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ARTICLE

Protein design and variant prediction using
autoregressive generative models
Jung-Eun Shin1,12, Adam J. Riesselman1,9,12, Aaron W. Kollasch 1,12, Conor McMahon2,10, Elana Simon3,11,

Chris Sander4,5, Aashish Manglik 6,7, Andrew C. Kruse 2,13✉ & Debora S. Marks 1,8,13✉

The ability to design functional sequences and predict effects of variation is central to protein

engineering and biotherapeutics. State-of-art computational methods rely on models that

leverage evolutionary information but are inadequate for important applications where

multiple sequence alignments are not robust. Such applications include the prediction of

variant effects of indels, disordered proteins, and the design of proteins such as antibodies

due to the highly variable complementarity determining regions. We introduce a deep gen-

erative model adapted from natural language processing for prediction and design of diverse

functional sequences without the need for alignments. The model performs state-of-art

prediction of missense and indel effects and we successfully design and test a diverse 105-

nanobody library that shows better expression than a 1000-fold larger synthetic library. Our

results demonstrate the power of the alignment-free autoregressive model in generalizing to

regions of sequence space traditionally considered beyond the reach of prediction and design.
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O
ver the past 20 years, success in protein engineering has
emerged from two distinct approaches, directed
evolution1,2 and knowledge-based force-field modeling3,4.

Designing and generating biomolecules with known functions is
now a major goal of biotechnology and biomedicine, propelled by
our ability to synthesize and sequence DNA at increasingly low
costs. However, since the space of possible protein sequences is so
large (for a protein of length 100 this is 10130), deep mutational
scans5 and even very large libraries (e.g., >1010 variants) barely
scratch the surface of the possibilities. As the vast majority of
possible sequences will be non-functional proteins, it is crucial to
minimize or eliminate these sequences from libraries. Therefore,
the open challenge is to develop computational methods that can
accelerate this search and bias the search space for protein
sequences that are likely to be functional. This will enable the
design of libraries for tractable high-throughput experiments that
are optimized for functional sequences and variants that are dis-
tant in sequence.

Antibody design is a particularly challenging problem in the
area of statistical modeling of sequences for the purposes of
prediction and design. Antibodies are valuable tools for molecular
biology and therapeutics because they can detect low concentra-
tions of target antigens with high sensitivity and specificity6.
Single-domain antibodies, or nanobodies, are composed solely of
the variable domain of the canonical antibody heavy chain. The
increasing demand for and success with the rapid and efficient
discovery of novel nanobodies using phage and yeast display
methods7–10 have spurred interest in the design of optimal
starting libraries. Previous statistical and structural modeling of
antibody repertoires11–18 have addressed the characterization of
sequences of natural antibodies or predicted higher affinity
sequences from immunization or selection experiments. One of
the biggest challenges is to design libraries diverse enough to
target many antigens but also be well-expressed, stable, and non-
poly-reactive. In fact, a large, state-of-art synthetic library con-
tains a substantial fraction of non-functional proteins8 because
library construction methods lack higher-order sequence con-
straints. Eliminating these non-functional proteins requires
multiple rounds of selection and poses the single highest barrier
to identifying high-affinity antibodies. In order to circumvent
these limitations, there has been an emphasis on very large
libraries (~109–1010) to achieve these desired features19,20.

Instead of experimentally producing unnecessarily massive,
largely non-functional libraries, we can design smart libraries of
fit and diverse nanobodies for the development of highly specific
and possibly therapeutic nanobodies. One way to approach this is
to leverage the information in natural sequences to learn con-
straints on specific amino acids in individual positions in a way
that captures their dependency on amino acids in other positions.
The sequences of these variants contain rich information about
what contributes to a stable, functional protein, and in recent
years generative models of these natural protein sequences have
been powerful tools for the prediction of the first 3D fold from
sequences alone21,22, to generally more 3D structures and con-
formational plasticity23,24, protein interactions25–28, and most
recently, mutation effects29–34. However, these state-of-art
methods and established methods35–38 rely on sequence famil-
ies and alignments, and alignment-based methods are inherently
unsuitable for the statistical description of the variable length,
hypermutated complementarity determining regions (CDRs) of
antibody sequences, which encode the diverse specificity of
binding to antigens. While antibody numbering schemes such as
IMGT provide consistent alignments of framework residues,
alignments of the CDRs rely on symmetrical deletions39.
Alignment-based models are also unreliable for low-complexity
or disordered proteins40 and cannot handle variants that are

insertions and deletions. Indels make up 15–21% of human
polymorphisms41–43, 44% of human proteins contain disordered
regions longer than 30 amino acids40,44, and both are enriched in
association with human diseases such as cystic fibrosis, many
cancers45,46, cardiovascular and neurodegenerative diseases, and
diabetes47,48.

