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We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation

rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the

abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show

that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay

rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in

protein abundance during growth. Protein complex membership and specific protein domains were found to be strong

predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We

discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins

whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information,

we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome.

INTRODUCTION

For plants to respond to the daily requirements of cellular main-
tenance and for their organs to progress through different de-
velopmental stages, new complements of proteins need to be
synthesized while existing ones are degraded. Protein synthesis
occurs via ribosomes in the cytosol, plastid, and mitochondrion.
Synthesis rate is defined by the abundance and availability of
different mRNA (Juntawong et al., 2014), the energetic status of
cells to provide the amino acids and ATP for catalysis (Edwards
et al., 2012), and the posttranslational regulation of ribosomal
function (Renet al., 2011).Cellular proteindegradation is achieved
by the coordinated action of the proteasome on ubiquitinated
proteins in the cytosol (Vierstra, 2009), autophagy of cytosolic
complexes and organelles through vacuole-based protein deg-
radation machinery (Araújo et al., 2011), and a network of or-
ganelle-localized proteases (Janska et al., 2013; van Wijk, 2015).
The rates of synthesis and degradation of individual proteins
define the proteomes of plant tissues and their rate of change.

The combination of protein synthesis and degradation is often
termed protein turnover; however, there are many different defi-
nitions andassumptionsmade in using this termand in calculating
it. Protein degradation rates and calculated turnover rates can be
measured on a total plant protein basis by combining all poly-
peptides as a group and measuring rates at which “old protein”
disappears or “new protein” replaces old. These types of

calculation look at the amount of original protein remaining and/or
the proportion of new protein to old at several time points and
calculate a rate of renewal. This approach typically does not
consider the inherent rate of degradation of the newly synthesized
material.Ratescalculatedwithoutconsideringdegradationofnew
proteins are intrinsically linked to the growth rate of the tissue
which can dramatically alter the pool size of the new protein
component over time. Protein turnover of roots has been mea-
sured this way using pulse chase 14C-leucine labeling of fast- and
slow-growing grass species (Scheurwater et al., 2000) to define
degradation rates of 0.12 to 0.16 d21 and a total protein half-life of
4 to 6 d. Using Arabidopsis thaliana rosettes and 13CO2 pulse-
chase labeling (and a focus on the relative isotope ratio of Ala
residues) degradation rates of 0.03 to 0.04 d21 and a leaf protein
half-life of 3.5 d were calculated by combining degradation and
original protein dilution through new protein synthesis (Ishihara
et al., 2015).
Protein degradation and turnover can also be measured for

specific proteins of interest. This requires a method to identify
individual proteins and to differentiate between old and new
polypeptides for the same protein over the timeframe of mea-
surement. Early studies used antibodies and generic protein
biosynthesis inhibitors to do this, but given the cellular conse-
quence of protein biosynthesis inhibition, there are many pleio-
tropic effects in such measurements in all but very short
timeframes (Vögtle et al., 2009; Armbruster et al., 2010). The
combination of stable isotopes and peptide mass spectrometry
have recently allowed old and new protein populations to be
differentiated without the need for protein biosynthesis inhibition
and have become a method of choice in new studies. The ex-
perimental measurement of protein degradation rate (KD) through
isotopic labelingandmassspectrometry (MS)hasenableddatasets
of hundreds of individual protein degradation rates and half-lives to
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be assessed in yeast, mammalian cell culture, and intact animals
typically usingsingle labeled aminoacids (SILAC) (Price et al., 2010;
Schwanhäusser et al., 2011; Yipet al., 2011). Plants are typically not
amenable to successful SILAC labeling due to their synthesis and
interconversion of all protein amino acids. As a result, studies have
assessed theutility of variousmetabolic labels (2H, 13C, and 15N) for
the purpose in plants (Yang et al., 2010; Chen et al., 2011; Li et al.,
2012). Recently,metabolic labelingwith inorganic 15Nhasbeen the
most commonly used stable isotope incorporation technique to
define degradation or turnover rates of organelle proteins in Ara-
bidopsis cell culture (Nelson et al., 2013), protease targets in Ara-
bidopsis leafmitochondria (Huang et al., 2015; Li et al., 2016),;500
proteins in barley (Hordeum vulgare) leaves (Nelson et al., 2014),
;200 membrane and microsomal fraction proteins from Arabi-
dopsis roots (Fan et al., 2016), and;500Medicago truncatula leaf
and root proteins during drought and recovery from drought (Lyon
et al., 2016). One study has also followed selected protein degra-
dation ratesusing 13CO2 inArabidopsis leaves (Ishiharaet al., 2015).
While the primary data from labeling in each case represent relative
isotope abundance for a given peptide, different methods have
beenused tocalculateprotein degradation, synthesis, and turnover
rates and protein half-lives. Some of these calculations considered
thegrowth rateof tissues, thedegradation rateofnewlysynthesized
proteins, and the relative abundance of different proteins during
labeling, while others did not. Depending on the method used, the
KD reported can be highly dependent on tissue growth rate and/or
on relative abundance of the protein over time and may not rep-
resent a property of the polypeptide per se. As a result, we still have
limiteddataon therateofproteindegradation fordifferentclassesof
plant proteins and little clarity about whether degradation rate is
a variable or constant feature of the lifecycle of a specific plant
polypeptide type.

Here, we aimed to define the key features of proteins that de-
termine their experimental degradation rate andmeasurechanges
in these rates for given protein sets at different stages of Arabi-
dopsis leaf growth through assembly of a larger andmore precise
data set than used in previous studies. This approach provides
a foundational data set for protein degradation rates in Arabi-
dopsis and evidence of which proteins have variable degradation
rates as leaves grow. In the process, we have identified rapidly
degrading subunits in a variety of protein complexes in plastids,
found the set of proteins for which degradation rate positively or
negatively correlates with leaf growth rate, and considered the
protein turnover energy costs for total and specific proteins in
different leaves of the Arabidopsis rosette.

RESULTS

Changes in Arabidopsis Leaf Protein Content at Different

Stages of Leaf Development

When specificproteins remain in steady statewithin the proteome
over the time course of 15N progressive labeling, a single dilution
effect can be calculated and applied to account for the rate of
tissue growth. To calculate this dilution effect, Arabidopsis
seedlings were grown in natural abundance hydroponic culture
medium (99.6% 14N) for 21 d until they produced their tenth true

leaf, a stage referred to as leaf production stage 1.10 (Boyes et al.,
2001). To compare their total protein abundance, leaf numbers 3,
5, and7 fromaseriesof rosetteswerecollectedover aperiodof 5d
(Supplemental Figure 1A). Proteins were extracted from these leaf
samples for analysis of total leaf protein content (Figure 1). This
allowed an assessment of the growth rate of different leaves of
the rosette on a protein basis. We assessed protein content by
protein extraction and amido black measurement (Supplemental
Data Set 1) and by imaging gel-separated proteins from whole
leaves ground into sample buffer (Supplemental Figure 1B and
Supplemental Data Set 1). Leaf 3 increased its total protein
content by only 3% per day, in contrast to leaves 5 and 7, which
grew at 3 and 5 times this rate, respectively (Figure 1). As a con-
sequence, leaf 7 nearly doubled in size and total protein content
over five days while leaf 3 hardly grew at all.

Protein Degradation Rate of Specific Proteins in

Arabidopsis Leaves

Leaves in the Arabidopsis rosette were then sampled at the same
time points as above, but in this case the hydroponicmediumwas
changed at T = 0 from 99.6% 14N to 98% 15N to allow progressive
labeling of each leaf over the time course of 5 d. A flow diagram of
theexperiment and thesamplepreparation formassspectrometry

Figure 1. Individual Growth Rates of Leaves in the Arabidopsis Rosette
and the Consequent Fold Change in Protein over Time.

Leaves 3, 5, and 7 from Arabidopsis plants grown in hydroponic culture
werecollectedover a timecourse (T0, 1, 3, and5d) beginningwith21-d-old
plants that had developed 10 leaves (leaf production stage 1.10). Typical
imagesof leaves3 to8 from theseplants at thebeginningof theexperiment
are shown. The growth of leaves over the subsequent 5 dwere determined
by following the fold change in protein per leaf at each timepoint compared
with T0 for leaf 3 (green), leaf 5 (yellow), and leaf 7 (red). An average relative
growth rate (d21) was determined from both changes in fresh weight and
protein content by scanning images of gels (Supplemental Figure 1 and
Supplemental Data Set 1).
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are shown in Supplemental Figure 2. Extensive liquid chroma-
tography-tandem MS analysis of these samples provided data
from61,196 independently quantifiedpeptides forwhichwecould
acquire the ratio between natural abundance (NA) and heavy (H)
labeledpeptides.Using the ratioof labeled toNApeptidesand fold
change in protein (FCP) as each leaf grew (Figure 1), we estimated
degradation rate for 1228 nonredundant Arabidopsis proteins.
Inclusion in this list required each protein to be quantified in$3 of
27 samples, the number of peptides quantified independently in
the 27 samples to be greater or equal to 5 and for the protein
identification to be P > 0.95 as outlined inMethods (Supplemental
Data Sets 2A and 2B). Sample calculations of labeled protein
fraction [LPF; i.e., H/(H+NA)] are shown for a slow degrading
peptide (Supplemental Figure 3A) and a fast degrading peptide
(Supplemental Figure 3B) in each of the three leaves over the time
course. The degradation rates (KD) of 1228 proteins were calcu-
lated as explained in the Methods section and as shown in
Supplemental Figure 3C for the example of a fast and a slow
degrading peptide. KD is the proportional decrease of the current
protein abundance per day; i.e., it is the exponential constant of
thedecay rate for eachprotein andas suchhasunits of d21. These
KD rates showedawide distribution ranging from0 to 2d21, which
is equivalent to half-lives for proteins of several hours to several
months. These are the average KD across all cell types in a leaf
tissue examined and, like all quantitative proteomics, any cell
type-specific differenceswill be lost in this averaging. Themedian
relative SE (RSE) was <10% for measurement of KD of a specific
protein (Supplemental Data Set 2B). In general,;15%of the data
(184 proteins) showed degradation ratesmore than 2 times the KD

median (;0.22 d21), whichwe defined as relatively fast degrading
proteins; ;13% (161 proteins) showed degradation rates of less
than half the median (;0.055 d21), which we defined as relatively
slowly degrading proteins, while the majority (72%) showed
values in the 4-fold range between these KD values (Supplemental
Data Set 2B).

