex z. A higher value of hi,z means protein i is more likely in

complex z. The important point is that protein i may have high

value of hi,z on more than one complexes, thus our method allows

proteins to belong to multiple complexes. Furthermore, not all of

the complexes need to have proteins associated with them, hence K

just represents the upper bound on the number of complexes.

Let H~½hi,z� be the protein-complex propensity matrix.

According to the definition of hi,z, the value of
PK

z~1 hi,zhj,z
represents the possibility of protein i and j belong to the same

complexes. As we have mentioned above, the value of Wi,j also

represents the evidence that protein i and j should be clustered

together. Therefore, the pair-wise interactions described in W are

affected by these unobserved nonnegative parameters which can

be described as Q~HHT , where H[R
N|K
z

. Each element hi,zhj,z
indicates the contribution of complex z to Qi,j . Similar to

[31,33,37], we assume that the likelihood of a single element

Wi,j of the matrix W is given by P(Wi,j jQi,j),

whereP(xjh)~e{hhx=C(xz1) is the Poisson probability density

function with rate h.

In practice, given a network, the number of complexes is

initially unknown. To ameliorate this problem, as presented in

[31,33,37], we place automatic relevance determination [32]

priors b~½bz� on the columns of H. The effect of these priors is to

Figure 1. Schematic overview of EC-BNMF. EC-BNMF consists of two phases: a generation phase which integrates several base clustering results
into an ensemble PPI network and a complex detection phase which accomplishes the detection of protein complexes.
doi:10.1371/journal.pone.0062158.g001
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pick up relevant columns of H that could best account for the

observed interactions.

Following the generation model described above, we write

down the probability that an ensemble PPI network is generated:

P(W jH)~P
N
i,j~1

(
PK

z~1 hi,zhj,z)
Wi,j

C(Wi,jz1)
exp {

X

K

z~1

hi,zhj,z

 !

, ð2Þ

where W is the ensemble matrix. Following the choice of [31,37],

we assign independent Half-Normal priors on each column of H

with zero mean and variance b~½bz�:

P(hi,zjbz)~HN (hi,zjbz), ð3Þ

where for x§0, HN (xjs)~(
2

ps
)1=2 exp ({

x2

2s
), and for xv0,

HN (xjs)~0. From Equation (3) we find that the elements of the

z-th column of H are associated with a variance-like parameter bz
(also known as the relevance weight), which controls the relevance

of the corresponding complex in accounting for the observed

interactions. When the value of bz is small, all the elements of the

z-th column of H are close to zero, which means this column is

irrelevant and can be removed from the factorization. Through

this filter, we obtain a more parsimonious model which indicates

the optimal number of clusters.

Similar to the model used in our previous works [38,39], the

generative model introduced above will be sensitive to the choice

of b. To alleviate this problem, under the assumption that each bz
are independent, each relevance weight bz is given an inverse-

Gamma priors which is conjugate to the Half-Normal distribution.

Therefore the joint distribution of b will be:

P(b; a,b)~P
K
z~1P(bz; a,b)~P

K
z~1IG(bzja,b)

~P
K
z~1

ba

C(a)
b{(az1)
z exp {

b

bz

� �

,
ð4Þ

where a and b are the (nonnegative) shape and scale hyperpara-

meters respectively. We set a and b to be constant for all bz. In this

way, the model may not very sensitive to the choice of a and b.

Take all these factors into consideration, we adopt a Bayesian

network model to describe the generation process of an ensemble

PPI network, and the resulting product is of the form:

P(W ,H,b)~P(W jH)P(Hjb)P(b): ð5Þ

For an ensemble PPI network, we estimate the values of H and

b by maximum the joint probability of Equation (5). By taking

Equations (2),(3) and (4) into Equation (5), and taking the negative

logarithm and dropping constants, we obtain the objective

function of Bayesian NMF-based clustering algorithm:

min
H,b

J(H,b)~{logP(W ,H,b)

~{logP(W jH){logP(Hjb){logP(b)

~{

X

N

i~1

X

N

j~1

(Wi,j log(HHT )i,j{(HHT )i,j{log(C(Wi,jz1)))

z

X

N

i~1

X

K

z~1

1

2bz
(hi,z)

2
z

N

2

X

K

z~1

logbzz
X

K

z~1

b

bz
ð6Þ

z(az1)
X

K

z~1

logbz,

s:t: H§0,

where H~½hi,z� is the protein-complex propensity matrix. A

graphical model to describe the dependence between all these

parameters are illustrated in Figure 2. Since C(1)~1 and C(2)~1,

and the value of Wi,j is between 0 and 1, we assume

C(Wi,jz1)~1 for simplicity. Therefore, the term
PN

i~1

PN
j~1 log(C(Wi,jz1)) will disappear.

Protein complex detection via Bayesian NMF-based
weighted Ensemble Clustering
Integrating the above two phases, we obtain a novel Bayesian

NMF-based weighted Ensemble Clustering algorithm. The

constructed ensemble PPI network is a weighted undirected

network and each element Wi,j of its adjacency matrix W

represents the probability of protein i and j belonging to the same

complex. Bayesian NMF model assumes that the joint member-

ship of two proteins in the same complex raises the probability of a

link existing between them. Therefore, it can effectively identify

protein complexes from the ensemble PPI network. Next, we first

introduce the objective function of Bayesian NMF-based weighted

Ensemble Clustering algorithm. Then we discuss how to optimize

this model and estimate the value of the model parameters.

Finally, we use this model to detect protein complexes from PPI

networks through the estimators of these model parameters.

Objective function of Bayesian NMF-based weighted

Ensemble Clustering. Adding the introduced regularizer R

Figure 2. Graphical representation of the dependence between
parameters. A graphical model that describes the generation process
of an ensemble PPI network with weighted adjacency matrixW in terms
of the latent structure H, the components of which are generated using
half-normal distribution with zero mean and relevance weights
b~½b1, . . . ,bK �. The rectangles are used to group random variables
that repeat. The number of repetitions is shown on the top right corner.
doi:10.1371/journal.pone.0062158.g002
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to the objective function (6), and substituting W with Equation (1),

then we present a novel weighted ensemble clustering algorithm-

Bayesian Nonnegative Matrix Factorization-based weighted En-

semble Clustering (EC-BNMF):

min
U ,H,b

J(U ,H,b)

~{

X

N

i~1

X

N

j~1

((
X

np

q~1

uq(Dq)i,j)log(HHT )i,j{(HHT )i,j)

z

X

N

i~1

X

K

z~1

1

2bz
(hi,z)

2
z

N

2

X

K

z~1

logbzz
X

K

z~1

b

bz
ð7Þ

z(az1)
X

K

z~1

logbzzl
X

np

q~1

uqlog(uq):

s:t: H§0, and
X

np

q~1

uq~1,uq§0 for q~1,2, � � � ,np:

Here coefficient l§0 is the tradeoff parameter which controls

the balance between objective function (6) and regularizer R.

