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Protein conformational plasticity and complex
ligand-binding kinetics explored by atomistic
simulations and Markov models
Nuria Plattner1 & Frank Noé1

Understanding the structural mechanisms of protein–ligand binding and their dependence on

protein sequence and conformation is of fundamental importance for biomedical research.

Here we investigate the interplay of conformational change and ligand-binding kinetics for the

serine protease Trypsin and its competitive inhibitor Benzamidine with an extensive set of

150 ms molecular dynamics simulation data, analysed using a Markov state model. Seven

metastable conformations with different binding pocket structures are found that interconvert

at timescales of tens of microseconds. These conformations differ in their substrate-binding

affinities and binding/dissociation rates. For each metastable state, corresponding solved

structures of Trypsin mutants or similar serine proteases are contained in the protein

data bank. Thus, our wild-type simulations explore a space of conformations that can be

individually stabilized by adding ligands or making suitable changes in protein sequence.

These findings provide direct evidence of conformational plasticity in receptors.
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U
nderstanding the process of protein–ligand binding is
of fundamental biological interest and essential for
structure-based drug design1,2. It is now realized that

not only binding affinities but also kinetics are determining the
drug efficacy3.

Moreover, the existence of multiple metastable states has been
revealed using single-molecule recordings4–7 and highly sensitive
NMR experiments8–10 in both membrane channels and soluble
proteins. A thorough understanding of protein–ligand binding
encompasses a complete characterization of the binding-
competent conformations of the protein, the binding poses and
the complex kinetics between these conformations. Employing
this full kinetic network for drug efficacy optimization may
significantly enhance our ability to do computational drug
design11,12.

Unfortunately, such a detailed description of the structure–
stability–kinetics relationship has as yet been out of reach as no
experimental method is available to simultaneously resolve full
structures and dynamics, and for molecular dynamics (MD)
simulations, it is challenging to escape the long-lived binding
states and efficiently sample different binding poses or protein
conformations. Extensive sets of MD simulations have been
successfully combined with Markov state models (MSMs)13

to reveal complex multistate kinetics of folding of peptides and
small proteins14–16 and conformational changes17–22. In ref. 23,
distributed computing and Markov models have been used to
characterize binding pathways and pre-bound states of the
Benzamidine inhibitor to the Trypsin protein. In ref. 24, an
extensive data set generated by the Anton supercomputer has
been used to study drug binding to a G-protein-coupled receptor.
In neither of these studies, however, multiple protein
conformations could be identified. In refs 25,26, the interplay of
conformational dynamics and ligand binding in the LAO-
binding- and the choline-binding proteins were investigated.

In this paper, extensive MD simulations of B150 ms cumulated
simulation time of the serine protease Trypsin with its reversible
competitive inhibitor Benzamidine are analysed with a Markov
model. It is found that Trypsin has multiple long-lived binding-
competent conformations. Both open and closed states of binding
pocket S1 are found that bind Benzamidine in the crystal
structure27,28. S1 was reported open or semi-open in Trypsin
crystal structures; however, closed S1 pockets have been found
for Thrombin and other Trypsin-like serine proteases29–38.
Thrombin has been characterized to bind according to a
conformational selection mechanism and the S1-closed
structure has served as a model for the inactive state31. In
addition to S1-switching, we find a second Benzamidine-binding
pocket in Trypsin that is also switchable. At a neighbouring
loop, a third conformational switch is found that regulates the
binding affinity.

These conformational switches are coupled and give rise to the
metastable conformational states found. Although all conforma-
tions are found to be binding-competent, their relative stabilities
are modulated by the binding of Benzamidine. Moreover, for each
such conformation, we can identify one or multiple crystal
structures in the protein data bank, including structures of
Trypsin, Trypsin mutants or other serine proteases that have
equivalent features in their binding pocket structures. This
suggests a picture of conformational plasticity. The Trypsin wild-
type free energy landscape can be remodelled, thus stabilizing
different conformations, by either ligand binding or suitable
changes in the protein sequence.