Determination of the fraction of proteins that are labeled, rep-
resented by the LPF value, is a binary differentiation between two
populations of peptides. As the peptides measured typically
contained 8 to 30 nitrogen atoms per peptide, only a few nitrogen
atomsanywhere in thepeptidewouldplaceapeptide in theheavy-
labeled pool. All such peptides were considered heavy-labeled
and the degree of 15N labeling formed no part of our calculations.
This is distinct from measurements of the incorporation of
a specific amino acid within a peptide, which requires a detailed
knowledge of the peptide incorporation ratio in that amino acids
and the free amino acid pool incorporation ratio to calculate
peptide synthesis levels (Ishihara et al., 2015). However, despite
these advantages, the LPF approach employed here can be af-
fected by a lag before new protein synthesis can be effectively
distinguishable from previously present (NA) proteins. The lag is
overcome as soon as a 10 to 15% labeling level is reached in
major amino acid pools (Nelson et al., 2014). The three different
leaves did show some differences in 15N labeling efficiency
(Supplemental Figure 4). A regression method can be used to
determine the lag effect as the lag in the x-intercept value when
graphingofall timepoints (Nelsonet al., 2014).Calculationsbased
on thismethodshowed leaves3, 5, and7hada5- to6-h lagbefore
15N reached this 10 to 15% threshold (L3 = 4.7 h, L5 = 5.9 h, and

L7=5.2 h). This represented 4 to 25%of the time interval for day 5,
day3, andday1data, respectively,whichwassimilar to theRSEof
our calculations for any one protein. To examine if this calculable
lag would systematically effect KD values, we selected 146 pro-
teins that were quantified in all samples at all time points and
plotted their degradation rates together across all three replicates,
time points, and leaf types. No significant trendswere apparent to
indicate that this general effectwould bias our data (Supplemental
Figure5).Wearenotawareof literature that hasdivided leaves into
cell types to show differences in 15N incorporation rate within
leaves to justify the concern that lag averages are not a fair re-
flection for an average leaf calculation.
Grouping proteins by their functional category (Figure 2A)

showed that most protein groups maintained the median deg-
radation rate of ;0.11 d21. Exceptions were proteins involved in
protein synthesis that degraded at closer to 0.03 d21 and stress,
secondarymetabolism, and redox proteins that degraded at rates
approaching 0.20 d21. Individual proteins degrading at very high
rates were found in many functional categories and typically
showed rates from 0.6 up to 2.0 d21, which was 6 to 20 times the
medianKDand4 to13standarddeviations fromthemedian (Figure
2A). The 20 fastest degrading proteins comprised a set of eight
plastid proteins, six cytosolic proteins, and six proteins localized
elsewhere in thecell (Table1). To look forevidenceofdifferences in
the rate of autophagy of cellular structures or the role of intra-
organellar proteases in changing the degradation rate inside
specific organelles, we arranged the data set into the final sub-
cellular location of proteins using the location Bayesian classifier,
SUBAcon (Tanz et al., 2013; Hooper et al., 2014). This showed
a lower median degradation rate of mitochondrial, plastidial, and
nuclear proteomes and a higher median degradation rate for the
proteomes of endoplasmic reticulum (ER) and the Golgi appa-
ratus. This is broadly consistent with the physical separation of
organelle proteomes from the cytosolic proteolysis system and
the transient nature of the protein complement of ER and Golgi
(Figure 2B). Direct comparison of protein degradation rates in this
data set to either orthologs in barley (Nelson et al., 2014) was
possible because the same measurement approach was used in
both of these studies (Figure 2C). This comparison showed that
four ortholog pairs between the two species had consistently high
degradation rates, namely, the thiamin synthesis enzymes THI1
and THIC, D1 of PSII, and PTERIN DEHYDRATASE (R = 0.99).
However, more broadly this comparison showed a relatively low
correlation between degradation rate of the majority of Arabi-
dopsis and barley homologous pairs (R = 0.38).

Changes in Arabidopsis Leaf Proteomes at Different Stages

of Development and across the Diurnal Cycle

Tocheck if proteins remained insteadystatewithin leafproteomes
over the time course of our measurements, the relative abun-
dances of specific Arabidopsis proteins were assessed in the
samples from different time points by spiking natural abundance
samples after protein extraction with a 15N fully labeled protein
sample from a separate batch of Arabidopsis leaves kept as
a reference standard. Mixed proteins were then in-solution di-
gested by trypsin for MS analysis. A flow diagram of this exper-
iment and the sample preparation for MS are also shown in
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Figure 2. Degradation Rates of 1228 Arabidopsis Proteins Reported as Averages Based on Functional Categories or Localization inside Cells and in
Comparison to Barley Orthologs.

(A) Average Arabidopsis leaf protein degradation rates box-plotted by functional categories and their localization in cells. Functional categories were
acquired from MapCave and localization information from SUBAIII. Only major functional categories and localization groups (n > 10) are shown. Median,
quartiles,andstandarddeviationsareshown.Outliersareshownashollowdotsandextremeoutliersarehighlightedassolidsquaresandannotated.Thefive
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Supplemental Figure 2. This provided quantitation of 1697 non-
redundant proteins. Proteins were included in this group if they
were quantified in $3 of 36 samples, the number of peptides
quantified independently in the 36 samples was $5, and the
protein identification had P > 0.95 as outlined in Methods
(Supplemental Data Set 3A). In total, 955 proteins in this set of
1697 were also found in the set of 1228 proteins for which we
calculated a KD value (Figure 3A; Supplemental Data Set 3B).
Principal component analysis of protein relative abundance data
from this MS experiment showed that the three different leaves in
the rosette could be separated by a single principal component
explaining 43% of the variation (Figure 3B). Only minor variations
were observed in the principal component analysis between
samples of the same leaf number at different points in time.
Changes in relative protein abundances over time in the different
leaf proteomes were compared and statistically evaluated by t

testsandone-wayANOVA (Figure3C;SupplementalDataSet3C).
This analysis indicated that only a few percent of proteins sig-
nificantly changed in abundance in leaf 3 across the whole time
course,whichwasclose to expectation for randomvariation in the
experiment (P < 0.01). Leaf 7 showed a similar pattern of per-
centage differenceswith only the samples from the day 1 showing
significant differences from day 5 samples. No specific proteins
were found to change in abundance between all time points in leaf
3and leaf7 (Figure3C).Bycontrast, leaf5showed13 to33%of the
analyzed protein set differing in relative abundance by day 5;
however, only 0.4% (two proteins) showed consistent changes
across the time course (Supplemental Data Set 3C). This revealed
that relatively high abundance proteins of leaf 3 and leaf 7 were
effectively in steady state during the experiment, albeit with dif-
ferent rates of new tissue growth (Figure 1); thus, steady state
principles could be applied to establish protein degradation rates
for existing proteins in leaves 3 and 7 over a 5-d period. For leaf 5,
somevariation inabundancewasevidentbutonly at theday5 time
point. The majority of data showed only 20 to 30% changes in
abundance, for the proteins that differed at day 5, which will not
have a major effect on KD calculations.

One important factor that could explain the need for rapid
degradation of some proteins is a circadian or diurnal change in
transcriptionand translation thatwouldneed tobematchedby the
degradation rate to enable a daily rhythm in protein abundance.
Expression profiling of Arabidopsis leaves has previously shown
that diurnal patternsof transcription canunderlie daily fluctuations
in protein abundances in leaves (Mockler et al., 2007;Giraud et al.,
2010; Lee et al., 2010). To test if enhanced degradation rate
correlates with diurnal gene expression or protein abundance
changes, we attempted to correlate the calculated KD with the

degree of change in transcript abundance of diurnally regulated
genes (Mockler et al., 2007) or thedegreeof change inArabidopsis
protein abundance following 8 h of illumination (Liang et al., 2016);
however, we found no significant correlation of these with KD (R =
0.01 and R = 0.02–0.08; n = 917 and 1158, respectively). By
contrast, when the 1228 KD values were separated into slow (n =
161), intermediate (n = 883), and fast (n = 184) groups, as outlined
above, and compared with light-induced, dark-induced, and
nondiurnal transcripts (as defined in Mockler et al., 2007), non-
parametric tests showedanenrichment (P< 0.01) of light-induced
transcripts in the fast KD group compared with the nondiurnal
or dark-induced transcripts. This apparent link between light-
induced diurnal expression and fast KDwas observed in long-day
or 12 h/12 h experiments in both Col-0 and Ler backgrounds
(Smith et al., 2004; Bläsing et al., 2005; Mockler et al., 2007).

Intrinsic Protein Properties Linked to Degradation Rate

The fact that protein degradation rate of individual proteins was
quite reproducible between leaf types over the time course in-
dicated that some factors intrinsic to each protein’s expression,
protein properties, or susceptibility to modification, unfolding, or
proteolysis could be a central controller of protein degradation
rate. The N-end rule proposes that the N-terminal amino acid of
a protein is a key driver for turnover rate. A series of stabilizing and
destabilizing N-terminal amino acids have already been experi-
mentally defined in yeast and mammals (Bachmair et al., 1986;
Gondaetal., 1989).However,wewereunable tofindanystatistical
linkage between KD and either the N-end amino acid of mature
proteins or sets of amino acids considered to be stable, unstable,
or of average stability based on yeast and mammalian data
(Figure4A;SupplementalDataSet4A). Aminoacid residueswithin
protein sequences can promote ordered aggregation, which
can be a precondition for altered rates of protein degradation
in mammals. The TANGO algorithm can predict this aggrega-
tion propensity (Fernandez-Escamilla et al., 2004). In our set of
1228 proteins, the top 100 fastest degrading proteins show sig-
nificantly higher protein aggregation propensity (AGG; P < 0.05)
and longer amino acid length (LEN; P < 0.05), but no significant
difference (P = 0.70) in AGG/LEN when compared with the
100 slowest turnover proteins (Figure 4B; Supplemental Data Set
4B). This result implies that the aggregation propensity of faster
degradation proteins inArabidopsiswasdependent on length and
there was a tendency for proteins to be longer in the set of faster
degrading proteins. Integral membrane proteins require different
machinery for degradation than soluble proteins and have dif-
ferent accessibility to proteases (Fleig et al., 2012; Avci and

Figure 2. (continued).

major localizations are highlighted with colors: cytosol (Cyt, blue), nucleus (Nc, red), extracellular (Et, cyan), mitochondrion (Mt, yellow), and plastid (Pt,
green).
(B)Protein degradation rates of the 1228 proteins box-plotted based on localization within the cell. DUAL, dual targeting proteins; Vc, vacuole; PM, plasma
membrane; Px, peroxisomal. Other abbreviations as in (A).
(C) Protein degradation rates of a subset of 288 Arabidopsis proteins for which orthologs in barley had published rates. One spot represents a protein
turnover rate in barley (x axis) and Arabidopsis (y axis). Four outliers (2 SD above median, in red dashed line rectangle) are shown (Pearson correlation, R =
0.99). The remaining 284 proteins (pointed out by black dashed line rectangle) are shown by black dots (Pearson correlation, R = 0.38).
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Lemberg, 2015). Neither grand average of hydrophobicity nor
transmembrane domain number showed overall correlations with
the KD of proteins, but beta barrel structure proteins had very low
KD values compared with other groups of proteins (Supplemental
Data Set 4C).