Solution to Bayesian NMF-based weighted Ensemble

Clustering. Minimization of J(U ,H,b) in (7) with the con-

straints form a constrained nonlinear optimization problems. To

optimize J(U ,H,b), similar to [27], we alternately update H, b

and U. In this procedure, we first fix the values of U, and optimize

the value of H and b. Then we fix H and b, and optimize the value

of U. We repeat this alternate updating procedure until the

solution converges. In the following we describe the details.

Given U, (7) degenerates to (6), thus we minimize J(H,b) with

respect to H and b. Similar to [31,33], we adopt the multiplicative

update rule [29,40] to estimate H and b, which is widely accepted

as a useful algorithm in solving nonnegative matrix factorization

problem.

By the multiplicative update rule, we obtain the following two

updating rules for hi,l and bl :

hi,l/
hi,l

2
z

1

2
hi,l

PN
j~1

(
Pnp

q~1
uq(Dq)i,j )hj,l

PK
z~1

hi,zhj,z
PN

j~1 hj,lz
1
2bl

hi,l
, ð8Þ

and

bl/
2bz

PN
i~1 h

2
i,l

Nz2az2
: ð9Þ

After an update of the values of H and b, we fix H and b, and

turn to the update of U with respect to (7). By solving the

constrained optimization problem, we obtain the following

updating rule for uq:

uq/
exp( 1

l

PN
i~1

PN
j~1 (Dq)i,j log(HHT )i,j)

Pnp
m~1 exp(

1
l

PN
i~1

PN
j~1 (Dm)i,j log(HHT )i,j)

: ð10Þ

The updating rules (8) can maintain the nonnegativity of the

parameters to be inferred. The elements of H will always be

nonnegative during the iteration if we initialize H with nonneg-

ative values. For the detailed inference of the three updating rules,

please refer to Text S1.

From protein-complex propensity matrix to protein

complexes. Observing at the updating rule (9), it is obvious

that each bz is bounded from below by F~ 2b
Nz2az2

during each

iteration, and it will attains this bound when the z-th column of H

is a zero vector, which means the z-th complex is pruned out of the

model. After convergence, we set Kt to be the number of

complexes which satisfy the following condition:

Kt~jfz[f1, . . . ,Kg :
bz{F

F
wrkgj: ð11Þ

Here, rk is a threshold that need to be predefined. Therefore, if

bzƒFzrkF , the z-th column of H is regarded as irrelevant

complex, and could be filtered out. As mentioned above, each

column of H contains N nonnegative real values presenting each

protein’s degree of participation into the corresponding complex.

After computing Kt and filtering out irrelevant columns of H,

similar to [35,38,39], we obtain protein complexes from H by

taking a threshold t and assigning a protein to a complex if its

membership weight for that complex exceeds t. In this way, we

obtain the resultant protein-complex membership matrix

H�
~(h�i,z), where h�i,z~1 if hi,z§t and h�i,z~0 if hi,zvt. Here,

h�i,z~1 means protein i is assigned to detected complex z. Similar

to [41], we only consider the identified complexes that have at

least three members since the complexes with two proteins have

been presented in the protein interaction data. After completing

these steps, we obtain the optimal number of complexes Keff

which represents the number of columns of H* that contain at least

three elements of 1.

Final algorithm. We summarize the overall algorithm in

Figure 3. In this paper, we iteratively update H, b and U according

to the updating rules (8), (9) and (10) until they satisfy a stopping

criterion. Let bnew and bold be the vector of relevance weights at

the current and previous iterations respectively. The algorithm is

stopped whenever Ebnew{boldE2vr, where rw0 is a user defined

tolerance parameter. For simplicity, we set the value of this

tolerance parameter to be the same as the threshold rk.

Furthermore, we limit the calculation procedure to a maximum

of 150 iterations for practical purposes. That is, we stop iterating

when Ebnew{boldE2vr or the number of iterations reach 150.

Here, the typical value of 1E-6 is selected as the value of the

tolerance parameter r and the threshold rk. In order to avoid a

local minimum, we repeat the algorithm 50 times with random

initial conditions and choose the result that outputs the lowest

value of objective function (7).

Here, we also consider two special cases of our model. First, if

we fix the value of each weight uq to be
1

np
, the ensemble matrix is

W~
1

np

Xnp

q~1
Dq, thus the weighted combination framework

degenerates to the naive combination framework. In this case,
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each feature network is treated equally. Second, if the weight of

the original PPI network is set to 1, the ensemble matrix W

becomes A which is the adjacency matrix of the original PPI

network. In this case, our model is equivalent to applying Bayesian

NMF model on the original PPI network.

Results

In this section, we evaluate the effectiveness of EC-BNMF in

detecting protein complexes. Before presenting the results of our

comparative experiments, we first describe the PPI networks and

validation metrics that are used. Then we discuss the effect of

parameters and the benefits of weighted ensemble clustering. Next,

we investigate the performance improvement brought by inte-

grating diverse clustering results. Finally, we compare EC-BNMF

with other ensemble clustering algorithms and evaluate the

overlapping protein complexes detected by EC-BNMF.

PPI networks
EC-BNMF is tested using four PPI networks from S. cerevisiae.

The yeast S. cerevisiae is a highly effective model organism that

presents an ideal opportunity to test the performance of a newly

proposed algorithm since a great deal of protein complexes of it is

known. In this paper, we concentrate our analysis on the following

four different high-throughput derived PPI networks: a high-

reliable database published by Collins et al. [42], two experimental

yeast PPI networks published by Gavin et al. [43] and Krogan et al.

[44] respectively, and the entire set of physical interactions in yeast

from BioGRID [45,46]. Here we use Collins, Gavin, Krogan and

BioGRID to represent these four networks. In this paper, for

simplicity, we just extract the largest connected components from

all the four networks. The corresponding features of the four

networks are listed in Table 1. As can be seen from this table, these

four networks have different topological properties, we use them as

model datasets to test the comprehensive performance of EC-

BNMF.