The Trypsin conformations found exchange on very long
timescales (tens of microseconds). This gives rise to kinetic
partitioning into different binding channels. Our model contains
both aspects of conformational selection, a concept where ligands

bind to pre-formed receptor conformations10,39–43, and induced
fit where the presence of the ligand induces the formation or at
least a probability shift of a receptor conformation42–44. Different
conformations bind the ligand with different affinities, giving rise
to a complex multistate picture of binding. This complex kinetic
picture has profound consequences for the multiscale description
of drug binding to proteins.

Results
Markov model. Overall, 543 MD trajectories with a cumulative
simulation time of 149.1 ms were generated using an atomistic
protein–ligand model with explicit solvent. These data exhibit
various events of Trypsin–Benzamidine association, dissociation
and conformational changes. A MSM45–49 was estimated from
the simulation data using pyEMMA (http://pyemma.org). The
MSM estimation reweighs the trajectories such that the
equilibrium kinetics and distribution among the configurations
sampled in the trajectory data can be recovered. After successful
statistical validation (Supplementary Figs 3 and 4), the MSM was
analysed by computing metastable (long-lived) conformations,
their kinetics and equilibrium probabilities, and binding/
unbinding pathways (see Methods for details).

Configurations were grouped into seven metastable conforma-
tions that interchange at timescales of 400 ns or slower. This
choice was made as there is a time separation with subsequent
relaxation timescales being below 150 ns. This grouping turned
out to distinguish different protein conformational states that
interconvert slowly, but did not separate bound and unbound
states. This is because ligand binding occurs relatively quickly at
the simulated system volume. To analyse the binding process, the
metastable conformations were further split into bound, unbound
and associated (or pre-bound/off-target) sets each. Each micro-
state was split initially on the basis of the minimal heavy-atom
distance between the Benzamidine ligand and the recognition site
Asp189 into a bound state and remaining states using a cutoff of
6 Å. The microstates obtained from the MSM were sorted into
bound, associated and unbound sets of each metastable state on
the basis of the average Benzamindine-Asp189 distance of each
microstate being o6Å, 6–15Å and415Å, respectively. As a
result, six apo Trypsin conformations (Fig. 1), seven bound
conformations (Fig. 3) and four associated conformations are
obtained. Examples for associated states are shown in
Supplementary Fig. 5. Most associated states, already described
in previous studies23, are relatively unstable and short-lived.

Slowly interconverting apo states. Figure 1 shows the apo state
of the metastable Trypsin conformations in different colours.
Three representative structures for each conformation are shown,
superimposed on the crystal structure 3PTB (in black) for com-
parison. The conformational changes between different apo
conformations are slow—they are governed by relaxation time-
scales from microseconds to B100 microseconds. As the crystal
structure 3PTB contains Benzamidine, all of the Trypsin apo
conformations deviate from the crystal structure. However, the
magenta structure is very similar to 3PTB and only differs by the
open conformation of a peripheral loop (top right) that is likely
affected by crystal contacts in the periodic cell. This loop change
is associated with a different coordination pattern of the calcium
ion only observed in the magenta conformation (Supplementary
Fig. 6). We consider the magenta structure as ‘X-ray-like’.

Figure 1 also shows the probability of each apo conformation
by the area of the disc representing that structure, and the
respective binding free energies, that is, the free energy difference
for binding to this conformation under standard conditions. The
binding affinities vary substantially between different metastable
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states. The six metastable states can be classified in terms of
structural features of two flexible loops, the Trp215 loop and the
Asp189 loop (Fig. 1b). The classification is found in Fig. 1a:

1. S1 pocket opening and closing (Fig. 1b and bullets with ‘1’ in
Fig. 1a): S1 is the Benzamidine-binding pocket found in PDB
3PTB that allows access and hydrogen bonding of Benzami-
dine to the recognition site Asp189. In the X-ray-like magenta
structure the S1-binding pocket is open, whereas in all other
structures it is only partially open or closed.

2. S1* pocket opening and closing (Fig. 1c and bullets with ‘1*’ in
Fig. 1a): a second binding pocket allows binding of
Benzamidine to Asp189 from a different angle. In the apo
state, an open S1* binding pocket is favourable as seen from

the fact that the red and green conformations with this pocket
fully open are the two most stable apo states. In the green
conformation the pocket can open and close, but microstates
with the S1* pocket open have a much higher probability.