Many proteins do not operate as independent monomers in vivo
but are present in strict stoichiometry in protein complexes. We
tested the hypothesis that degradation rates of members of
a complex would be more consistent with other members of the
same complex than thewider set of cellular proteins. Themembers
of seven major protein complexes representing the cytosol ribo-
some, proteasome, plastid ATP synthase, plastid ribosome, PSI,
PSII, and mitochondrial electron transport chain were extracted
from the 1228 data set, and all other proteins in the 1228 were
considered in one group, designated as “Others.” Outlier data for
specific protein complexes and from the Others group were re-
moved for the analysis. The SD (s) was calculated for KD values for
each protein complex (Figure 4C, red line) with N subunits, and this
was comparedwith 100,000 randomly sampled sets of the sameN
from the Others category (blue distributions). Probability values
showed that in all cases, except the cytosolic ribosome, the
standard deviations were significantly smaller for the complexes
than for the random distribution sets of the same N. In a comple-
mentary approach, a pairwiseSilhouette (Si) clustering comparison
(Rousseeuw, 1987) was performed between each protein complex
and Others. The ∆Si value (22, 2) in each case showed the level of
relative tightness of the KD rates of the specific protein complexes
comparedwithOthers. PlastidATPsynthase, PSI, andproteasome
had the highest ∆Si values and were thus the three protein com-
plexeswith the tightestdistribution in termsof thedegradation rates
of their subunits (Supplemental Data Set 4D).

A protein’s function or domain structure may also be a factor in
defining its degradation rate. Thehighdegradation rate of proteins
has previously been explained based on specific features of
a protein fold that enables rapid degradation in protein abun-
dance, e.g., the auxin degron (Nishimura et al., 2009), or the ir-
reversible binding of inhibitors to a protein domain or due to an
enzymatic mechanism that damages an active site (e.g., self-
hydrolyzing enzymes, reactive oxygen species damage, cosub-
strate enzymes, or catalysiswith suicidesubstrates) (Walsh, 1984;
Chatterjee et al., 2011). To test systematically for domains in
Arabidopsis proteins linked to degradation rate, we searched for
differences in protein degradation rate distributions between
protein sets with common protein domains. Fifty-eight non-
redundant protein domain sets were selected for nonparametric
k-sample K-W (P < 0.01) and C-I post-hoc testing (Table 2;
Supplemental DataSet 4E). Theseprotein domainscanbedivided
into 10groups (A–J) basedondegradation rates. The four proteins
containing the SH3 domain involved in translation were the most
stable proteins (median of 0.05 d21), while the four proteins (three
E2 and one E1 ligases) containing the ubiquitin-conjugating en-
zyme domain (median of 0.38 d21) were the most unstable.

Differences in Degradation Rate and Abundance of Specific

Proteins in Leaves of Varying Ages

While overall protein degradation rates of individual proteins were
relatively reproducible (medianRSEof all peptide data or a protein
;10% and between leaf types in the rosette RSE ;16%;
Supplemental Data Set 2B), there were specific proteins for which
degradation rateappeared tobesignificantly influencedby the leaf
from which the protein was derived. Analysis of these proteins

Table 1. The 20 Most Rapidly Degrading Proteins in Arabidopsis Leaves

Protein Location Functional Category KD (d21) SE Brep No. Pep No. Half-Life (d)

At5g54770 THI1 Plastid Cofactor and vitamin metabolism 1.93 0.16 12 31 0.36
At1g79930 HSP91 Cytosol Stress 1.88 0.49 6 6 0.37
At4g17090 BAM3 Plastid Major CHO metabolism 1.62 0.11 7 12 0.43
At3g19710 BCAT4 Cytosol Amino acid synthesis 1.15 0.09 5 8 0.60
At3g22200 POP2 Mito Amino acid synthesis 1.09 0.31 4 5 0.64
AtCg00020 D1 Plastid Light reaction 1.08 0.15 11 36 0.64
At5g19140 AILP1 Plastid Metal handling 1.05 0.05 7 8 0.66
At1g23290 RPL27A Cytosol Protein synthesis 0.97 0.05 5 5 0.72
At2g29630 THIC Plastid Cofactor and vitamin metabolism 0.89 0.09 10 28 0.78
At3g15840 PIFI Plastid Light reaction 0.87 0.10 8 8 0.80
At1g72930 TIR Cytosol Stress 0.84 0.14 7 11 0.82
At1g11910 APA1 Vacuole Protein degradation 0.78 0.06 12 13 0.89
At3g20050 TCP-1 Cytosol Protein folding 0.77 0.34 5 7 0.90
At5g19940 PAP Plastid Cell organization 0.76 0.03 9 9 0.91
At4g14030 SBP1 Cytosol Metal handling 0.76 0.14 6 8 0.91
At1g22930 TCP-11 Nucleus Not assigned 0.75 0.32 7 7 0.92
At3g02110 SCPL25 Extracellular Protein degradation 0.73 0.02 9 9 0.94
At4g15545 NA Nucleus Not assigned 0.73 0.31 4 5 0.95
At1g42960 NA Plastid Not assigned 0.69 0.38 6 7 1.00
At5g62350 Invertase Extracellular Misc. 0.69 0.05 11 15 1.00

Protein accession number, short name, location in the cell, and functional category are shown for each protein. The protein’s degradation rate (KD) and
its SE are shown along with the number of biological samples in which it was observed (Brep No.), the number of peptide spectra used to calculate the
KD, and the calculated half-life of the protein.
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allowed us to look for linkages between changes in protein
degradation rate and protein relative abundance in two very dif-
ferent growth scenarios. Proteins in leaf 3 and leaf 7were selected
if they had significant differences in both protein abundance
(Figure 5A, left; P < 0.05; 502 pairs) and degradation rate (right; P <
0.05; 433 pairs) and the set was separated into functional cate-
gories. Leaves 3 and 7 were chosen because proteins in their
proteomes best reflected a steady state over time that could be
described by a simple dilution effect (Figure 3). The abundance
and degradation differences for these proteins were calculated as
relative ∆Abundance and relative ∆KD [i.e., (leaf 7-leaf 3)/average
(leaf 3, 7)] and are each presented as box plots in Figure 5A. The
dashed line indicates the point of parity between leaf 3 and leaf 7.
Lower protein abundance in leaf 3 or 7 correlated with higher
degradation rates for plastid proteins involved in cell organization,
light reactions, stress, Calvin cycle, and photorespiration en-
zymes,while highprotein abundances in leaf 3 or 7 correlatedwith
low protein degradation rate for plastid proteins involved in tet-
rapyrrole synthesis, protein folding, and protein synthesis. When
we focusedonphotosynthesis-associatedproteins, andmatched
individual proteins across the data from leaves 3, 7, and 5, we
found that there was a consistent correlation between relative

abundance (Figure5B) andproteindegradation rate (Figure 5C) on
aprotein-by-protein basis across different protein complexes and
metabolic pathways. In these experiments, leaf 5 KD data sat
neatly between that of leaf 3 and leaf 7, despite some concerns
about the steady state assumption rising fromFigure 3. A set of KD

values for 49 photosynthesis proteins were also independently
calculated by regression analysis across all time points to ensure
theeffectwasnotdue to themethodofcalculation. Thisalternative
analysis gave effectively the same result, i.e., degradation rates
were higher in leaf 7 than in leaf 3, with leaf 5 in between
(Supplemental Figure 6 and Supplemental Data Set 5A). A set of
179 unique proteins with significant changes in both degradation
rates andabundancesbetween leaves3and7were thenanalyzed
using correlation analysis. Nearly 85% of these proteins showed
patterns of either increasing degradation rate and decreasing
protein abundance, or decreasing degradation rate and higher
protein abundance (Supplemental Data Set 5D).

Protein Kinetic Signatures of Leaf Growth

In hypertrophic mouse hearts, organ growth rate has been as-
sociated with disease, and differences in protein degradation rate
have been used to propose the concept of “protein kinetic

Figure 3. Changes in Relative Abundance Estimates for Individual Proteins in Leaves of the Arabidopsis Rosette during 5 d of Leaf Growth.

(A) The intersection of the number of specific proteins with a measured KD value and a protein relative abundance assessment.
(B) Principal component analysis of specific protein abundances fromMS analysis. Abundance data for 955 proteins (KD values recorded in Figure 2) were
used for the analysis. The clusteringof leaf 3 (green), leaf 5 (yellow), and leaf 7 (green) is shown in thegray shading. The full data areprovided inSupplemental
Data Sets 3A and 3B.
(C) A matrix of paired statistical comparisons of protein abundance between day 0, day 1, day 3, and day 5 time points for each leaf is presented with the
percentage of the proteins from (B) that significantly changed in abundance (t test P < 0.01) reported (full data in Supplemental Data Set 3C). Outside the
matrix is the percentage of proteins measured that were found to change in abundance (t test P < 0.01) across the entire time course in each leaf.
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signatures”associatedwith cellular dysfunction (Lamet al., 2014).
These kinetic signatures have been defined as proteins for which
a change in degradation rate correlated with tissue growth rate.
These rate-changing proteins were regarded as a new type of
diseasemarker (Lametal., 2014).Weused thesameprinciplehere

to determine if the degradation rate of specific leaf proteins could
be correlated to leaf growth rate. In our case, these plant rate-
changing proteins would be biomarkers associatedwith plant leaf
growth rather than indicators of disease. By presenting protein
degradation rates indifferent functional categories asa functionof

Figure 4. Intrinsic Properties of Arabidopsis Proteins That Correlate with Protein Degradation Rate.