Gold standard protein complexes
To measure the accuracy of the detected complexes, we choose

two widely used benchmark complex reference sets as gold

standards. One of them is downloaded from the MIPS database

[47], the other one is derived from the Gene Ontology annotations

of the Saccharomyces Genome Database [48,49]. Following

Brohée and Van Helden’s study [14], we use the 220 filtered

yeast protein complexes from MIPS database as our first reference

set, and we call them MIPS complexes here. In addition, since the

complexes in MIPS database do not cover all the proteins in the

considered network, we also use another independent reference

set, and we call them SGD complexes here. SGD complexes are

generated from SGD database [48] following the procedure

described by Nepusz et al. [41].

TheMIPS complexes are download from http://rsat.bigre.ulb.ac.

be/rsat/data/publisheddata/brohee_2-006_clustering_evaluation/

index_tables.html/. The SGD annotations and GO structure are

download from Gene Ontology database [50] http://www.

geneontology.org/on 24 April 2012. In order to prevent the

membership of the same protein inconsistencies, we test these two

reference set separately. For both reference sets, to avoid selection

bias, we filter out the proteins that are not contained in the network

at hand. Furthermore, only complexes with at least 3 and no more

than 100 members are considered. In Table 2 we summarize the

statistics of these reference sets with respect to each PPI network.

Figure 3. Summary of EC-BNMF for detecting protein com-
plexes.
doi:10.1371/journal.pone.0062158.g003

Table 1. Topological characteristics of the used PPI networks.

Collins Gavin Krogan BioGRID

Number of proteins 1004 1359 2559 5850

Number of interactions 8319 6451 7031 68312

cc 0.6478 0.4196 0.1947 0.2622

avNeighbors 16.57 9.49 5.50 23.35

density 0.0165 0.0070 0.0021 0.0040

Here cc denotes the average clustering coefficient of network, avNeighbors
denotes the average number of neighbors of each protein.
doi:10.1371/journal.pone.0062158.t001
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Evaluation criteria
We evaluate the performance of a protein complex identifica-

tion algorithm by judging how well the predicted complexes

correspond to the known complexes. In this study, three

independent quantity measures are used to assess the similarity

between a set of predicted complexes and a set of reference

complexes. The first one is the f-measure which is defined as the

harmonic mean of Precision and Recall [1]. The other two are the

Jaccard and PR metrics which are proposed by Song and Singh

[16]. Among these three measures, f-measure is used to assess the

similarity between predicted complexes and reference complexes

at complex level (Recall measures what fraction of the reference

sets are matched by the predicted complexes, and Precision

measures what fraction of the predicted complexes are matched by

the reference complexes). Whereas Jaccard and PR metrics can

measure how well the predicted complexes correspond to

reference complexes at complex-protein pair level, which take

into account the number of proteins in each complex. The value of

each measure vary between 0 and 1, and the higher value means

better overlaps. For more details about these three scoring

measures, please refer to Text S2. These evaluation metrics can

provide us some sense of how well the protein complex

identification algorithm can be used to detect protein complexes

from PPI networks.

Choice of parameters
There are five parameters K, t, a, b and l that need to be

predefined in our algorithm. K is the maximum number of

complexes. Note that EC-BNMF can filter out irrelevance

complexes, so the value of K can be taken sufficiently large. Here

we empirically set K~500 for Collins, Gavin and Krogan, and

K~1000 for BioGRID. t is the threshold used to obtain protein

complexes from the protein-complex propensity matrix, and we

find experimentally that t~0:3 always leads to reasonable results

on the four networks. Observing that the shape hyperparameter a

affects the optimization of the objective function (7) only through

the updating rule (9), thus the influence of a is moderated by the

number of nodes N. Therefore, we choose a to be small compared

to N. Experimental results also confirm that smaller value of a

leads to better results. In this paper, we fix a~2 and vary the value

of b to find the best result for each network. Another key

parameter is l which control the effect of regularization term R.

The parameter l controls the relative differences between feature

networks. Setting l~? forces all feature networks to be given

equal weight, whereas setting l~0 discards the regularization

term. Through updating rule (10) we can find that the effect of l

depends on the value of
PN

i~1

PN
j~1 (Dm)i,j log(HHT )i,j . In order

to facilitate the selection of l, we set the value of l to be in

proportion to
P

i

P

j (

Pnp

q~1
Dq

np
)i,j . That is, we set

l~l0|
P

i

P

j (

Pnp

q~1
Dq

np
)i,j . To find out the suitable value of l,

we just need to vary the value of l0 and evaluate the

corresponding performance. Finally, the key parameters that

affect the performance of EC-BNMF are b and l0.

In order to fully understand how these two parameters affects

the performance, we investigate how the performance changes as

the values of these parameters change. To this end, we vary the

values of b and l0 for each PPI network, and compare the

corresponding experiment results in terms of Jaccard, PR and f-

measure with respect to two reference sets. For each PPI network,

we try different combination values of l0 (l0[f2{4,2{3, . . . ,25g)
and b (b[f10|20,10|21, . . . ,10|26g).
For each network, the harmonic mean of six scores (Jaccrad, PR

and f -measure with respect to MIPS and SGD complexes) is used

to measure the performance of EC-BNMF. Figure 4 shows the

corresponding results with respect to various values of l0 and b on

the four PPI networks. As shown in Figure 4, for a fixed value of

l0, as the value of b increases, the harmonic mean scores increase

initially and decrease after reaching the maximum, and this is true

for all the four PPI networks. On the other hand, for a fixed value

of b, as the value of l0 increases, the harmonic mean scores

increase initially and decrease after reaching the maximum, but

the change is not very obvious. This phenomenon is partly owing

to the choice of prior information
P

i

P

j (

Pnp

q~1
Dq

np
)i,j . With this

prior information, the model is not very sensitive to small changes

in l0. In fact, if l0 is large enough, the weight assigned to each

feature network is nearly equal. Thus the performance will not

change a lot with the increase of l0. In our model, l0 is used to

adjust the weights, and it only affects the quality of the ensemble

PPI network. Unless a considerable fraction of base clustering

results are poor, a small change of l0 can not lead to big change of

the performance. From Figure 4, we can find that in terms of

parameters, EC-BNMF is relatively stable. In fact, the perfor-

mance of EC-BNMF is very sensitive to the choice of b~½bz�. To
reduce the sensitivity, we assign independent inverse-Gamma

priors on each bz such that EC-BNMF can automatically estimate

the optimal value of bz. Through the updating rule (9), EC-BNMF

can adaptively adjust the value of bz. Thus, EC-BNMF is not very

sensitive to the choice of b. Nevertheless, both b and l0 contribute

to improving the performance of EC-BNMF.