3. Conformational switch in the S1* pocket (Fig. 1d,e and bullets
with ‘Sw’ in Fig. 1a): the binding free energy for binding to S1*
crucially depends on its conformation. In the red structure,
which is most stable, the loop containing Asp189 is moved
inwards making the binding to Asp189 easier, whereas in all
other structures it is found at a less favourable position.

In addition, the apo-state conformations differ also in
other structural features including the calcium-binding loop
(residues 71–79) and the peripheral loop and helix formed by
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Figure 1 | Apo-state structures and kinetics. (a) Structural features, equilibrium distribution and kinetics of six unbound (apo) protein conformations.

Transitions between them occur at timescales on order of tens of microseconds. The three slowest relaxation timescales and their corresponding transition

process are indicated (dashed lines). The circles have an area proportional to the equilibrium probability pi. Their respective free energy differences DGb of

binding a ligand to this conformation and the binding time tbind (mean first passage time to binding) are given. The arrows indicate the transition

probabilities for direct transitions between the different states (see legend). The most important structural differences concerning ligand binding are shown

in b–e, and the structures are classified with respect to these features in by green/orange/red bullets in a. The structures are classified by the state of S1 or

S1*: open (green circle with ‘1’ or ‘1*’), half-open (orange circle) or closed (red circle) and by the S1* pocket conformational switch: favourable for binding

(green circle with ‘Sw’) or unfavourable for binding (red circle with ‘Sw’).
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residues 164–177. A direct comparison of these features between
the green and the magenta structure is shown in Supplementary
Fig. 7.

Interestingly, the X-ray-like apo structure (magenta) is one of
the less stable structures in solution. Note that the corresponding
X-ray structure includes Benzamidine. Without the ligand, the
open state of the S1 pocket is likely unfavourable as it exposes the
hydrophobic sidechain of Trp215 to solvent. In contrast, closing
the S1 pocket as in the red structure is stabilized by a
hydrophobic contacts between Trp215, Val217 and part of
Gln192. This finding is in agreement with stabilities of similar
conformations in Thrombin as has been revealed by a combina-
tion of kinetic measurements and X-ray structures30.

The red and green structures differ in the Asp189 loop
conformational switch (Sw) and are the two most stable apo
structures (together 492% of the apo-state population).

All apo structures are connected via the green conformation,
which is the only conformation containing both, structures with
an open S1 and a closed S1* pocket as well as structures with an
open S1* and a closed S1 pocket. Within the green conforma-
tions, these two structures interconvert rapidly. Thus, the green
conformation plays a key role here: it is a hub because the ability
to form open and closed states in both pockets makes this
conformation accessible from all other conformations. Second, it
is a transition state that is stable in the apo, but relatively unstable
in the bound form, as it exhibits a poor conditional binding
affinity. The X-ray-like magenta apo structure quickly relaxes to
the more stable green apo structure, but transitioning into the
almost equally stable red apo structure is then a slow process, on
the order of 100 ms.

The conformational changes observed for the apo states
have implications for the function of Trypsin. Trypsin substrates
coordinate to Asp189 in the S1 pocket (Supplementary
Fig. 1). The opening/closing of the S1 pocket may thus be a
mechanism to regulate the protease activity of Trypsin, with
effects on the downstream cascade. Conformational changes of
the loops forming the S1 pocket may control the selectivity
of the protease50. Substrate binding can only occur efficiently
when Trypsin is in the X-ray-like magenta or the green
conformation.

Observed conformational plasticity versus other sequences. For
all of the six metastable apo states in Trypsin, we have found a
serine protease X-ray structure with similar structural features at
the binding site. The different X-ray structures have been com-
pared with the metastable states by aligning them to PDB 3PTB
on the basis of the backbone atoms of the conserved three loops
forming the S1 pocket: residues 188–196, 214–220 and 226–230.
Figure 2 shows the binding site of these aligned structures toge-
ther with structures of each metastable state (colours like in
Fig. 1) that were aligned to PDB 3PTB in the same way. The
Trp215 loop is found in various conformations: in PDB 3PTB
(Trypsin wild type) and the magenta Trypsin conformation it is
parallel to the Asp189 loop with Trp215 placed outside the S1
pocket. In the orange Trypsin conformation and PDBS 1ANB
and 1ANC28 (Trypsin mutants S214E and S214K), Trp215 is
rotated towards the S1 pocket making the access more difficult
and the binding less favourable. In the two blue Trypsin
conformations and the prostasin structures 3GYL and 3E1X
(ref. 36), the conformation of the Trp215 loops blocks the access
to the S1 pocket for Benzamidine and makes the access to the S1*
pocket very difficult. In the two prostasin structures, the change
in the conformations of the Trp215 loop corresponding to the
conformational change between the two blue structures is because
of the addition of calcium.