By contrast, the deep models that have transformed our ability
to generate realistic speech such as text-to-speech49,50 and
translation51,52 use generative models that do not require “word
alignment”, e.g., between equisemantic sentences, but instead
employ an autoregressive likelihood to tackle context-dependent
language prediction and generation. Using this process, an audio
clip is decomposed into discrete time steps, a sentence into words,
and a protein sequence into amino acid residues. Models that
decompose high-dimensional data into a series of steps predicted
sequentially are termed autoregressive models, and they are well
suited to variable-length data that have not been forced into a
defined structure such as a multiple-sequence alignment. Auto-
regressive generative models are uniquely suited for modeling and
designing the complex, highly diverse CDRs of antibodies. Here,
we develop and apply a new autoregressive generative model that
aims to capture key statistical properties of sets of sequences of
variable lengths.

We first test our method on the problem of prediction of
mutation effects, which are typically analyzed using alignment-
based statistical methods. The new method performs on par with
the DeepSequence machine-learning VAE-based method30,
which does require aligned sequences and is an independent
evaluation, testing against experimental data that was reported to
outperform all currently available methods34. In addition to this
state-of-the-art performance, our new alignment-free method is
inherently more general. It can deal with a much larger class of
sequences and take into account variable-length effects. Another
recently developed method53 does aim to quantify the mutation
effects without the need for alignments. However, this method
requires 80% of the mutational data labeled with experimental
outcomes from the same experiments it is tested on as well as
fine-tuning with specific families as input. Previous neural lan-
guage models54–56 are so far not suitable for mutation effect
prediction for sequences without extensive experimental data or
for sequences with high variabilities, such as the CDRs of anti-
body variable domains. By contrast, a fully unsupervised,
alignment-free generative model of functional sequences is
therefore desirable for the design of efficient nanobody libraries.

We then trained our validated statistical method on naïve
nanobody repertoires57 as naïve antibody repertoires have been
shown to have functional sequences with the capacity to target
diverse antigens58 and used it to generate probable sequences. In
this manner, we designed a sequence library that is 1000-fold
smaller than state-of-art synthetic libraries but has an almost
twofold higher expression level, from which we identified a
candidate binder for affinity maturation. A well-designed library
can also be used in continuously evolving systems59 to combine
the hypermutation and affinity maturation processes of living
organisms in a single experiment. Smart library design opens
doors to more efficient search methods of nanobody sequence
space for rapid discovery of stable and functional nanobodies.

Results
An autoregressive generative model of biological sequences.
Protein sequences observed in organisms today result from
mutation and selection for functional, folded proteins over time
scales of a few days to a billion years. Generative models can be
used to parameterize this view of evolution. Namely, they express
the probability that a sequence x would be generated by evolution
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as pðxjθÞ, where parameters θ capture the constraints essential to
functional sequences (Fig. 1). An autoregressive model is one that
makes a prediction in a time series (or sequence) using the pre-
vious observations. In our context, this means predicting the
amino acid in a sequence using all of the amino acids that come
before it. With the autoregressive model, the probability dis-
tribution pðxjθÞ can be decomposed into the product of condi-
tional probabilities on previous characters along a sequence of
length L (Supplementary Fig. 1) via an autoregressive likelihood:

p xjθð Þ ¼ pðx1jθÞ
YL

i¼2

pðxijx1; ¼ ; xi�1; θÞ ð1Þ

Many different neural network architectures can model an
autoregressive likelihood, including attention-based models60 and
recurrent neural networks61. However, we encountered exploding
gradients62 during training on long sequence families with
LSTM63 or GRU64 architectures. Instead, we parameterize this
process with dilated convolutional neural networks (Supplemen-
tary Fig. 1), which are feed-forward deep neural networks that
aggregate long-range dependencies in sequences over an
exponentially large receptive field65–67 (see “Methods”). The
model is tasked with predicting an amino acid at some position in
the sequence given all the previous amino acids in the sequence,
i.e., forward language modeling. The causal structure of the model
allows for efficient training to a set of sequences, inference of
mutation effects, and sampling of new sequences. By learning
these sequential constraints, the model can be directly applied to
generating novel, fit proteins, one residue at a time. The
autoregressive nature of this model obviates the need for a
structural alignment and opens doors for application to modeling
and design of previously challenging sequences such as non-
coding regions, antibodies, and disordered proteins.

The autoregressive model predicts experimental phenotype
effects from sequences. In order to gain confidence in the new

model for generating designed sequences, we first tested the
ability of our new model to capture the dependencies between
positions by testing the accuracy of mutation effect prediction.
Somewhat surprisingly, unsupervised, generative models trained
only on evolutionary sequences are proving the most accurate for
predicting the effect of mutations when compared to large data-
sets of experimentally measured mutation effects30,34, and they
avoid the risk of overfitting that can occur as a result of circularity
in supervised methods68. We compared the accuracy of this new,
non-alignment-based model to state-of-art methods for a
benchmark set of 40 deep mutational scans across 33 different
proteins, totaling 690,257 individual sequences (Supplementary
Table 1).