We can find from Figure 4 that the optimal result are obtained

when l0~0:5 and b~40 for Collins network, l0~1 and b~20
for Gavin network, l0~1 and b~40 for Krogan network, and

l0~0:5 and b~40 for BioGrid network. In the following, unless

otherwise stated, the complexes detected by EC-BNMF are

obtained with these optimal values of parameters for the four

PPI networks.

Performance evaluation
In this section, we systematically evaluate the proposed model

on the protein complex detection task. EC-BNMF strives to

combine several partitions of a network into a more desirable

clustering result. These partitions can be obtained from a single

clustering algorithm with different initializations or from the

Table 2. Gold standard protein complexes.

Network

Reference

database # complexes # proteins

Total MIPS 220 1095

SGD 324 1340

Collins MIPS 64 437

SGD 81 426

Gavin MIPS 94 537

SGD 118 542

Krogan MIPS 119 601

SGD 168 790

BioGRID MIPS 157 1010

SGD 242 1217

Here ‘‘Total’’ denotes the statistics of each reference database which are not
mapped into a special PPI network and filtered by size.
doi:10.1371/journal.pone.0062158.t002
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application of different clustering algorithms on a network. In this

paper, we focus on the combination of the results of different

algorithms since different algorithms may discover different

patterns in a given network and increase the information available

for ensemble clustering. Therefore, we choose ten state-of-the-art

algorithms as base clustering algorithms: CFinder [17], CMC [51],

ClusterONE [41], COPRA [52], DPClus [53], MCL [18],

MCODE [12], MINE [54], RNSC [19], and SPICi [55]. A brief

description of these algorithms and the setting of parameters are

discussed in Text S3. We also list the websites where we download

the corresponding softwares in Text S3 Table 1.

Weighted combination versus naive combination. In this

section, we investigate the benefits of performing weighted

combination when constructing the ensemble PPI network. As a

baseline for comparison, we test the performance of naive

combination which is a special case of EC-BNMF, where

W~
1

np

Xnp

q~1
Dq. Here, we call it naive ensemble clustering

(NEC).

We apply EC-BNMF and NEC on four PPI networks, and

compare their performance. Through updating rules (8) and (9),

we can find that the performance of NEC depends on the choice

of parameter b. For each PPI network, the results of NEC are

obtained over the best tuned parameters. Figure 5 shows the

comparative performance of EC-BNMF and NEC on four PPI

networks in terms of the three measures (Jaccard, PR and f-

measure) according to MIPS and SGD complexes. From Figure 5,

we can see that EC-BNMF leads to better performance on all the

four PPI networks.

In real cases, the performance of each clustering algorithm is

based on the topological characteristics of the network under

consideration. Given a network and a collection of clustering

results, some clustering results may perform well in recapitulating

protein complexes while others may not. Therefore, constructing

an ensemble PPI network by simply averaging is inadequate since

the information provided by poor clustering results may be

unreliable, and may affect the performance of ensemble clustering.

Ensemble PPI network versus original PPI network. To

demonstrate the benefits of using the ensemble PPI network, we

consider the individual performance of applying Bayesian NMF

model (BNMF) on the original PPI network. That is, we assume

W~A which is the adjacency matrix of the original PPI network.

It is noteworthy to mention that Bayesian NMF model is also a

popular clustering algorithm. Thus, it is of great interest to test the

performance of Bayesian NMF model on original PPI networks.

Next, we apply BNMF and EC-BNMF on four PPI networks, and

compare their performance. According to updating rules (8) and

Figure 4. Effect of parameters. Performance of EC-BNMF on protein complex detection with respect to different values of b and l0 measured in
terms of the harmonic mean score. The x-axis denotes the value of log l0 , the y-axis denotes the value of log 0:1b, and the z-axis denotes the value of
the harmonic mean of the three measure scores of both MIPS and SGD complexes. (A) Collins network. (B) Gavin network. (C) Krogan network. (D)
BioGRID network.
doi:10.1371/journal.pone.0062158.g004
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(9), the performance of BNMF is based on the choice of b. For

each PPI network, to be fair, the results of BNMF are obtained

over the best tuned parameters. The comparison of these two

algorithms are displayed in Figure 5.

The results shown in Figure 5 well verify the benefits of using

ensemble PPI networks. It can be observed that EC-BNMF leads

to better performance than the individually inferred by applying

BNMF on the original PPI network. These results once again show

that the performance of a complex identification algorithm is

based on its optimization criteria and the characteristic of the

network under consideration. BNMF is based on the assumption

that if there is an edge between two proteins, they may belong to

the same complex. However, the data obtained from high-

throughput methods is believed to be quite noisy, and many

interactions may be false positives. Therefore, if the network does

not satisfy this assumption, the complexes detected by BNMF may

be less reliable. In EC-BNMF, we integrate the results of different

clustering algorithms, and generate an ensemble PPI network.

Each edge in the ensemble PPI network represents the evidence

(provided by base clustering results) that the corresponding

proteins belong to same complexes. Thus Bayesian NMF model

can find out more reliable complexes.

Furthermore, we can see from Figure 5 that BNMF has better

performance than NEC on Krogan and BioGRID. In NEC, all

base clustering results are treated equally, thus the information

provided by unreliable clustering results may mislead the detection

of complexes.

Quantitative comparison with base clustering

algorithms. To further evaluate the competitiveness of EC-

BNMF in detecting protein complexes, we compare its results with

the ones from base clustering algorithms since these algorithms are

also the most popular methods. For all the clustering results, we

only consider clusters that have at least three elements. Table 3

presents the comparative performance of different clustering

algorithms on four PPI networks. The details of these algorithms

are presented in Text S3. The results are obtained over the best

tuned parameters for each algorithm. Remarkably, for BioGRID,

CFinder can not give a clustering result in 48 hours, so it does not

take part in the generation phase when considering BioGRID

dataset, and the corresponding result will not be listed in this table.