A different conformation of the Trp215 loop closing the S1
pocket is observed in the Thrombin mutant Y225P (PDB 3S7H),
several other Thrombin structures29–31 and in the green and the
red Trypsin conformations. The Asp189 loop conformation of the
red Trypsin conformation is not directly found; the most similar
conformation is the Kallikrein structure 1GVZ (ref. 33).

Similar conformations of the three loops defining the binding
site can be found in the crystallographic structures of other serine
proteases, including structure factor D32, hepatocyte growth

PDB 3EX1, Prostasin

PDB 3GYL Prostasin

PDB 3S7H Thrombin Y225P

PDB 3S7H, Thrombin Y225P

PDB 1GVZ, Kallikrein

PDB 1ANB, Trypsin S214E

PDB 3PTB, Trypsin Wt 

Figure 2 | Metastable state conformations compared with serine

protease X-ray structures. Conformations found in Trypsin wild type

(coloured as in Fig. 1) are matched by crystallographic structures (grey) of

other serine proteases. Similar binding site conformations are found in

prostasin (blue Trypsin conformations) and the Thrombin Y225P mutant

(green) as well as several other Thrombin mutants. The magenta Trypsin

conformation corresponds to its wild-type structure in PDB 3PTB. The

orange Trypsin wild-type conformation is similar to the X-ray structures of

the Trypsin mutants S214E and S214K. The red Trypsin conformations have

no equivalent crystallographic structures. Similar to the green state it has

similarities to Thrombin Y225P and Kallikrein.
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factor activator (HGFA)34, aI-tryptase35 and complement factor I
(ref. 37) and various zymogens, for example, pro-granzyme K
(ref. 38).

This analysis indicates that Trypsin has a high degree of
conformational plasticity: the various conformations accessible to
the wild type by thermal fluctuations can be individually
stabilized in a crystallographic structure via suitable changes in
sequence space.

Conformational plasticity on ligand binding. The overall
binding free energy DGbinding can be calculated from the model
on the basis of the stationary distribution pi obtained from the
MSM transition matrix and a volume correction term that
accounts for standard conditions (see Methods)23. We obtain
an overall binding free energy of DG0

binding ¼ � 6:05 �
1 kcalmol� 1 in agreement with the experimental measure-
ment of � 6.2 kcalmol� 1 (ref. 51) and recent computational
studies23,52. Figure 3 shows a representative bound conformation
for each metastable protein structure.

Figure 3 shows Trypsin conformations with Benzamidine-
bound and the different Benzamidine-binding modes. The
conformation of the binding site is determined by three loops:
the loop containing Asp189 (yellow), the loop containing Trp215

(green) and residues 225–230 (orange). Benzamidine binds either
to the well-known S1-binding pocket (magenta, orange and part
of the green conformations), and in the presently characterized
S1* pocket (other conformations), where binding occurs ‘under-
neath’ the Trp215 loop. Both pockets give access to Asp189, with
which Benzamidine can form two stable hydrogen bonds.
Consequently, both binding pockets are mutually exclusive and
cannot bind two Benzamidines simultaneously. In addition to the
hydrogen bonds with Asp189, Benzamidine can also form direct
hydrogen bonds with Ser190 as well as indirect interactions via
water molecules, confirming findings with previous metady-
namics simulations53. However, in the present model we do not
find Ser190 hydrogen bonding to give rise to the clearly separated
metastable state. On the timescales of conformational changes,
changes in the hydrogen bonding network are relatively fast. The
ability of Benzamidine to form hydrogen bonds with Asp189 is
modulated by the conformational switch Sw that varies the
accessibility of Asp189 between different metastable states.