(A)Comparison of protein degradation rate with the probablemature N-terminal amino acid residue (Supplemental Data Set 4A). Only protein sets in which
more than five members had the same N-terminal amino acid residue were examined, a set of 376 proteins in total. A nonparametric Kruskal-Wallis
k-samples test showed no significant difference among the 12 N-terminal groups. However, the K, S, and D groups showed significantly different
degradation rate distributions from (T) by aConover-Imanpost-hoc test. No statistically significant differenceswere foundwhendegradation ratesof stable
amino acids (A, V, M, G, T, and P), unstable amino acids (K, F, D, R, and Q), and average stability amino acids (all others amino acids) were compared
(Supplemental Data Set 4A). These groups were defined based on the consensus of yeast and mammal N-end rules.
(B)A cumulative relative frequency distribution graph of protein aggregation propensity (AGG) of each protein, the amino acid length of each protein (LEN),
and the ratio of AGG/amino acid length between the top 100 most stable and bottom 100 most unstable proteins from the set of 1228 proteins with
degradation rates. Statistical significance was estimated by the Kolmogorov-Smirnov test.
(C) The SD (s) of the protein degradation rates of the protein subunits of sevenmajor protein complexes comparedwith randomly sampled distributions of s
for the same sized group of proteins from the set of 1228. The protein complexeswere: cytosol ribosome, proteasome, Pt ATP synthase, Pt ribosome, PSI,
PSII, and mitochondrial electron transport chain; all other proteins were considered to be one group “Others.” The SD (s) was calculated for each specific
proteincomplexeswithNsubunitsand thencomparedwith thedistributionof100,000 randomsamplingsofgroupsof sizeN fromOthers.The red lineshows
the s value of a specific protein complex, while the blue distribution shows a histogram of s values from the 100,000 random samplings of each value of N.
The probability value is the proportion of 100,000 random samplings of N that show a smaller s than the specific protein complex.
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Table 2. Average Degradation Rates of Groups of Proteins Containing the Same Protein Domain

Protein Domains PD Code No. KD (d21) Min. KD (d21) Max. KD (d21) Median Group

Translation protein SH3-like domain IPR008991 4 0.024 0.070 0.047 A
Glyceraldehyde-3-phosphate dehydrogenase, type I IPR006424 4 0.051 0.076 0.069 A-B
Ribosomal protein L12 family IPR027534 4 0.041 0.086 0.068 A-B
Bifunctional inhibitor/plant lipid transfer helical domain IPR016140 4 0.054 0.093 0.064 A-B
PsbQ-like domain IPR023222 4 0.050 0.095 0.070 A-B
NB-ARC IPR002182 4 0.055 0.096 0.076 A-B
Zinc finger, PHD-type IPR001965 4 0.060 0.093 0.080 A-B
Zinc finger, RING/FYVE/PHD-type IPR013083 6 0.016 0.104 0.084 A-B
Serine/threonine-protein kinase, active site IPR008271 4 0.025 0.104 0.080 A-B
Mitochondrial substrate/solute carrier IPR018108 5 0.044 0.116 0.084 A-B
PsbP family IPR002683 11 0.046 0.140 0.086 A-B
Chlorophyll a/b binding protein domain IPR023329 14 0.040 0.173 0.079 A-C
Tetratricopeptide repeat IPR019734 4 0.067 0.104 0.087 A-D
Protein kinase, ATP binding site IPR017441 5 0.025 0.115 0.088 A-D
Transketolase-like, pyrimidine-binding domain IPR005475 4 0.069 0.117 0.081 A-D
Riboflavin synthase-like b-barrel IPR017938 4 0.064 0.137 0.080 A-D
Protein kinase-like domain IPR011009 8 0.025 0.124 0.096 A-D
ATPase, a/b-subunit, nucleotide-binding domain IPR000194 5 0.050 0.112 0.102 A-E
Galactose mutarotase-like domain IPR011013 5 0.069 0.151 0.084 A-E
Aminoacyl-tRNA synthetase, class II (G/P/S/T) IPR002314 6 0.068 0.135 0.093 B-E
Isocitrate/isopropylmalate dehydrogenase domain IPR019818 4 0.037 0.135 0.107 B-E
Proteasome, subunit a/b IPR001353 10 0.072 0.136 0.093 B-E
Glycoside hydrolase-type carbohydrate-binding, subgroup IPR014718 4 0.084 0.151 0.091 B-E
Malate dehydrogenase, active site IPR001252 5 0.025 0.181 0.123 B-E
Ribosomal protein S5 domain 2-type fold IPR020568 8 0.034 0.178 0.103 B-E
HAD hydrolase, subfamily IA IPR006439 4 0.069 0.152 0.101 B-F
Isopropylmalate dehydrogenase-like domain IPR024084 5 0.037 0.135 0.115 B-F
Short-chain dehydrogenase/reductase, conserved site IPR020904 4 0.058 0.148 0.116 B-G
PDZ domain IPR001478 5 0.047 0.202 0.129 C-G
D-isomer-specific 2-hydroxyacid dehydrogenase domain IPR029752 5 0.005 0.176 0.160 D-G
Aminotransferase, class I/class II IPR004839 8 0.055 0.179 0.132 D-G
Threonyl/alanyl tRNA synthetase, SAD IPR012947 4 0.097 0.168 0.119 D-H
Dehydrogenase, E1 component IPR001017 4 0.071 0.204 0.128 D-H
Calycin IPR012674 4 0.082 0.210 0.128 D-H
Fructose-bisphosphate aldolase, class I IPR000741 6 0.093 0.224 0.114 D-H
Glutathione S-transferase, C-terminal IPR004046 6 0.062 0.230 0.159 E-H
Clp, N-terminal IPR004176 4 0.065 0.219 0.160 E-H
AMP-dependent synthetase/ligase IPR000873 4 0.070 0.222 0.146 E-H
ATP-grasp fold, subdomain 1 IPR013815 7 0.063 0.271 0.160 E-H
14-3-3 protein, conserved site IPR023409 7 0.096 0.185 0.129 E-H
Aldo/keto reductase IPR001395 4 0.100 0.172 0.135 E-I
Thioredoxin domain IPR013766 12 0.094 0.220 0.131 F-I
Immunoglobulin-like fold IPR013783 5 0.103 0.171 0.152 F-I
Glutaredoxin IPR002109 6 0.076 0.227 0.153 F-I
Pyridine nucleotide FAD/NAD(P)-binding domain IPR023753 11 0.070 0.296 0.170 F-I
Thioredoxin IPR005746 9 0.103 0.220 0.169 G-I
Alpha-D-phosphohexomutase superfamily IPR005841 5 0.101 0.298 0.153 G-I
ATPase, AAA-type, conserved site IPR003960 8 0.056 0.261 0.161 G-I
Tubulin/FtsZ, C-terminal IPR008280 4 0.061 0.276 0.208 G-I
Alcohol dehydrogenase superfamily, zinc-type IPR002085 8 0.097 0.266 0.164 G-I
Rossmann-like a/b/a sandwich fold IPR014729 13 0.077 0.376 0.201 H-I
Immunoglobulin E-set IPR014756 5 0.141 0.196 0.179 H-J
Ferredoxin [2Fe-2S], plant IPR010241 4 0.130 0.267 0.194 H-J
Aconitase/3-isopropylmalate dehydratase domain IPR001030 4 0.134 0.292 0.198 H-J
Pyruvate/phosphoenolpyruvate kinase-like domain IPR015813 6 0.172 0.271 0.197 I-J
UspA IPR006016 5 0.192 0.221 0.218 I-J

(Continued)
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the growth rates of leaves (Figures 6A to 6E; Supplemental Data
Set 6A), we observed that the degradation rate of many photo-
synthesis-related proteins positively correlated with leaf growth
rate, with the exception of chaperonin 60 proteins (Figure 6A). The
latter have their highest abundance in the fastest growing leaf
type, leaf number 7 (Figure 6F). For organelle ATP-dependent
proteases, thedegradation rate of FtSHclassproteasespositively
correlated with growth, while the degradation rate of CLP, MAP,
and DEG classes negatively correlated with growth rate (Figure
6C). Among the proteasome subunits and ubiquitination ma-
chinery,E3 ligasespositivelycorrelatedwith leafgrowth rate,while
the proteasome itself negatively correlated with leaf growth rate
(Figure 6E). Among the subunits of the plastid and cytosolic ri-
bosomes, there was a consistent negative correlation between
protein degradation rate and leaf growth rate (Figures 6B and 6D).

But what could these correlations mean? A key biochemical
impactof changingdegradation rateas leafgrowth ratechanges is
the alteration of the age profile of specific proteins in different
leaves. For example, increasing the degradation rate of ribosomal
proteins as leavesmature and slow their growth rate increases the
proportion of new ribosomes in the mature leaf. Young growing
leaves can achieve the same result by ribosome numbers in-
creasing through growth, rather than replacement. As a result,
both leavesmaintain similar ageprofiles for ribosomes thatare0 to
8 d old (Supplemental Data Set 6B). By contrast, the slowing
degradation rate of photosynthetic proteins as leaves slow their
growth rate will mean distinctly older age profiles for these pho-
tosyntheticenzymes inmature leaf tissues.Ourcalculationsof this
effect show that ;90% of photosynthetic enzymes will be less
than a week old in leaf 7 compared with only ;55% of photo-
synthetic enzymes in leaf 3 (Supplemental Data Set 6B).

Proportion of Energy Use in Degradation and Synthesis of

Specific Protein Classes in Different Leaves

We also estimated total ATP costs from protein degradation and
synthesis in the three leaf types from the Arabidopsis rosette by
summing up the costs for all the 1228proteins in our data set. This
usedproteindegradation rates,calculatedproteinsynthesis rates,
leaf growth rate, and the steady state of the leaf proteome and
coupled themwith individual protein lengths.We used a 5.25 ATP
per amino acid residue cost of synthesis (including amino acid
synthesis, ribosome translation, and transport) and 1.25 ATP per
amino acid residue cost of degradation (unfolding) and estimated
relative protein abundance based on modified estimates from
PaxDb (see Methods for details of calculations and references;
seeSupplementalDataSet7A fordetails). Thesetof1228proteins

we measured account for the bulk of protein abundance in Ara-
bidopsis leaves (nearly 90% of all Arabidopsis leaf protein based
on ppm counts from PaxDb and RBCL measurement). Assuming
that cellular respiration is theprimarynetATPproduction source in
leaves, the relative proportion of ATP used for protein synthesis
and degradation could also be determined using leaf respiration
ratesof theArabidopsis rosette (Sewetal., 2013). In leaves thatare
not growing (e.g., leaf 3 in this study), synthesis of new protein is
simply replacing degraded protein andwould cost 13%of cellular
ATP. By contrast, in leaf 7, which was rapidly growing, synthesis
costs reached 38% of total respiratory ATP (Figure 7A). This
analysis also showed that the overall ATP cost of protein deg-
radation was ;4% of respiratory ATP synthesis across all leaf
types. When the protein abundance of plastids and relatively high
number of higher turnover proteins in the plastidwere considered,
nearly 70% of synthesis and degradation costs were attributable
to the plastid, with the cytosolic proteome representing 10% of
costs and other organelles all having relatively small percentage
costs (Figure 7B; Supplemental Data Set 7B). Within functional
categories, the Calvin cycle and light reactions alone represented
nearly50%ofall protein synthesis anddegradation costs.Wealso
used these data to highlight the set of proteins in Arabidopsis that
each account for more than 1% of total protein turnover costs in
leaves (Figures 7C and 7D, Table 3; Supplemental Data Set 7C).
The subunits of Rubisco represented 13 to 18% of all protein
costs, while representing ;17% of total cell protein abundance.
Some proteins were on this list largely owing to their rapid deg-
radation rate rather than their large abundance; for example, the
PSII D1 subunit was expected to be a high cost protein, while AOS
andTHI1havenot typically beenconsideredas large energy costs
to the plant cell but each represented more than 1% of total ATP
costs for protein turnover (Figures 7C and 7D).