As shown in Table 3, for all the four PPI networks, EC-BNMF

has competitive performance with other methods in terms of the

three measures (Jaccard, PR and f-measure) with respect to MIPS

and SGD complexes. Furthermore, similar to the results shown in

[16,38,39], among the ten base clustering algorithms, none of

them can dominate other methods on all networks according to

the three measures. In particular, on Collins, MCODE consis-

tently outperforms other methods, while RNSC also has a

competitive performance. On Gavin, SPICi performs better than

other methods with respect to SGD complexes, while CMC and

RNSC have good performance with respect to MIPS complexes.

On Krogan, CMC outperforms other methods with respect to

MIPS complexes, and DPClus outperforms other methods with

respect to SGD complexes. On BioGRID, SPICi and ClusterONE

output higher quality clusters than others. These results illustrate

that different approaches have complimentary strengths. The

effectiveness of EC-BNMF in detecting protein complexes is

mainly due to its ability of capturing information from multiple

clustering results in a unified inference procedure. This is achieved

by allocating proper weights to base clustering results and seeking

the consistent dense regions among these results to output more

accurate and reliable clustering results.

One may have noticed that for some PPI networks such as

Collins, the evaluation scores obtained by EC-BNMF are close to

some base clustering algorithms. This may be due to the clustering

results of the base clustering algorithms are very similar on this PPI

network. EC-BNMF is an ensemble algorithm whose performance

depends on the base clustering results. Therefore, if the base

clustering results are close to each other, the performance

improvement may not be very noticeable. However, stability is

one of the advantages of EC-BNMF. Even though some methods

could obtain similar performance to EC-BNMF with respect to a

single measure or a single gold standard, they can not perform well

on all PPI networks. For example, compared with other base

clustering algorithms, the complexes detected by MCODE are

more accurate on Collins, whereas on the other three PPI

networks, the complexes detected by MCODE are not very

accurate. On Krogan, the complexes detected by CMC are more

accurate than other base clustering algorithms with respect to

MIPS complexes. When considering SGD complexes, the

complexes detected by DPClus are more accurate. But on the

other three PPI netoworks, the complexes detected by CMC and

DPClus may not well match the known complexes. Furthermore,

EC-BNMF allows overlaps between protein complexes. Although

some base clustering algorithms perform well on some PPI

networks (RNSC performs well on Gavin, and SPICi performs

well on Gavin and BioGRID), they can not discover overlapping

complexes. Viewed in this light, we provide an alternative method

to identify protein complexes, which can discover overlapping

Figure 5. Comparative performance of applying Bayesian NMF
model on weighted (naive) ensemble networks and original
PPI networks. Comparison of the performance of EC-BNMF, naive
ensemble clustering (NEC) and Bayesian NMF model (BNMF) on four PPI
networks with respect to (A) MIPS gold standard and (B) SGD gold
standard.
doi:10.1371/journal.pone.0062158.g005

Protein Complex Detection

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e62158



Table 3. Performance comparison of EC-BNMF and base clustering algorithms on detecting protein complexes.

Network Algorithm MIPS SGD weight(un)

Jaccard PR f-measure Jaccard PR f-measure

Collins EC-BNMF 0.4244 0.3984 0.4530 0.4811 0.4696 0.5547

Original 0.1264

CFinder 0.4038 0.3841 0.4224 0.4122 0.4056 0.4938 0.0313

ClusterONE 0.3900 0.3640 0.4046 0.4079 0.3975 0.4965 0.0941

COPRA 0.3570 0.3465 0.3868 0.3624 0.3543 0.5249 6.437e-6

CMC 0.3871 0.3533 0.4068 0.4268 0.4139 0.5195 0.0802

DPClus 0.3952 0.3641 0.3968 0.4421 0.4281 0.5168 0.1370

MCL 0.3881 0.3685 0.3504 0.3871 0.3752 0.4928 0.0568

MCODE 0.4189 0.3887 0.4287 0.4601 0.4472 0.5526 0.1450

MINE 0.3942 0.3721 0.4033 0.4173 0.4066 0.5504 0.0512

RNSC 0.4170 0.3882 0.4260 0.4519 0.4419 0.5529 0.1383

SPICi 0.3953 0.3637 0.4490 0.4392 0.4246 0.5537 0.1397

Gavin EC-BNMF 0.4104 0.3851 0.4504 0.5048 0.4912 0.5780

Original 0.0872

CFinder 0.3446 0.3142 0.3505 0.4034 0.3906 0.4445 0.0616

ClusterONE 0.3335 0.3050 0.3536 0.4537 0.4370 0.4824 0.1130

COPRA 0.2636 0.2500 0.2844 0.2966 0.2883 0.3987 0

CMC 0.3821 0.3060 0.2310 0.3683 0.3568 0.3326 0.0625

DPClus 0.3594 0.3283 0.3824 0.4652 0.4465 0.5259 0.1315

MCL 0.3506 0.3247 0.3333 0.4312 0.4127 0.4415 0.1066

MCODE 0.3051 0.2659 0.3338 0.3682 0.3380 0.4489 0.1189

MINE 0.3098 0.2724 0.3097 0.3610 0.3389 0.4288 0.0413

RNSC 0.3586 0.3330 0.3286 0.4476 0.4331 0.4620 0.1324

SPICi 0.3624 0.3318 0.3872 0.4769 0.4553 0.5483 0.1449

Krogan EC-BNMF 0.3491 0.3230 0.3258 0.4624 0.4442 0.4691

Original 0.0943

CFinder 0.2865 0.2639 0.2223 0.3828 0.3684 0.3331 0.1039

ClusterONE 0.2780 0.2503 0.2813 0.4099 0.3896 0.4203 0.1029

COPRA 0.1415 0.1281 0.1725 0.1826 0.1696 0.3183 0

CMC 0.3322 0.3044 0.2754 0.4211 0.4033 0.3885 0.1040

DPClus 0.3274 0.3001 0.3144 0.4542 0.4343 0.4671 0.1051

MCL 0.2204 0.1917 0.1548 0.2945 0.2682 0.2802 0.0832

MCODE 0.2682 0.2359 0.2262 0.3220 0.2937 0.3176 0.0988

MINE 0.2946 0.2621 0.2664 0.3617 0.3373 0.3938 0.1020

RNSC 0.2950 0.2705 0.2425 0.3934 0.3757 0.3894 0.1030

SPICi 0.3203 0.2968 0.2784 0.4289 0.4125 0.4490 0.1047

BioGRID EC-BNMF 0.3206 0.2866 0.2823 0.3871 0.3688 0.3474

Original 0.1110

ClusterONE 0.2266 0.1889 0.1453 0.2974 0.2731 0.2898 0.1344

COPRA 0.0194 0.0184 0.0245 0.0032 0.0032 0 0

CMC 0.2490 0.2051 0.1756 0.2724 0.2354 0.2294 0.1351

DPClus 0.2171 0.1796 0.1339 0.2913 0.2612 0.2473 0.1351

MCL 0.0974 0.0711 0.0518 0.1196 0.0960 0.1624 2.247e-8

MCODE 0.1908 0.1472 0.1088 0.2194 0.1853 0.1529 0.1372

MINE 0.1749 0.1394 0.1168 0.2049 0.1745 0.1415 0.0737

RNSC 0.2069 0.1776 0.1205 0.2767 0.2554 0.2181 0.1350

SPICi 0.2431 0.2069 0.1819 0.3179 0.2861 0.3036 0.1385

The weights assigned to the original PPI network are presented after ‘‘Original’’.
doi:10.1371/journal.pone.0062158.t003
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complexes and has stable performance on networks with different

topological features.