In the blue conformations Asp189 is difficult to access. In the
green conformation Asp189 can be accessed via both binding
pockets, but in both conformations the loop structures disturb the
binding. Four conformations exhibit high binding affinities: in the
magenta conformation Benzamidine binds into the widely open
S1 pocket. This binding mode is most similar to the crystal

tunbind = 1.1±2 µs

G = 6.5±0.8 kcal mol–1

tunbind = 0.03±0.001 µs

G = 7.8±0.6 kcal mol–1 

tunbind = 91±40 µs

G = 3.6±0.6 kcal mol–1

Tunbind = 5.3±4 µs 

G = 4.3±0.7 kcal mol–1

tunbind = 394±141 µs 

G = 2.0±0.5 kcal mol–1

tunbind = 63±6 µs

G = 0.03±0.2 kcal mol–1

Tunbind = 3.5±2 µs 

G = 4.9±0.7 kcal mol–1
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1*

1*

1*
1

1

1
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1* Pij < 0.0001

Pij > 0.0001

Pij > 0.001

Pij > 0.01

Figure 3 | Benzamidine binding to different Trypsin conformations. Trypsin conformations with Benzamidine-bound and the binding mode of

Benzamidine. The seven conformational states shown are equal to the six apo states shown in Fig. 1, plus the yellow conformation that is only found with

Benzamidine-bound. The binding pocket conformation is defined by three loops: the yellow loop (residues 187–194) with Asp189, the green loop (residues

215–221) with Trp215 and the orange loop (residues 225–230). The circles have an area proportional to the equilibrium probability of the respective

conformation, given that Benzamidine is bound, pi. Their respective relative free energies G¼ � kBT ln pi and the unbinding times tunbind (mean first

passage time to unbinding) are given. The arrows indicate the transition probabilities for direct transitions between the different states. The binding mode

(pocket 1 or 1*) is indicated by the green square with ‘1’ or ‘1*’.
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structure 3PTB and has the highest conditional binding affinity,
although it is not the overall most stable bound state. In the
orange conformation both binding pockets are accessible but only
binding into the S1 pocket occurs with high affinity. In the yellow
and red conformations the S1* pocket is open and has a high
conditional binding affinity. The overall stability of the bound
states is determined by both, the stability of the protein structure
itself and the ligand-binding affinity. In the apo form, protein
structures with the S1 pocket closed are more stable; however, the
highest conditional binding affinity is found for the open S1
pocket (for example, magenta X-ray structure). Therefore, there is
a trade-off between favourable protein structures and high
binding affinities. Overall, this trade-off is best met by the red
structure where the S1 pocket is closed and the S1* pocket has a
high binding affinity because of the fact that the Sw loop
containing Asp189 is moved inwards (see Fig. 1b). As a result, the
red bound conformation is the most stable state found in the
Trypsin–Benzamidine complex.

By comparing the relative populations in the apo form (Fig. 1a)
with the populations in the bound form (Fig. 3), it is apparent
that the presence of the ligand significantly shifts the populations
of the protein. In addition to the conformational plasticity that
can be achieved by changing sequence space (see above), Trypsin
also has conformational plasticity on addition of the Benzamidine
ligand. Most likely, other ligands will achieve quantitatively
different population changes.

Binding kinetics and conformational kinetics. Figure 4 sum-
marizes the absolute equilibrium probabilities in the simulation
set-up and the kinetic network connecting bound, unbound and
associated states. Both the unbound states and the bound states
are only weakly connected among themselves (mainly through
the green hub structure). The red structure (both bound and
unbound) is kinetically most separated from the other structures.
The strongest connections are between bound and unbound
states and—where they exist—also associated states. Thus, the
binding kinetics is dominated by kinetically separated binding
channels along individual Trypsin conformations. In the blue,
green and orange conformations, the ligand will bind and unbind
rapidly, typically several times before a conformational change in
the protein occurs. The yellow bound state is exceptional in that it
is only accessible through a conformational change from the

bound green state. Here the presence of the ligand induces a
conformational change from the green to the yellow state. Both
the magenta and the red binding channels are very stable and
their bound states will only dissociate after very long waiting
times.