DISCUSSION

Key Considerations in Assessing Plant Protein Degradation

Rates in Growing Leaves

Calculations of protein degradation require information on
whether the proteome is in steady state and how increases in
protein abundance relate to organ or tissue growth rate. Most
historical studies in mammals have assumed steady state to be
the case in short time frames where no treatments were imposed
(Price et al., 2010; Cambridge et al., 2011; Schwanhäusser et al.,
2011). In plants, some reports have attempted to measure
changes in protein abundance of specific targets of interest

Table 2. (continued).

Protein Domains PD Code No. KD (d21) Min. KD (d21) Max. KD (d21) Median Group

Peptidase, FtsH IPR005936 4 0.162 0.261 0.238 I-J
Ubiquitin-conjugating enzyme/RWD-like IPR016135 4 0.351 0.388 0.377 J

Shown are 58 protein domains (with at least four protein members per domain) that each had a tight average KD distribution (median/SD > 2).
Nonparametric k-sample K-W analysis (P < 0.01) and a C-I post-hoc test were used to divide the protein domains into groups A to J. Domains are listed
by increasing degradation rates (all data in Supplemental Data Set 4E). The number of protein members (No.), KD minimum, maximum, and median for
each protein domain are shown.

216 The Plant Cell

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
lc

e
ll/a

rtic
le

/2
9
/2

/2
0
7
/6

0
9
9
0
5
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

http://www.plantcell.org/cgi/content/full/tpc.16.00768/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00768/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00768/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00768/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00768/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00768/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00768/DC1
http://www.plantcell.org/cgi/content/full/tpc.16.00768/DC1


Figure 5. Comparisons of the Relative Protein Abundance and Degradation Rate of Specific Proteins That Differed in Their Measurements between Leaf
3 and Leaf 7.
(A) Proteins with significant changes (t test, P < 0.05) in abundance (502 pairs, left) or degradation rate (433 pairs, right) between leaf 3 and leaf 7 are
presented. The changes in relative abundance and degradation rate are shown as relative ∆Abundance and ∆KD by comparing leaf 7 to leaf 3 data. Major
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(Li et al., 2012; Lyon et al., 2016), and others have relied on linear
regression across a time series to remove outliers and thus only
retain information when turnover rates have not changed (Yang
et al., 2010; Nelson et al., 2014; Fan et al., 2016). However, these
approaches have their limitations in plants and are prone to both
error and to the removal of interesting biological features of in-
terest in the data. Notably, regression analysis focuses on the
increasing abundance of newly synthesized protein that is mainly
derived from growth in plant systems and masks the real kinetics
of the protein degradation process. In addition, plant protein
turnover studies have typically provided a list of protein degra-
dation rates, without any comparative evaluation of changes in
degradation during growth and development. To address these
issues, we have taken a series of approaches. First, we undertook
a quantitative proteomics analysis within and between different
leaves within the Arabidopsis rosette after the 10th leaf had ap-
peared and followed changes in these leaf proteomes over the 5 d
required for a 15N labeling strategy to yield a substantial list of
protein degradation rates. This has shown that in leaves 3 and 7,
the relative abundance of 97 to 99% of relatively high abundance
proteins within each leaf type did not significantly change on a per
unit protein basis, even though total protein per leaf increased at
different ratesover5d.Theapparent steadystateevident in leaves
3 and 7 was less valid in leaf 5, in which only 80 to 90% of the
proteome remained unchanged in relative abundance over the 5 d
of labeling. This illustrates that while quasi-steady states of
proteomescanbe foundduringplant leaf growth, theseneed tobe
experimentally measured and confirmed before an analysis
strategy is implemented that relies of this principle. That said, we
observed that the changes that were measured in leaf 5 were not
consistent across all time points and the scale of the fold changes
didnot typically alter thenestingofKDvalues from leaf 5 in analysis
of data sets (e.g., Figures 5 and6). Second,weusedpaired data at
different time points to calculate average protein degradation
rates rather than linear regression across all time points. This
enabledmore fast andslowdegradation rates tobemeasuredand
variable rates to be averaged across time points and peptides,
rather than these data being discarded (Li et al., 2012). Third, we
observed that protein abundance per gram fresh weight (FW)
varies in Arabidopsis leaves during development (Supplemental
Figure 1); hence, it was important to focus our calculations of
dilution of 14N-labeled peptides on the increase in leaf protein
content rather thanon size orweight of each leaf. This observation
is consistent with independent evidence that young leaf total

protein content changes over time in Arabidopsis as a proportion
of leaf size (Ishihara et al., 2015).

Protein Features Linked to Degradation Rate

The >150-fold variation of protein degradation rates of the;1000
relatively abundant proteins in Arabidopsis leaves raises signifi-
cant questions about which protein characteristics define the
degradation kinetics of different protein types. The availability of
these degradation rates provided an opportunity to explore
a range of possible hypotheses and provide some statistical
comparisons of degradation rates for different groups of proteins.
It is well established that the proteolysis machinery of the cell is
spatially distributed and the latency of proteins in different cellular
locations varies, which means that not all proteins will be acted
upon by the same protease network or in the same timeframe (van
Wijk, 2015). Using subcellular location information as a basis for
dissecting the data set, we observed lower protein degradation
rates in metabolic organelles that are separated from the cytosol
by phospholipidmembranes andhigher protein degradation rates
in the endomembrane system,which is directly involved in protein
synthesis and traffics proteins to the plasma membrane. This
suggests that there are broad spatially based groupings in the
proteome that set a median rate of degradation of proteins in
different subcellular compartments. However, quantitatively
these patterns represent <2-fold of the variation in median deg-
radation rates. Diurnal fluctuation in transcription could be
amarker for a heightened turnover rate for specific proteins in the
light or thedark.Our analysisof this effect failed toseeasignificant
correlation in the data as awhole, butwe did observe that proteins
with light-induced transcriptional patternswereenriched in the set
of proteins with faster KD. This indicates that light-dependent
transcriptional processes may be associated with enhanced
protein degradation of the proteins being synthesized, while dark-
dependent processes are relatively less connected.
Although the N-terminal residue of a polypeptide has some

reported influence on turnover rate for subsets of plant proteins
(Apel et al., 2010; Zhang et al., 2015), the N-terminal residue alone
appeared to have little predictive value in our data set to define the
turnover rate of unknown sets of protein of different sequences
(Figure 4A). Protein aggregation propensity has been linked to
protein degradation rate and has been shown in other eukaryotic
systems tobe independentofproteinsize (DeBaetset al., 2011). In
our Arabidopsis data set, aggregation propensity and protein size

Figure 5. (continued).

functional categories (as in Figure 2) that comprised at least five proteins for abundance or degradation data are displayed. All remaining proteins were
combined in the Others group. Outliers are presented as hollow dots. The dashed line shows the boundary for no change in abundance and degradation
between leaf 3 and leaf 7.
(B)Relative ∆Abundance was compared for leaves 3, 5, and 7 for photosynthesis protein complexes and functional categories (110 proteins). The proteins
on the x axis are in the same order for each leaf comparison. Error bars show standard errors of relative ∆Abundance from each leaf separately; all
comparisons are relative to leaf 3.
(C) Protein degradation rates (KD) was compared for leaves 3, 5, and 7 for photosynthesis protein complexes and functional categories (116 proteins). The
proteinson thexaxisare in thesameorder for each leaf comparison.AverageKDandstandarderrors calculated fromdata for each leaf separately areshown.
Theproteins in (B)and (C)arenot in thesameorderbut are shown in rankorderwithin eachcomplex toshow theconsistent trend in relative∆Abundanceand
protein degradation rates (KD) across the three leaves.
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both correlated with turnover rate when the extremes of the fast
and slow degradation distribution were compared, but when the
higher aggregation propensity of large proteins was accounted
for, therewasno longera relationshipwithdegradation rate (Figure
4B). This suggests that while aggregation propensity could ac-
count for some differences in degradation rate, as shown in
mammals, it is mainly due to protein length rather than amino acid

composition of proteins in Arabidopsis. Subunits of protein
complexesmight beexpected to turnover at similar rates, and this
was largely confirmed when six out of seven physical complexes
or protein systems were found to show significantly tighter dis-
tributions of degradation rates compared with random samplings
of proteins (Figure 4C). This means that comembership of
a complexcouldbeauseful predictive tool for predictingunknown

Figure 6. Correlation of Arabidopsis Protein Degradation Rates with Leaf Growth Rate.

(A) to (E) Protein degradation rates (KD) in leaves 5 and 7 were normalized to corresponding values for the same proteins in leaf 3. Ratios of KD to leaf 3 KD

values for 92 photosynthesis proteins (A); 11 plastid ribosome proteins (B); plastid proteases including CLPs (CLPP2, CLPP5, CLPP6, CLPC, CLPR1,
CLPR2,CLPR4, CLPR6, andClp), DEG (DEGP1 andDEGP2),MAP, and FTSHs (FTSH1, FTSH2, FTSH5, and FTSH8) (C); 12 cytosol ribosomeproteins and
10 initiationandelongationproteins (D); andproteasomeE2andE3 ligaseproteins (E)areshownplottedagainst the leafgrowth ratesof leaves3,5, and7.All
proteinsshownhadpositiveornegativePearsoncorrelationsbetween the ratioofKDand leaf growth rateofR>0.9orR<20.9, respectively. The reddashed
line is a boundary for negative and positive correlations.
(F)The relativeproteinabundanceofCPN60AandB in leaves5and7 iscomparedwith leaf 3 (*P<0.05). Error bars are SEof all data fromeach leaf separately.
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protein degradation rates. Specific protein fold families and do-
main groupswere shown by this analysis as themajor factors that
could be used to predict degradation rates (Table 2). Nearly
40-fold differences in degradation ratewere observed for proteins
in different domain classes.