To evaluate the overall performance of each algorithm, we

integrate the measurement results of each algorithm on different

PPI networks into a final score by weighted combination. The

weight of each PPI network indicates the number of proteins in

this network, divided by the total number of proteins in all the four

PPI networks. Let fc, fg, fk and fb denote the weights of Collins,

Gavin, Krogan, and BioGRID respectively. Then we can calculate

their value: fc~0:0932, fg~0:1262, fk~0:2376 and fb~0:5431.
The measurement results of an algorithm on a PPI network can be

viewed as a 6-dimensional vector (Jaccard, PR and f-measure with

respect to MIPS and SGD). The final score of each algorithm

is a weighted combination of its measurement results on four

PPI networks (e.g., final score of MCL can be computed

by MCLfinal~fc:MCLCollinszfg:MCLGavinzfk:MCLKroganzfb:

MCLBioGRID. Here, MCLfinal , MCLCollins, MCLGavin,

MCLKrogan and MCLBioGRID denote the final score of MCL,

the measurement results of MCL on Collins, Gavin, Krogan and

BioGRID respectively). Note that CFinder is just run on three PPI

networks (Collins, Gavin and Krogan), its final score should be

calculated according to its performance on these three networks

(Here, the weights of these three networks are f 0c~0:204,
f 0g~0:2761 and f 0k~0:5199 respectively.). To be fair, the average

performance of EC-BNMF on these three networks is also

calculated. The final scores of different algorithms are listed in

Table 4. From Table 4, we can see that EC-BNMF has

competitive overall performance with the base clustering algo-

rithms.

Table 3 also lists the values of weights U~½uq� inferred by EC-

BNMF for each feature network. From Table 3, we can see that

algorithms have better performances always get higher weights,

while the poor ones always obtain lower weights. For instance,

MCODE has best performance on Collins, thus it obtains the

highest weight 0.1450. COPRA performs the worst on Collins, so

it gets the lowest weight 6.437e-6 which is close to zero. Therefore,

EC-BNMF is able to effectively utilize the information contained

in different clustering results. In addition, for all the four PPI

networks, we find that COPRA always has poor performance in

detecting protein complexes, so the weights assigned to it are

always close to zero. These results demonstrate that EC-BNMF is

robust when combining different clustering results.

Table 4. Final scores of different protein complex identification algorithms.

Algorithm MIPS SGD

Jaccard PR f-measure Jaccard PR f-measure

Final score EC-BNMF 0.3484 0.3181 0.3298 0.4286 0.4116 0.4248

on four networks ClusterONE 0.2676 0.2345 0.2281 0.3542 0.3331 0.3644

COPRA 0.1107 0.1043 0.1262 0.1163 0.1114 0.1749

CMC 0.2985 0.2553 0.2279 0.3343 0.3073 0.3073

DPClus 0.2779 0.2442 0.2327 0.3660 0.3413 0.3598

MCL 0.1857 0.1595 0.1396 0.2254 0.2029 0.2564

MCODE 0.2449 0.2058 0.1949 0.2850 0.2548 0.2667

MINE 0.2408 0.2070 0.2034 0.2817 0.2556 0.2758

RNSC 0.2666 0.2389 0.2042 0.3424 0.3238 0.3208

SPICi 0.2907 0.2587 0.2556 0.3757 0.3504 0.3924

Final score EC-BNMF 0.3814 0.3555 0.3862 0.4779 0.4624 0.5166

on three networks CFinder 0.3265 0.3023 0.2985 0.3945 0.3821 0.3966

doi:10.1371/journal.pone.0062158.t004

Figure 6. Comparison with other ensemble clustering algo-
rithms. Performance of EC-BNMF in comparison with CMC, ClusterONE,
SPICi and Ensemble NMF on four PPI networks in terms of PR, Jaccard
and f-measure with respect to (A) MIPS gold standard and (B) SGD gold
standard.
doi:10.1371/journal.pone.0062158.g006
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Comparison with other ensemble clustering

algorithm. In this section, we compare EC-BNMF with

Ensemble NMF clustering algorithm [35] which is also developed

for clustering PPI networks. For each PPI network, we use the

default settings of parameters in the software except two

parameters-the range for selecting number of clusters in each

factorization and the maximum number Mleaf of leaf nodes in

final soft hierarchy. For Collins, we set the range to be kmin~40

and kmax~100. For Gavin, we set kmin~80 and kmax~150. For

Krogan, we set kmin~100 and kmax~200. Since the true number

of complexes for each network is unknown, and the authors did

not clearly mention how to determine the number of complexes in

their paper, we use the leaf nodes in final soft hierarchy as clusters.

Furthermore, there is not prior information about Mleaf , so we

select three numbers for each network and test their performance.

For Collins and Gavin, we set Mleaf to be 80, 100 and 120. For

Krogan, we set Mleaf to be 100, 120 and 140. As mentioned in

[35], Ensemble NMF clustering algorithm is considerably more

computationally complex than standard hierarchical clustering

techniques. We do not list its results on BioGRID since it can not

give a clustering result in 48 hours. The comparison of these two

algorithms are shown in Figure 6. As we have mentioned above,

Asur et al. [34] also developed an ensemble clustering algorithm to

clustering PPI networks. We do not compare EC-BNMF with the

ensemble clustering algorithm proposed by Asur et al. [34] because

there are too many parameters need to be predefined and how to

determine their value is not clearly mentioned.