Association (kon) and dissociation rate (koff) constants were
calculated on the basis of the mean first passage times and
compared with previous work and experimental data from ref. 54.
The computed association rate kon¼ 6.4±1.6� 107mol� 1 s� 1

compares well with the experimental value kexpon ¼
2:9�107mol� 1s� 1, while the computed dissociation rate
koff¼ 131±109� 102 s� 1 is too fast compared with the
experimental values and k

exp
off ¼ 6�102s� 1, as in previous

computational studies23. However, the uncertainty in the
dissociation rate is very large as the dissociation events are
poorly sampled. Methods such as TRAM55 could be employed in
the future to substantially reduce the uncertainty of dissociation
rates when the association step can be sampled well. Systematic
differences in k

exp
off or likely due to force field inaccuracies.

As indicated in Fig. 1, all six apo states are able to bind the
ligand and possess binding times between 0.2 and 3.7 ms, with
most of them B1ms within our simulation set-up that
corresponds to a ligand concentration of 3.7mM.

Figure 3 reports the dissociation times conditioned on each
conformation of Trypsin. The ‘unstable’ binders (blue, green)
have similar binding and unbinding times—here both binding
and unbinding are possible on timescales of a few microseconds.
The orange state is also a relatively weak binder with a
dissociation time of B5 ms. The yellow and red states are very
stable binders and have dissociation times of 60 and 90 ms,
respectively. The X-ray-like (magenta) conformation is interest-
ingly the kinetically most stable binding conformation, having an
unbinding time of almost 400 ms, despite the fact that it is
2 kcalmol� 1 less stable than the red state.

Binding pathways and mechanisms. The transition path the-
ory56 in the MSM formulation14 was used to analyse the binding
pathways and rebinding pathways, illustrating typical
mechanisms of protein–ligand binding. Figure 5a shows the
predominant set of binding pathways to the most stable apo
conformation (green) ending up in the most stable complex
conformation (red). Since the green conformation is a state with a

Unbound

Associated

Bound

Pij > 0.1

Pij > 0.01

Pij > 0.001

Pij > 0.0001

Pij < 0.0001

Figure 4 | Kinetic network of binding and conformational dynamics. Kinetic network of Trypsin–Benzamidine binding and Trypsin conformational

dynamics. Size of circles indicates the free energy of the states (proportional to � ln pi). Widths of arrows indicate transition probabilities (proportional to

� ln pij, see legend). The colours are identical to Fig. 1.
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small conditional binding affinity, there is a conformational
switch towards the red structure during the binding that can
either occur in the unbound ensemble or after ligand association.
Here the transition in the unbound ensemble is slightly preferred
to the transition in the complex state. As a result of this
conformational switch, the associated pathway is slow and occurs
at timescales of the conformational changes. This binding
mechanism is dominated by the conformational selection
pathway43.

Figure 5b shows a rebinding pathway in which the kinetically
very stable yellow bound conformation unbinds and rebinds to
the most stable bound conformation (red). The fact that

rebinding occurs predominantly through the unbound state and
not directly is another indicator that conformational selection and
kinetic partitioning play an important role in the present protein–
ligand pair. The structures corresponding to the main rebinding
pathway are shown in Fig. 5c.

On the other hand, the population changes between unbound
and bound conformations are a hallmark of induced fit-type
binding43. A more direct evidence for induced fit is the existence
of the yellow conformation that is only observed in the bound
state. In this state, the opening of pocket 2 is induced by
Benzamidine. Therefore, Trypsin–Benzamidine exhibits features
of both induced fit and conformational selection.

Unbound

Associated

Bound 

Unbound 

Associated 

Bound
1. 2. 

3. 4. 

5. 

1
. 

2
. 

3
. 

4
. 

5
. 

fij > 80 % fij > 1 %

fij > 0.1 %fij > 5 %

Figure 5 | Binding and rebinding pathways. Binding and rebinding pathways with probability fluxes fij between states i and j obtained using the transition

path theory. (a) Binding pathways from the most stable unbound (apo) to the most stable bound state. Part of the mechanism is a transition from a

binding-incompetent to a binding-competent structure that includes a rearrangement of biding pocket 2 shown by the green and red loops in c.