Protein Stability and the Correlations with Protein Function

One essential goal of protein degradation studies is to help elu-
cidate the biological functions of specific proteins based on their
variable turnover rates, and to this end efforts have been made in
correlation analysis of protein turnover and protein biological
functionsacrossdifferent organisms (Schwanhäusser et al., 2011;
Christiano et al., 2014; Karunadharma et al., 2015). Consistent
with evidence in yeast (Christiano et al., 2014), ribosomal subunits
are someof themost stable and long-lived proteins inArabidopsis
(Figure 2A). This means ribosomal proteins can be used for a long
time period after their biogenesis, with their abundance controlled
posttranslationally by protein degradation at late stages of de-
velopment. However, even in these long-lasting protein sets, the
relative degradation rate distribution for the cytosolic ribosome
had a higher SD than those of other protein complexes (Figure 4C).
These nonuniform degradation rates in the cytosolic ribosome
may be related to the specialized role of structural subunits in
ribosome and altered stages of assembly, which has been

proposed in a ribosome turnover study in human cells (Doherty
et al., 2009).
Within photosynthetic complexes (Figure 5C), it was evident

that three proteins had high degradation rates, well beyond the
normal distribution for their complexes. While D1 (Atcg00020) is
well known for its high degradation rate at the reaction center of
PSII (Melis, 1999; Takahashi and Badger, 2011; Lambreva et al.,
2014), the discovery that PetD (Atcg00730) of the cytochrome b6f

complex and PIFI (At3g15840) of the NDH complex had com-
parable degradation rates was not anticipated. These three
proteins are core components required for electron transport
functions of PSII, cytochrome b6f, and NDH complexes. In-
terestingly, PetD is subject to proteolysis in highly purified cyto-
chrome b6f complex in vitro even in the presence of protease
inhibitors, by an unknownmechanism (Zhang and Cramer, 2004).
PIFI has been shown to be essential for NDH complex-mediated
chlororespiration in Arabidopsis and PIFI knockout mutants ex-
hibit a greater sensitivity to photoinhibition (Wang and Portis,
2007). Their fast degradation rate in vivo might reveal some
functional similarity of these proteins in their respective protein
complexes. D1 and PetD proteins are both chloroplast encoded.
D1 is at the plastoquinone binding site of PSII and is directly in-
volved in coordinating and protecting the metal cluster re-
sponsible for producing oxygen and protons from water (Umena

Figure 7. ATP Energy Budgets for Protein Degradation and Synthesis in Arabidopsis Leaves.

(A) The proportion of cellular ATP used for protein degradation (blue), protein synthesis (yellow), and other aspects of cell maintenance (gray). Energy
budgets are presented as the averages across leaves 3, 5, and 7 and in each leaf individually.
(B)Theproportion of ATPused for protein degradation (blue) and synthesis (yellow) inmaintaining the proteomes ofmajor cellular organelles and structures
(when ATP cost >1% of total ATP use).
(C) ATP used for protein degradation (blue) and synthesis (yellow) by major functional categories of proteins (when ATP cost >2% of total ATP use).
(D)The15 individual proteinswith thehighest ATPcost tomaintain in theArabidopsis proteome; only four of thesewere from the twohighest cost functional
categories (dotted lines). Subcellular location, functional categories, and specific high cost proteinswere sorted by the proportion of energy cost for protein
synthesis (yellow). Respirationwaspresumed tobe theprimary net ATPproduction source for protein synthesis, and its value is basedonexperimental data
from the Arabidopsis rosette.
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et al., 2011;Lambrevaetal., 2014;Wei et al., 2016).Cyanobacterial
PetD forms the p-side of the cytochrome b6f complex, which
accepts protons from plastosemiquinone and defines a route for
H+ transfer in thecomplex (Hasanetal., 2013).Also, the transcripts
for D1 and PetD proteins are both found to be upregulated in the
adg1-1 tpt-2 double mutant, which shows rapid photoinhibition
under high light (Schmitz et al., 2014). D1 protein is widely rec-
ognized as a major target in PSII in the photodamage and pho-
toprotection cycle (Melis, 1999; Takahashi and Badger, 2011).
PetD and PIFI, like the D1 subunit, might represent new targets
for light or other active electron and proton transfer pathway-
associated damage and repair processes.

Protein Abundance and Turnover Changes in Young Leaves

with Rapid Chloroplast Division

We observed that plastid-localized light reaction and Calvin cycle
proteins showed lower protein abundance coupled with lower
protein stability in leaf 7 (Figure 5), while ribosomal proteins
showed higher stability and accumulated in the fast-growing leaf
7 (Figure 5A). This supports the proposal that regulatory mech-
anisms for accumulation of ribosomal proteins in fast-growing
stages in plants is independent of transcript abundance but more
likely due to stabilization of the assembled ribosome complexes
(Baerenfaller et al., 2012; Ponnala et al., 2014). Increased levels of

Table 3. ATP Cost of Protein Degradation and Synthesis for Major Functional Categories of Leaf Proteins

Functional Categories No. KD (d21) Mean KD (d21) SD Deg. Cost (%) Syn. Cost (%)

Photosynthesis (48.9%)
Calvin cycle 27 0.11 0.09 25.2 30.1
Light reaction 84 0.13 0.15 16.5 16.3
Photorespiration 11 0.12 0.05 2.7 2.4

Metabolism (18.4%)
Amino acid synthesis 50 0.19 0.22 3.6 3.2
Secondary metabolism 33 0.18 0.13 1.8 2.0
TCA 31 0.12 0.05 2.1 2.0
Hormone metabolism 15 0.25 0.18 2.5 2.0
Glycolysis 24 0.14 0.05 2.0 1.9
Cofactor and vitamin metabolism 10 0.38 0.60 2.3 1.6
Major CHO metabolism 17 0.25 0.36 1.3 1.1
Lipid metabolism 29 0.13 0.09 1.1 1.1
Tetrapyrrole synthesis 16 0.12 0.07 1.1 1.0
Nucleotide metabolism 26 0.13 0.11 1.0 1.0
C1 metabolism 12 0.14 0.04 1.1 0.9
ETC 21 0.12 0.08 0.3 0.3
Minor CHO metabolism 10 0.15 0.07 0.2 0.2

Protein (8.9%)
Protein synthesis 76 0.08 0.14 4.0 4.2
Protein degradation 81 0.17 0.14 3.3 2.8
Protein folding 24 0.12 0.17 0.7 0.8
Protein targeting 18 0.13 0.08 0.5 0.5
Protein amino acid activation 20 0.15 0.12 0.5 0.4
Protein PTMs 16 0.15 0.08 0.2 0.2

Stress and signaling (8.3%)
Redox 52 0.15 0.08 3.3 3.1
Misc. 53 0.16 0.11 2.8 2.5
Stress 43 0.19 0.30 2.1 2.1
Signaling 26 0.14 0.08 0.7 0.6

Cell (2.6%)
Cell organization 22 0.19 0.16 1.5 1.3
Cell cycle 14 0.14 0.10 0.9 1.0
Cell wall 20 0.17 0.10 0.4 0.3

RNA and DNA (2.2%)
RNA binding 13 0.15 0.10 1.3 1.2
RNA regulation 33 0.12 0.07 1.0 1.0
DNA 11 0.13 0.10 0.1 0.1

Transport and metal handling (1.6%)
Transport 31 0.12 0.06 1.4 1.3
Metal handling 11 0.33 0.31 0.5 0.3

Other (9.1%) 248 0.15 0.12 9.7 9.1

Major functional categories were divided into seven groups. Minor functional categories and nonassigned proteins were grouped together as “Other.”
Functional categories were sorted by the proportional cost of protein synthesis. The number of proteins in each group, KD mean, and SD are shown.
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synthesis, folding, and degradation proteins could provide high
protein synthesis and degradation capability in younger leaves.
This may in turn explain faster turnover of a range of metabolic
protein sets in younger leaves, such as Calvin cycle and photo-
respiratory enzymes and light reaction complex subunits (Figures
5A and 5C).

Analysis of the relative protein degradation changes with leaf
growth rate (Figure 6) highlighted that while the degradation rate for
themajorityof thephotosyntheticapparatuscomponentspositively
correlated with growth (Figure 6A), those of CPN60A and CPN60B
negatively correlated with growth. These chaperonins are needed
for plastid division (Suzuki et al., 2009), so their increased stabili-
zation and abundance (Figure 6F) are consistent with the more
frequent chloroplast division events that occur in young leaves
(Osteryoung and Pyke, 2014). The selective degradation changes
observed in younger leaves could also be caused by specific
changes in proteolysis and translational control when leaves are
growing at a faster rate. Analysis of relative protein degradation
rates versus leaf growth rate (Figure 6) highlighted that while
turnover of protein synthesis components negatively correlated
with growth (Figures 6B and 6D), there were specific classes of
organelle proteases whose turnover rate positively correlated with
growth. The FtsH protein set highlighted in Figure 6 are the same
proteins that are highlighted in the protein domain set FtsH
(IPR016135), which was one of the fastest degrading domain
groups inouranalysis (Table2). Theseproteaseshavedirect roles in
the turnover of the photosynthetic apparatus and in plastid thyla-
koid formation (Zaltsman et al., 2005; Kato et al., 2012; Rowland
et al., 2015). It has been reported that mRNA for FtsH1, FtsH2,
FtsH5, and FtsH8 generally increases in young developing leaves
(Zaltsman et al., 2005). High mRNA levels for these proteases
provides a fast synthesis potential, which is consistent with our
finding that FtsH1, FtsH2, FtsH5, and FtsH8 exhibit rapid rates of
degradation in younger leaves mostly without large changes in
relative abundance (Figure 6C; Supplemental Data Set 8).

However, plastid turnover is controlled not only by internal
proteases but also by the proteasome and vacuolar quality control
pathwaysmediated by E3 (Ling et al., 2012;Woodson et al., 2015).
Ubiquitination plays a role in control of plastids via a RING-type
ubiquitin E3 ligase, SP1, which mediates the ubiquitination and
degradation of TOC components that are required for de-
velopmental transition of plastids (Ling et al., 2012; Huang et al.,
2013). Most recently, the plant U-box E3 ligase PUB4was found to
mediate the ubiquitination and selective degradation of damaged
chloroplast throughglobularvacuoles (Woodsonetal., 2015).While
the proteasome subunit degradation rate was low in young leaves,
the degradation rates of three E3 ligases we identified (one RING-
type At1g57800 and two F-box At4g39756 and At5g01720) were
higher in younger leaves (Figure 6E). Enhanced degradation of
selective E3 ligases in younger leaves could thus also helpmaintain
fast chloroplast biogenesis in younger leaves. However, it is still
unclear whether this is achieved by promotion of developmental
transition and/or by selective breakdown of damaged plastids.