Given a PPI network and a collection of clustering results, after

getting the ensemble PPI network, the task is turned into detecting

protein complexes from this ensemble PPI network which is a

weighted undirected network. Besides Bayesian NMF model, there

are several methods can deal with weighted networks such as

CMC [51]. In order to illustrate the advantages of EC-BNMF, we

design a heuristic comparison. We apply CMC, ClusterONE, and

SPICi on the ensemble PPI network and evaluate their perfor-

mance according to the evaluation criteria proposed above. All of

these three algorithms are able to detect complexes from weighted

PPI networks directly and output the results in a reasonable time.

Other algorithms that can deal with weighted PPI networks are

not considered since they can not output the results in a reasonable

time. Furthermore, CMC, ClusterONE and SPICi can not

automatically update the value of weights U, so we apply these

three algorithms on the naive ensemble PPI network where

W~
1

np

Xnp

q~1
Dq. The results of these three algorithms are

obtained over the best tuned parameters. The comparison are

shown in Figure 6.

It can be observed from Figure 6 that EC-BNMF has

competitive performance with other compared algorithms in

terms of the three measures on the four PPI networks. With

Figure 7. Degree of multi-clustered versus mono-clustered proteins. For degree, the distributions of mono- and multi-clustered proteins are
represented by boxplots (line = median). (A) Collins network. (B) Gavin network. (C) Krogan network. (D) BioGRID network.
doi:10.1371/journal.pone.0062158.g007
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respect to the performance of SPICi on the original PPI network in

Table 3, SPICi has a notable gains in accuracy on the ensemble

PPI network, demonstrating that incorporation of diverse feature

networks (base clustering results) yields improved performance.

EC-BNMF can construct an informative ensemble PPI network

and effectively utilize the information contained in this ensemble

PPI network, thus it can output more accurate and reliable results.

The poor performance of CMC and ClusterONE on ensemble

PPI network demonstrates that they may not be well suited to

handle such data. As shown in Figure 6, Ensemble NMF clustering

algorithm can not output competitive results. Ensemble NMF

clustering algorithm only utilizes a single algorithm to produce the

base clustering results, thus it could only capture one aspect of the

data. Furthermore, if we try the more appropriate parameters, the

performance of Ensemble NMF clustering algorithm may be

improved, but we have no criteria for selecting parameters.

Detecting multi-functional proteins. In fact, some proteins

are believed to exhibit different functions while interacting with

different partners. Therefore, an approach for protein complex

detection should be able to accommodate proteins that are present

in more than one complex. As we have mentioned above, EC-

BNMF allows a protein to belong to more than one complex. To

illustrate the effectiveness of EC-BNMF in detecting multi-

functional proteins, we draw support from the functional

annotations for the multi-clustered proteins detected by EC-

BNMF, with respect to Gene Ontology (GO) database [50].

Complete lists of the functional annotations for the multi-clustered

proteins detected by EC-BNMF on four PPI networks can be

found in Table S1. Furthermore, similar to [56], we test whether

topological and functional features can distinguish multi-clustered

proteins from mono-clustered proteins. The corresponding results

are shown in Figure 7, Figure 8 and Figure 9.

From Figure 7 and Figure 8, we can find that multi-clustered

proteins have, on average, a higher degree and a higher node

betweenness, and this is true for all the four PPI networks

(Wilcoxon text, for Collins, p{valƒ4:3e{14 both for degree and

betweenness. For Gavin, p{valƒ5:2e{5 both for degree and

betweenness. For Krogan, p{valƒ1:9e{14 both for degree and

betweenness. For BioGRID, p{valƒ2:3e{27 both for degree

and betweenness). From Figure 9, we can observed that multi-

clustered proteins are, on average, annotated to more GO terms

than mono-clustered proteins, in terms of three ontologies

(Biological Process, Cellular Component and Molecular Function.

For Collins, p{val&3:3e{6 for Cellular Component. For

Gavin, p{val&4:2e{5 for Cellular Component. For Krogan,

p{val&8:5e{6 for Cellular Component. For BioGRID,

p{val~0:001 for Cellular Component). For detailed analysis

about the Wilcoxon test, please refer to Text S4. Based on the

preceding discussion, we find that multi-clustered proteins

involved in a larger number of process than mono-clustered

proteins. Therefore, EC-BNMF is effective in detecting multi-

functional proteins.

Figure 8. Betweenness of multi-clustered versus mono-clustered proteins. For betweenness, the distributions of mono-and multi-clustered
proteins are represented by boxplots (line = median). (A) Collins network. (B) Gavin network. (C) Krogan network. (D) BioGRID network.
doi:10.1371/journal.pone.0062158.g008
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To highlight the advantages of EC-BNMF in detecting multi-

functional proteins, we present an illustrative example of how

three complexes with known overlaps are detected by CFinder,

ClusterONE, MCODE and EC-BNMF in Figure 10 A, B, C and

D. For more examples, please refer to Text S5. The clusters shown

in Figure 10 are drawn from the clustering results of CFinder,

ClusterONE, MCODE and EC-BNMF on Collins. The green

circle nodes represent RNA polymerase I; The yellow rectangle

nodes represent RNA polymerase II; The blue triangle nodes

represent RNA polymerase III and the light purple parallelogram

nodes represent proteins with other functions. Shaded areas

represent the clusters detected by the corresponding method. It

can be observed from Figure 10 A, B and C that CFinder,

ClusterONE and MCODE can not correctly detect these three

overlapping complexes. Each of them have their own advantages

and limitations. In particular, they all cluster RNA polymerase I

and III together.

As can be seen from Figure10D, the clusters obtained by EC-

BNMF can correctly classify these three complexes. Furthermore,

four proteins (YOC224C, YOR210W, YBR154C and YPR187W)

common to RNA polymerase I, II and III are correctly classified.

Two other proteins (YNL113W and YPR110C) that are shared by

RNA polymerase I and III are also correctly classified. This

example demonstrates that EC-BNMF can integrate diverse base

clustering results into a more accurate and reliable results. One

may have noticed that cluster associated with RNA polymerase III

contains cluster associated with RNA polymerase I. The reason

lies on the following two facts. First, these two complexes share

more proteins and have intensive interactions. Second, most of the

base clustering results cluster these two complexes together. Thus

in the ensemble PPI network, they tend to be of the same cluster.

Nevertheless, EC-BNMF can correctly identify the proteins belong

to RNA polymerase I and the proteins shared between these three

complexes.