(b) Rebinding pathways from a misbound structure to the most probable bound structure. The complex is most likely to first dissociate and then

reassociate, indicating that conformational selection dominates the kinetics. (c) Structures of the main rebinding pathways in b.
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Discussion
By combining extensive MD simulations and Markov models, we
have explored the conformational dynamics of Trypsin and its
coupling to the inhibitor binding and dissociation of Benzami-
dine. A key to sample the rare-event transitions was to break
down conformational and binding-unbinding events into smaller
transitions between Markov model microstates. By conducting a
Markov model analysis during the simulation procedure and
restarting trajectories in the newly found states that were yet
under-sampled, we could obtain data to parametrize a Markov
model on timescales that are much beyond those that can
be explored by straightforward MD simulation. While this
procedure was mostly carried out manually in this work, future
studies may be able to find fully automated ways of adaptive
simulation52,57,58.

We have found six distinct conformations in the apo state of
Trypsin that interconvert slowly, on the order of tens of
microseconds. These transitions are governed by conformational
switches that control the accessibility of two binding pockets, thus
affecting both affinity and kinetics of binding.

The binding kinetics exhibits features of both the conforma-
tional selection and induced fit binding models. The main
binding pathways occur by first selecting a binding-competent
(high affinity) conformation and then binding. However, on
binding the populations are shifted and the existence of at least
one new protein conformation is induced by the ligand, which is
a hallmark of induced fit. In situations of high ligand
concentrations, the binding rate is limited by the transition rates
between apo conformations. At lower concentrations, protein–
ligand encounter complexes are rare, the conformational kinetics
in the apo state have averaged out and the protein state is picked
from equilibrium. Nevertheless, even in this situation, the
conformational kinetics and binding kinetics are intertwined as
the different conformations possess different conditional binding
affinities, that is the relative stabilities of conformations change
on binding. Therefore, binding events mix with slow conforma-
tional transitions and can be affected by escape times from
conformations that live tens or even hundreds of microseconds
before relaxing to the most stable bound state.

Overall, the binding/unbinding kinetics of Trypsin–
Benzamidine cannot be faithfully described as a two-state process
because the slowest transitions are not due to binding/unbinding.
The Markov model parametrized here could be used as a suitable
effective model that could, for example, be embedded into a
particle-based reaction-diffusion simulation59 to simulate the
effects of protein and inhibitor distribution in a cell or an assay.

Besides Asp189, which is known to be critical as a recognition
site for the Benzamidine inhibitor, a number of protein residues
have been identified in this study to critically affect binding.
These include the following: Trp215 that acts as a ‘lid’ that can
open and close the binding pocket as well as Val217, Gln192 and
Gly219 that stabilize the lid in the closed state. This is
corroborated by the fact that for various other Trypsin-like
serine proteases, a similar role of Trp215 has been found. These
findings suggest mutational studies that could be carried out in an
experimental essay to test our simulation predictions.

Perhaps the most remarkable insight of this study is that the
various Trypsin conformations can be accessed and stabilized in
different ways. For five of the six states corresponding X-ray
structures in the pdb data bank could be identified that exhibit the
same structural features at the binding site. For the sixth state
structures with similar features but no direct correspondence at
the binding site were found. Thus, our wild-type simulations
explore a space of conformations that can be individually
stabilized by adding ligands or making suitable changes in
protein sequence. Thus, Trypsin has a large degree of

conformational plasticity as it was, for example, reported for
kinases60. This observation might hint towards a general principle
of conformational plasticity in protein receptor-binding sites that
deserves further experimental and theoretical studies.

Methods
MD simulation set-up. The MD set-up and parameters for Trypsin and Benza-
midine are identical to the settings used in ref. 23. The set-up was based on the
X-ray structure of a Trypsin–Benzamidine complex (PDB 3PTB). Trypsin was
modelled using the AMBER 99SB force field61 and the ligand with the general
AMBER force field62. The system was solvated with TIP3P water molecules63 and
neutralized with chloride ions. The simulation contained one calcium ion as found
in crystal structure 3PTB coordinated by residues Glu70, Glu77 and Glu80. The
data set used for the following analyses contained the 491 trajectories of 100 ns
used in ref. 23. Additional MD simulations were carried out using the ACEMD
programme64 on a in-house GPU cluster. Four trajectories of 1 ms and forty-eight
trajectories of 2 ms were started from different starting structures (unbound and
bound, different metastable states) in multiple rounds of manual selection. The
total simulation time sums up to 149.1 ms. Full configurations were written every
100 ps for analysis.