Energy Costs of Leaf Protein Turnover

It has been widely accepted that active transport and protein
turnover are the two highest cost processes in cell biology

(Scheurwater et al., 2000). Calculations of energy costs for protein
turnover depend on knowing the synthesis and degradation rates
of proteins, as well as the length and abundance of each protein.
This study provided the rate data, length is straightforward to
determine, and abundance was estimated used the PaxDb esti-
mates for Arabidopsis leaves (pax-db.org/). Expressing this ATP
demand for protein synthesis and degradation as a proportion of
available cellular ATP requires a cellular ATP synthesis rate cal-
culation. While mitochondria are the primary ATP source in all
eukaryotes, chloroplasts can also produce ATP through photo-
phosphorylation in plants. Early studies showed that isolated
intact chloroplast protein synthesis could be driven by light or
added ATP, while etioplast protein synthesis could be driven
only by added ATP (Siddell and Ellis, 1975; Ellis, 1981). This
demonstrated that photophosphorylation and ATP imported
through transporters could both be energy sources for chlo-
roplast protein synthesis. However, several more recent cal-
culations concluded that in planta additional ATP needs to be
imported into chloroplast through translocators to meet the
demands of CO2 assimilation and photorespiration without
even considering the energy cost of other biosynthetic pro-
cesses including protein synthesis (Flügge et al., 2011; Kramer
and Evans, 2011). This leaves chloroplasts dependent on im-
port of respiration-derived ATP for most biosynthetic pro-
cesses including protein synthesis. The importance of ATP
import for chloroplast maintenance is also evident by reports
that restriction of ATP import through NTT translocators can
lead to dwarf and necrotic leaf phenotypes (Reinhold et al.,
2007) and can disrupt hormonal signaling (Schmitz et al., 2010).
Our calculations are based on the caveat that respiration is the
only net source of ATP available for protein synthesis in plants.
The dominance of the plastid proteome as a major energy cost
through these calculations supports the importance of ATP
import into chloroplasts based on the insufficiency of ATP
supply from photophosphorylation.
Our data show that on a leaf basis the degradation costs

were effectively static at ;4%, while synthesis rates varied
considerably with the rate of leaf growth. Protein synthesis
and degradation together cost ;16% of the total leaf oxida-
tive phosphorylation-dependent ATP production in developed
leaves with slow growth rates and ;42% in developing leaves
with fast growth rates. This analysis suggests the protein
turnover energy budget is one of the highest maintenance costs
in growing Arabidopsis leaves. The Calvin cycle and the protein
machinery of the light reactions are the highest cost functions in
the growing Arabidopsis leaf (Figure 7, Table 3). These cate-
gories alsoshare the topfivehighenergycost individual proteins.
Interestingly, photorespiration proteins in plastids, mitochon-
dria, and peroxisomes are all among the top 20 proteins in terms
of energy cost (Supplemental Data Set 7A). Changes in the
degradation rates or abundance of high energy cost proteins
could cause significant fluctuations of the total energy budget
and alter the ability of cells to reach a new balance be-
tween energy supply and consumption. The availability of a di-
rect calculation of energy cost for specific proteins under
different growth rates in an individual leaf will help to explain
energy constraints in changing the abundance of specific
proteins.
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METHODS

Hydroponic Growth of Arabidopsis

Arabidopsis thaliana accession Columbia-0 plants were grown under 16/
8-h light/dark conditions with cool white T8 tubular fluorescent lamps
4000K 3350 lm (Osram) with intensity of 100 to 125mmol m22 s21 at 22°C.
The hydroponic protocol was as described previously (Waters et al., 2012)
and used amodifiedHoagland solution (2mMCaCl2, 6 mMKNO3, 0.5mM
NH4NO3, 0.5 mM MgSO4, 0.25 mM KH2PO4, 0.05 mM KCl, and 0.04 mM
Fe-EDTA) supplementedwithmicro elements [25mMH3BO3, 2mMMnCl2,
2 mM ZnSO4, 0.5 mMCuSO4, 0.15 mMCoCl2, and 0.25 mM (NH4)6Mo7O24]
and 2.6 mM MES, and the pH was adjusted to 5.8 to 6.0. Seeds were
planted on the surface of stonewool stuffed in 1.5-mL black tubeswith the
bottoms cut out to sit in 24-well floater tubes racks containing 160 mL
growth medium. The seeds were vernalized under 4°C for 2 to 3 d before
being transferred to the growth chambers. Half-strength growth medium
was used for the firstweek. A single plantwas placed in every tube and four
tubes in each floater tube rack (Supplemental Figure 1A). The growth
medium was changed every 7 d.

UnlabeledArabidopsisplantsweregrown for21duntil they reached leaf
production stage 1.10 (T0) (Boyes et al., 2001) in natural abundance
mediumas noted above. Leaves 3, 5, and 7 from three biological replicates
were collected at T0 (21 d), T1 (22 d), T3 (24 d), and T5 (26 d). Thirty-six
unlabeled leaf whole protein samples were extracted and protein con-
centration from each leaf was determined by an amido black assay.

For progressive 15N labeling, plants were also grown for 21 d until they
reached leaf production stage 1.10 (T0) (Boyes et al., 2001) in natural
abundance medium. The growth medium was then discarded and the
growth racks rinsed four times with fresh medium without nitrogen (no
KNO3 or NH4NO3) to ensure the old solution was washed out. A total of
160mL of 15Nmedium (6mMK15NO3 and 0.5 mM 15NH4

15NO3) was added
for every four plants and theplantsweregrown for 1, 3, and5d (T1, 3, and5)
before collecting leaf numbers 3, 5, and 7 for total protein extraction
(Supplemental Figure 1A). Four leaves numbered 3, 5, or 7 from plants in
one rack were pooled as a biological replicate. Three biological replicates
were collected at each time point. Twenty-seven 15N labeled (T1, 3, and 5)
and nine unlabeled samples (T0) were collected and stored separately for
later analysis.

To obtain a fully labeled 15N protein reference standard, 15N medium
(with6mMK15NO3and0.5mM 15NH4

15NO3)wasused to replace thenatural
abundancenitrogen in themediumandplantsweregrown fromseed in this
medium for 26 d (T5). 15N labeling efficiency in leaf numbers 3, 5, and 7was
analyzed separately and each showed 98% 15N incorporation (determined
from median of 1500–2000 peptides). Fully 15N labeled total proteins from
leaf 3, 5, and 7 sampleswere pooled and used as 15N fully labeled proteins
reference for subsequent experiments.

FCP Following Leaf Production Stage 1.10

Aliquots of the 36unlabeled leaf samples (T0, 1, 3, and5) noted abovewere
also used for FWandprotein contentmeasurements (Supplemental Figure
1). Liquid nitrogen snap frozen samples (0.1 g) were vortexed with Qiagen
tissue lysis beads (5 mm) and boiled in 13 sample buffer (2% [w/v] SDS,
62.5 mM Tris-HCl, 10% [v/v] glycerol, 5% [v/v] mercaptoethanol, and
0.005% bromophenol blue) for 5 min and then centrifuged at 10,000g for
10 min. The supernatant was collected and separated with SDS-PAGE on
Bio-Rad Criterion precast gels (10–20% [w/v] acrylamide, Tris-HCl, 1 mm,
18-well comb gels). Electrophoresis was performed at 300 V for 15 to
20 min. Proteins were visualized by colloidal Coomassie Brilliant Blue G
250 staining. ImageJ was used to quantify protein content in each sample
(Supplemental Figure 1B). FCPwasdetermined by combining freshweight
and protein content changes (Supplemental Data Set 1).

Determining Changes in Specific Protein Abundance over 5 d Using

a Fully Labeled 15N Protein Reference Standard

A total of 50 mg of each the 36 unlabeled leaf protein samples noted above
was mixed individually with 50 mg of the fully 15N-labeled reference and
digested in solution by trypsin. Each sample was separated into 96 frac-
tions by high pH HPLC separation and further pooled into 12 fractions. A
total of 432 fractions from 36 samples were analyzed by mass spec-
trometry. Filtered samples (5 mL each) were loaded onto a C18 high-
capacity nano LC chip (Agilent Technologies) using a 1200 series capillary
pump (Agilent Technologies) as described previously. Following loading,
samples were eluted from the C18 column directly into a 6550 series
quadrupole time-of-flight mass spectrometer (Agilent Technologies) with
a 1200 series nano pump using the following buffer B (0.1% formic acid in
acetonitrile)gradient: 5 to35%in35min, 35 to95%in2min,and95 to5%in
1 min. Parameter settings in the mass spectrometer were as described
previously (Nelson et al., 2014).

Agilent .d files were processed by an in-house script written in Math-
ematica for partial 15N labeling quantification (Nelson et al., 2014) modified
to calculate the ratio between 14N peptide (L) and fully 15N-labeled refer-
ence peptide (H). L and H formed two separate populations by a non-
negative least square approach as described previously (Guan et al., 2011;
Nelson et al., 2014). All filters used for partial 15N labelingwere kept (Nelson
et al., 2014) and two more filters were applied: First, a minimum 80% 15N
enrichment was required to disregard quantifications with high noise level
betweenLandH; second, aminimumsignal-to-noise ratio of 5wasused to
disregard high neighboring noise contribution to L and H. A total of
432 Agilent .d files were further processed by Trans Proteomic Pipeline to
get protein probabilities for identification. Only proteins with P > 0.95 (false
discovery rate [FDR] < 0.6%) were further reported. Examples for CPN60A
(At2g28000), HPT108 (At3g63190), and PGK1 (PHOSPHOGLYCERATE
KINASE1; At3g12780) in leaves 3, 5, and 7 are shown in Supplemental
Figure 7.

Protein abundance was represented as ratio to reference. Protein
abundance comparison of the same protein from leaves 3 and 7 was pre-
sented as relative ∆Abundance [i.e., (leaf 7 abundance–leaf 3 abundance)/
average (leaf 3and leaf7abundance)]. Theprocessedquantificationdataare
provided in Supplemental Data Set 9, and the peptide identification data for
each time point are provided in Supplemental Data Sets 10 to 13.

Protein Separation, Digestion, MS Analysis, and Determination of

Peptide 15N Incorporation Ratio

The 27 15Nprogressively labeled and three unlabeled leaf samples (0.1–0.2
g)weresnap frozen in liquidnitrogenandhomogenizedusingQiagen tissue
lysis beads (5 mm) by vortex. A total plant protein extraction kit (PE0230-
1KT;SigmaChemicals)wasused to extract total proteins. Thefinal pellet of
total protein was dissolved in solution 4 and then reduced and alkylated by
tributylphosphine and iodoacetamide as described in the Sigma manual.
Thesuspensionwascentrifugedat16,000g for 30min, and thesupernatant
was assay for protein concentration by amido black quantification as
described previously (Li et al., 2012). Protein (100 mg) in solution from each
sample was then mixed with equal volume of 23 sample buffer (4% SDS,
125 mM Tris, 20% glycerol, 0.005% bromophenol blue, and 10% mer-
captoethanol, pH 6.8) before being separated on a Bio-Rad protean II
electrophoresis system with a 4% (v/v) polyacrylamide stacking gel and
12% (v/v) polyacrylamide separation gel. Proteins were visualized by
colloidal Coomassie Brilliant Blue G 250 staining.