Discussion and Conclusion

The identification of protein complexes will bring richer

biological information in gaining insights into the working

mechanism of cell and revealing the disease mechanisms. In

recent years, numerous mathematical and computer algorithms

have been proposed to tackle this problem. Most of these

Figure 9. Functional annotations of mono-versus multi-clustered proteins. Quantitative comparison of the number of Gene Ontology terms
associated with mono-and multi-clustered proteins. The distributions of mono-and multi-clustered proteins are represented by boxplots (line =
median). (A) Collins network. (B) Gavin network. (C) Krogan network. (D) BioGRID network.
doi:10.1371/journal.pone.0062158.g009
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algorithms are designed to explore specific structures in the

network. They are based on different optimization criterion and

different assumptions of the inner structure of protein complex.

Therefore, a single algorithm can only capture one aspect of the

PPI network. As Song and Singh [16] mentioned in their study, no

single algorithm performs best on all networks. For example, many

researchers consider densely connected subgraphs as protein

complexes. Under this assumption, protein complexes should be

highly connected internally and sparsely connected with the rest of

the network. However, this view could not fully describe the

characteristic of the PPI network since besides densely connected

substructures, complexes with sparsely connected substructures

also exist (e.g., linear shape). Furthermore, traditional protein

complex identification algorithms that do not support overlap

between complexes can not reveal the biological reality. Besides,

how to determine the number of complexes in a PPI network is

still an open question.

To address these problems, in this study, an alternative method

(EC-BNMF) is proposed to identify protein complexes. EC-BNMF

is a novel weighted ensemble clustering algorithm which can

integrate the clustering results of different protein complex

identification algorithms and generate an accurate and reliable

clustering result. Unlike conventional ensemble clustering algo-

rithms that treat each base clustering result equally, EC-BNMF is

a weighted ensemble clustering algorithm which can automatically

estimate the optimal weights of different base clustering results.

Therefore, base clustering results that obtain higher weights may

be more reliable and can be regarded as important features. On

the contrary, base clustering results with lower weights may be less

reliable features and they may be far away from real cases. With

these weights, we can do selections among features, and output

more reliable results. Thus, stability is one of the advantages of

EC-BNMF. Experimental results on four yeast PPI networks well

verify the stability and effectiveness of EC-BNMF in detecting

protein complexes. Further, EC-BNMF allows overlaps between

protein complexes, which is closer to the reality.

In fact, as far as we known, two other ensemble clustering

algorithms [34,35] have been developed to detect protein

complexes from PPI networks. We do not compare EC-BNMF

to Asur method [34] not only for their method need to pregiven

the number of complexes which is always unknown, but also for

there are many parameters need to be predefined which are not

clearly mentioned in their paper and there is no public software

available. Hence, we compare our model with Ensemble NMF

Figure 10. Detecting overlapping complexes. The RNA polymerase I, II, III detected by (A) CFinder. (B) ClusterONE. (C) MCODE. (D) EC-BNMF on
Collins. Proteins are labeled according to the complex they belong to: green circle nodes represent RNA polymerase I, yellow rectangle nodes
represent RNA polymerase II, blue triangle nodes represent RNA polymerase III and light purple parallelogram nodes represent proteins with other
functions. Proteins shared by all the three complexes are labeled with red hexagon, while proteins shared by RNA polymerase I and III are labeled
with purple diamond. Shaded areas represent the clusters detected by the corresponding method. This figure is plotted with software Cytoscape [57].
doi:10.1371/journal.pone.0062158.g010
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[35]. Furthermore, to demonstrate the effectiveness of EC-BNMF,

we also design some heuristic comparisons. For instance, we apply

Bayesian NMF model on the original PPI network and apply

CMC, ClusterONE and SPICi on the ensemble PPI network.

Anyhow, our analysis show that EC-BNMF can strengthen the

quality of simple algorithms, and obtain more accurate results.

As an ensemble clustering algorithm, on the one hand, EC-

BNMF has improved performance than individual clustering

algorithms, and can alleviate the interference of unreliable

clustering results. On the other hand, the performance of EC-

BNMF depends on the base clustering results. If all these results

are generated by random or computed by poor clustering

algorithms, they may far away from real cases. In such a case,

the performance of EC-BNMF may also be poor. To alleviate this

problem, we also regard the original PPI network as a feature

network. Therefore, if most of the base clustering results are

unreliable, EC-BNMF can assign higher weight on the original

PPI network and assign lower weights on these bad results. In this

way, the performance of EC-BNMF is less dependent on the base

clustering results. However, a key aspect of EC-BNMF is its ability

of integrating multiple features of the PPI network and generating

more reliable results. We are concerned with how to get an

accurate and informative clustering, therefore, we choose some

popular algorithms as base clustering algorithms since their results

can effectively describe the network. In addition, the multi-

functional proteins discovered by EC-BNMF are also relied on

base clustering results. Based on these base clustering results, EC-

BNMF can filter out unreliable multi-functional proteins and add

in more reliable multi-functional proteins.

We now count the overall time cost of the updating process in

Equation (8), (9) and (10). The time cost for updating H is

O(N2K), where N is the number of proteins, and K is the number

of complexes. The time cost for updating b is O(NK) and the time

cost for updating U is O(N2K). Therefore the overall time cost of

EC-BNMF is O(N2KT), where T is the number of iterations.

Since the parameter H is sparse, the real time cost is much smaller

than O(N2KT). In addition, before performing our ensemble

algorithm, we need to compute np base clustering results, which is

time consuming. Nevertheless, this research is still meaningful for

the following reasons: First, as mentioned in [35], in the context of

understanding and exploiting the structure in PPI networks, cluster

analysis is used as an ‘‘offline’’ process, where producing an

accurate and reliable clustering is the primary goal. Second, when

generating base clustering results through some protein complex

identification algorithms, we can use the softwares provided by the

authors to implement these algorithms, which are written in C++

language or Java. Third, with the rapid development of computer

hardware, we have the ability to undertake large amount of

operations. Fourth, the generation process of base clustering

results can be parallelized. Therefore, by parallel computing, we

can generate different clustering results simultaneously on modern

multi-core processors and reduce the running times.

In this paper, we use Poisson distribution, Half-Normal

distribution and inverse-Gamma distribution to model the

generation process of the ensemble PPI network. Indeed, other

distributions such as Bernoulli distribution, binomial distribution

and exponential distribution can also be tried. As an ensemble

clustering algorithm, our model is more flexible. It is of great

interest to use this model to undertake other clustering-based tasks

such as exploring modules in gene regulatory networks and cell

signaling networks.
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