MSM and validation. The MSM was obtained from the MD simulation data by
combining functionalities of the programme EMMA65 (http://pyemma.org).
Initially, various definitions of microstates were tested. We found that the distances
between the Trypsin residues were required to resolve the conformational changes
of the protein. Using minimum distances between all 234 residues would result in
27,261 protein distances, which is numerically unfeasible; therefore, distances
between groups of two subsequent residues were used as input coordinates. The
slow linear subspace of these input coordinates was then estimated by computing a
time-lagged independent component analysis (TICA)18,66, and a dimension
reduction was achieved by projecting on the five slowest TICA components.
Uniform-distance clustering67 was employed to obtain an initial set of 139
microstates. An analysis of the microstates with various numbers of clusters
showed that, while the microstates clearly distinguished protein conformations,
they did not clearly distinguish between unbound and bound states. Hence, each
microstate was further split into bound state and all remaining states, based on the
Asp189-Benzamidine distance with a cutoff of 6 Å. This yielded a new set of 237
microstates. The cutoff was determined on the basis of the histogram of the
Asp189-Benzamidine distance of all trajectories (see Supplementary Fig. 2). The
coordinates of microstates in the first three TICA coordinates is shown in
Supplementary Fig. 8.

The transition matrix P̂ was calculated using the maximum likelihood reversible
transition matrix using the quadratic optimizer described in ref. 67, that is,

P̂ ¼ arg max
P

cij log pij

s:t: pipij ¼ pjpji

where pi is the stationary probability of microstate i.
The Markov model was validated in two ways. First, we computed the implied

timescales46, that is, the Markov model’s relaxation timescales as a function of the
lag time t. Moving block bootstrapping68 with block size t was employed to
compute statistical uncertainties. Supplementary Fig. 3 shows the expectation value
and the 1s confidence interval of t-dependent timescales obtained like this.
Timescales become constant within statistical error at a lag time of B20–30 ns.
Here t¼ 30 ns was chosen to estimate the final Markov model. As a second
validation step we conducted a Chapman–Kolmogorow test of the Markov model
as described in ref. 67. The Markov model estimated at 30 ns is consistent with
simulation data at all lag times up to 1 ms (Supplementary Fig. 3).

Metastable states and coarse-graining. The PCCAþþ method69 implemented
in pyEMMA was used to compute the metastable sets of microstates. Given that a
gap is found after the sixth relaxation timescales, seven metastable sets were
identified. As in our simulation set-up the binding process is fast compared with
the conformational changes, these sets mostly lumped bound and unbound states.
Therefore, these seven sets were further divided into up to three subsets each by
separating bound, unbound and associated sets (see above). The resulting sets are
found in Figs 1, 3 and 4, and using different colours for different metastable
conformations.

For each metastable set of microstates, the binding free energy of that
metastable set is computed by comparing the probabilities of its bound microstates
and its unbound microstates:

DGbinding ¼ �RTlog
X

i bound

pi þRTlog
X

i unbound

pi

To compare to experiment this number needs to be corrected by the reference
volume of the experiment compared with the simulation box, which corresponds
to B3.1 kcal mol� 1 in our case23.
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Figures 1–4 also show coarse-grained transition probabilities as arrows. These
probabilities were obtained by coarse-graining of microstate transition probabilities
(i,j) to macrostate transition probabilities (I,J) with:

~pIJ ¼
1
pI

X

i2I

X

i2J

pipij

where pI ¼
P

i2I pi is the macrostate equilibrium probability. Note that this
coarse-graining approach only provides a qualitative illustration of kinetics and
connectivity. To obtain a transferable coarse-grained model, different coarse-
graining methods70,71 should be used.

The mean first passage times are computed as described in ref. 72 using
pyEMMA. To obtain a coarse-grained mean first passage time from set I to set J, set
J is defined as a target set, and the mean first passage time is then obtained as a
usual expectation value:

mfptðI; JÞ ¼
1
pI

X

i2I

pimfptði; JÞ:

Transition path theory. To compute the transition path fluxes shown in Fig. 5,
transition path theory56,73 was employed using the expressions for transition
matrices derived in ref. 14. Because the Markov model employed here is reversible,
the transition path flux can be computed from the forward committor probabilities
qþ
i as:

f þij ¼ pipij qþ
j � qþ

i

� �

:
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