The SDS-PAGE gel lane for each sample was cut into 12 fractions. The
resulting 360 gel pieces were twice decolorized by destain solution (10 mM
NH4NO3 and 50%acetonitrile) for 45min. Dried gel pieces from one fraction
were digested with 375 ng trypsin at 37°C overnight and then extracted as
described previously (Nelson et al., 2014). The digested peptide solutions
were dried by vacuum centrifugation at 30°C, resuspended in 20mL loading
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buffer (5% acetonitrile and 0.1% formic acid), and filtered byMillipore 0.22-
micron filters before being loaded for HPLC separation. A total of 5 mL of
filtered sampleswere loadedontoaC18high-capacity nanoLCchip (Agilent
Technologies) using a 1200 series capillary pump (Agilent Technologies) as
described previously. Following loading, samples were eluted from the C18
column directly into a 6550 series quadrupole time-of-flight mass spec-
trometer (Agilent Technologies) with a 1200 series nano pump using the
following buffer B (0.1% formic acid in acetonitrile) gradient: 5 to 35% in
35min, 35 to 95% in 2min, and 95 to 5% in 1min. Parameter settings in the
mass spectrometer were as described previously (Nelson et al., 2014).

Agilent .d files were converted to mzML using the Msconvert package
(version 2.2.2973) from the Proteowizard project, and mzML files were
subsequently converted to Mascot generic files using the mzxml2 search
tool from the TPPL version 4.6.2. Mascot generic file peak lists were
searchedagainst an in-houseArabidopsis databasecomprisingATH1.pep
(release 10) from TAIR and the Arabidopsis mitochondrial and plastid
protein sets (33,621 sequences; 13,487,170 residues) (Lamesch et al.,
2012) using the Mascot search engine version 2.3 and using error toler-
ancesof100ppmforMSand0.5D forMS/MS; “maxmissedcleavages”set
to 1; variable modifications of oxidation (Met) and carbamidomethyl (Cys).
Weused iProphet andProteinProphet from theTransProteomicPipeline to
analyze peptide and protein probability and global FDR (Nesvizhskii et al.,
2003; Deutsch et al., 2010; Shteynberg et al., 2011). The reported peptide
lists with P = 0.8 have FDRs of <3% and protein lists with P = 0.95 have
FDRs of <0.5%.Quantification of LPFswere accomplished by an in-house
script written inMathematica as described previously (Nelson et al., 2014).
The data for determination of LPF for peptides by 15N progressive labeling
are provided in Supplemental Data Set 14, and the peptide identification
data are in Supplemental Data Set 15.

Calculation of KD and KS

Protein degradation is a first order and stochastic process, and an ex-
ponential rate (KD) is used to represent the proportional decrease of current
protein abundanceper day. Protein synthesis is a zero order process and is
thus described as a proportional increase of its starting pool (KS/A) per day
(Claydon and Beynon, 2012; Li et al., 2012). “A” is the starting abundance
for a specificprotein at thebeginningof the labeling period (T0). Becauseof
the stochastic nature of degradation, newly synthesized proteins experi-
ence the same proportional decrease as existing proteins. As a result,
calculation of gross synthesis rates requires the measurement of newly
synthesized proteins and the addition of the proportion of newly synthe-
sized proteins lost by degradation. Protein degradation rate KD and syn-
thesis rate KS/A for specific proteins were calculated from the progressive
labeling data using a combination of FCP and the LPF following a method
described previously (Li et al., 2012).

KD calculation:

KD ¼ 2
ln FCP$ð12 LPFÞ

t

KS calculation:

KS

A
¼

FCP2 e2KD$t

12 e2KD$t
$KD

The fresh weight of leaves with a protein content correction was first used
as an approximate value of fold change in protein abundance (measured
FCP), and this was applied to calculate degradation rates (KD). However, it
is challenging to measure FCP and protein turnover simultaneously from
the same samples, and sample-to-sample variation in measuring them
separately affects the calculation of protein degradation rates. In addition,
different leaves were found to show different nitrogen uptake and as-
similation capability (Masclaux-Daubresse et al., 2010) and could thus lead
to different lag effects in 15N labeling. Younger leaves appeared to show

faster nitrogen assimilation rates into amino acid pools compared with
relatively older leaves, which is evidenced by the higher 15N enrichment in
the samepeptide of younger leaves. To avoid these effects on degradation
rate calculation and comparisons across leaves, a median polish strategy,
which has been widely used for multiple experiment normalization (Lim
et al., 2007), was employed to preprocess the data. Themedian LPF value
in each sample is a good indicator of FCP for each experimental replicate.
Based on a time point–to–time point protein turnover rate calculation
(Li et al., 2012), a calculated FCP for each sample can be deduced
(calculated FCP).

FCP ¼
e2K

D
:t

12 LPF
ðt is equal to 15N labelling timeÞ

The comparison of calculated FCP and measured FCP showed a strong
correlation (k = 1.00, R = 0.95), but calculated FCP recognizes subtle
growth changes in individual samples and givesmore precise calculations
of KD and KS values. Calculated FCP was applied for further calculations.
Protein degradation comparison of the same protein from leaves 3 and 7 is
presented as a relative∆KD value [i.e., (L7KD–L3KD)/average (L3and7KD)].

Defining Protein Orthologs in Barley

Protein sequenceswereobtained fromMIPSPlantsDB (Nussbaumer et al.,
2013) for barley (Hordeum vulgare), and orthologs for those proteins with
quantified degradation rates in barley (Nelson et al., 2014) were then ac-
quired through BLASTP provided by TAIR release 10. The highest scoring
Arabidopsis ortholog was selected for each protein in barley given its
E-value was below 1025. Correlation of protein degradation rates between
Arabidopsis and barley was assessed by parametric (Pearson) and non-
parametric (Spearman and Kendal) tests.

Energy Cost and Production for Protein Turnover

For a specific protein, energy cost for turnover was calculated to depend
upon absolute protein abundance (PA), amino acid length (AAL), protein
degradation rate (KD), and synthesis rate (KS). Protein degradationcostwas
based on 1 to 1.5 ATP per residue in the proteasome degradation pathway
(Peth et al., 2013). Protein synthesis cost was based on 5 to 5.5 ATP per
residue in ribosome translation, protein transport and amino acid bio-
synthesis (Piquesetal., 2009;Kaletaetal., 2013).Theenergycost inATPfor
degradation and new synthesis of a specific protein was calculated by
1.25$PA$AAL$KD/5.25PA$AAL$KS (mmol$d21).Whole protein contentwas
measured as fresh weight of leaf tissues (;2% protein per FW). Whole
amino acid absolute abundance can be calculated based onwhole protein
content and average amino acid molecular weight. The gross amino acid
residue content of proteins of each leaf number was calculated by aver-
aged values fromT0 to 5: leaf 3 (9.59mmol), leaf 5 (18.69mmol), leaf 7 (18.97
mmol), and overall (47.24 mmol). Relative protein abundances for the
1228 proteins in ppm were acquired from the Arabidopsis leaves abun-
dance data sets aggregated in the PaxDb database (Piques et al., 2009;
Gfeller et al., 2011; Baerenfaller et al., 2012; Wang et al., 2012) with the
exception that the numbers for the Rubisco large subunit (RBCL), which is
well outside the normal distribution of values in PaxDb, were replaced by
a number from experimental evidence, based on the fact that 40% of total
soluble protein inArabidopsis isRubisco (Eckardt et al., 1997) and that only
50 to 60%of leaf protein is soluble. ThismeansRBCL represents 23.2%of
total leaf protein bymass or 16.5%bymolar ratio in Arabidopsis, replacing
PaxDb numbers for RBCL of 8.8% by mass and 6.6% by molar ratio.

The ATP production rate of respiration is based on experimen-
tally determined respiration rates presented as oxygen consumption
100 nmol$min21

$g21 in different Arabidopsis leaves (Sewet al., 2013). ATP
production rates indifferent leavescanbededucedbasedon1O2-4.5ATP:
leaf 3 (34.20 mmol$d21), leaf 5 (67.05 mmol$d21), leaf 7 (69.86 mmol$d21),
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and overall (171.11 mmol$d21). Calculations of energy cost and production
for protein turnover are detailed in Supplemental Data Set 7A.

Accession Numbers

All accession numbers used are from the TAIR10 annotation of the Ara-
bidopsisgenome (www.arabidopsis.org).RawMSdata for 15Nprogressive
labeling can be downloaded via ProteomeXchange: PXD004550. RawMS
data for the relative abundance of proteins between leaves and time points
can be downloaded via ProteomeXchange: PXD004549.

Supplemental Data

Supplemental Figure 1. Arabidopsis leaf growth rates and leaf protein
content.

Supplemental Figure 2. A flow diagram of tissue sampling and mass
spectrometry for 15N progressive labeling and 15N spiked analysis of
protein abundance experiments in leaves 3, 5, and 7 of the Arabi-
dopsis rosette over time.

Supplemental Figure 3. Determination of the labeled protein fraction
for peptide and protein degradation rate measurements.

Supplemental Figure 4. The 15N enrichment level in the heavy labeled
15N peptide population in each leaf at each time point.

Supplemental Figure 5. The protein degradation (KD) rates of the
146 proteins that were present in all 27 samples analyzed, before and
after the median-polish normalization.

Supplemental Figure 6. A set of 49 degradation rates (KD) for
photosynthesis proteins involved in different protein complexes and
functional categories calculated by regression in leaves 3, 5, and 7.

Supplemental Figure 7. The relative protein abundance of CPN60A
(At2g28000), HPT108 (At3g63190), and PGK1 (PHOSPHOGLYCER-
ATE KINASE1; At3g12780) in leaves 3, 5, and 7.

The following materials have been deposited in the DRYAD repository
under accession number http://dx.doi.org/10.5061/dryad.q3h85.

Supplemental Data Set 1. Growth rates of Arabidopsis leaf 3, leaf 5,
and leaf 7.

Supplemental Data Set 2. Protein degradation rates of 1228 proteins
and statistical analysis across samples.

Supplemental Data Set 3. Ratios of specific protein abundances
relative to a fully15N labeled reference.

Supplemental Data Set 4. The correlation of intrinsic properties of
proteins with their protein degradation rates.

Supplemental Data Set 5. Comparison of protein degradation rate
(KD) and protein abundance between selected proteins in leaf 3 and
leaf 7.

Supplemental Data Set 6. Comparison of protein degradation rate
(KD) and leaf growth rates in leaf 3, leaf 5, and leaf 7.

Supplemental Data Set 7. Calculation of ATP costs for protein
synthesis and degradation in leaf 3, leaf 5, and leaf 7.

Supplemental Data Set 8. Comparison of protein degradation rate
and protein abundance for selected proteins of interest.

Supplemental Data Set 9. Determination of protein abundance fold
change relative to a 15N reference in 36 individual leaf samples.

Supplemental Data Sets 10 to 13. The peptide identification data for
each time point for peptides at T = 0, 1, 3, and 5 d in the spiked in 15N
reference experiment, respectively.

Supplemental Data Set 14. Determination of LPF for peptides by 15N
progressive labeling in 27 individual leaf samples.

Supplemental Data Set 15. The peptide identification data for 15N
progressively labeled peptides at all time points.
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