The autoregressive model was first fit to each family of protein
sequences and then we used the log-ratio of likelihoods of
individual sequences to predict mutation effects:

log
pðxMutantjθÞ

pðxWild�typejθÞ
ð2Þ

which estimates the plausibility of mutant sequence xMutant

relative to its wild-type, un-mutated counterpart, xWild�type. This
log-ratio has been shown to be predictive of mutation effects29,30.
Importantly, this approach is fully unsupervised: rather than
learning from experimental mutation effects, we can learn
evolutionary constraints using only the space of natural
sequences. We benchmark the model predictions against the
deep mutational scan experiments and compare the Spearman’s
rank correlation to state-of-art models trained on alignments of
the same sequences. The autoregressive model is able to
consistently match or outperform a model with only site-
independent terms (30/40 datasets) and the EVmutation model29

that includes dependencies between pairs of sites (30/40 datasets);
it performs on par with the state-of-the-art results of
DeepSequence30 (19/40 datasets, average difference in rank
correlation is only 0.09); and it outperforms the supervised
Envision model31 for 6/9 of the datasets tested (Fig. 2a;

Fig. 1 Autoregressive models of biological sequences can learn the genotype-phenotype map for both prediction and design. From natural sequences

(gray) in a naïve llama repertoire57, the autoregressive model can learn functional constraints by predicting the likelihood of each residue in the sequence

conditioned on preceding residues. Nanobodies have three highly variable complementarity determining regions (CDR1, CDR2, and CDR3). We then use

these constraints to generate millions of novel nanobody sequences (blue)—as many can be generated as desired. Of these designed sequences we select

hundreds of thousands of diverse sequences, synthesize a library, and screen for expression and binding. We also validate the model on mutation effect

prediction tasks of deep mutational scans including the effects of multiple insertions and deletions, and the thermostabilities of highly variable nanobody

sequences.
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Supplementary Figs. 2 and 3). Previously published benchmarks29

demonstrate the higher accuracy of the probabilistic models,
EVmutation compared to SIFT and PolyPhen and recent work
demonstrate that DeepSequence outperforms all currently avail-
able methods when measured against experimental mutation
scans34. These benchmarks, taken together with our previous
benchmarks29 and evidence from independent assessments34,
show that our autoregressive model outperforms all methods
including supervised, and performs on par with our own state-of-
art alignment-based method30 for single mutation effect predic-
tion, providing us with the confidence to use the model for
sequence design.

As with previous models that use evolutionary sequences, the
accuracy of mutation effect prediction increases with increasing
numbers of non-redundant sequences, as long as there is coverage of
the length, tested here across eight of the protein families for four
sequence depths (Supplementary Fig. 4 and Supplementary Table 2).
Interestingly, the accuracy of effect predictions against the aliphatic
amidase mutation scan is remarkably robust even with a low number
of training sequences—123 non-redundant sequences provide the
same accuracy as 36,000—suggesting that there is more to learn
about the relationship between evolutionary sampling and model
learning. For now, we suggest a Meff/L> 5 (number of effective
sequences normalized by length) in order to sample enough diversity.
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Fig. 2 Validation of the autoregressive model in learning the genotype to phenotype map. a Even without using alignments, the autoregressive model

(blue) can competitively match mutation effect prediction accuracies of state-of-art alignment-dependent models, such as conservation (light gray),

evolutionary couplings (gray), and DeepSequence (dark gray)30. In addition, the mutation effect prediction accuracies improve upon hidden Markov

model74 (HMM, white) accuracies. Without using alignments, the autoregressive model matches alignment-dependent state-of-art missense mutation

effect prediction (DeepSequence) for 40 different deep mutational scan experiments. Three datasets show significant improvement with the

autoregressive model: HIV env (BF520), HIV env (BG505), and Gal4 DNA-binding domain. b The autoregressive model (blue) can learn from natural

sequence repertoires of llama nanobodies to predict the thermostability of llama nanobody sequences with variation in the framework and

complementarity determining regions with greater accuracy than HMMs (orange). The number of llama nanobody sequences from each study is shown

above each pair of bars. c Fitness predictions for single deletions in PTEN phosphatase compared with measured experimental fitness is accurate, with a

Spearman correlation of 0.69. d Accurate prediction of binary fitness for IGP dehydratase with a range of insertions, deletions, and missense mutations of

the autoregressive model (blue), higher than HMM (orange).
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Because the autoregressive model is not dependent on
alignments, we can now learn mappings of sequences of high
variability and diverse lengths for which meaningful alignments
are difficult or nonsensical to construct, such as antibody and
nanobody sequences. The autoregressive model was thus also
validated on nanobody thermostability measurements to test
whether we could learn the sequence constraints of fit
nanobodies, including the highly variable regions. To do so, we
fit the autoregressive model to a set of ~1.2 million natural llama
nanobody sequences57. Sequence likelihoods from this trained
model are expected to reflect nanobody fitness, i.e., the multiple
convolved aspects that nanobodies are selected for in vivo,
including thermostability, expression, and potentially low poly-
reactivity. Using this model, we find that the log-probability
fitness calculations predict the thermostability of unseen llama
nanobody sequences from four different stability
experiments69–72 (Fig. 2b, Supplementary Fig. 5, Supplementary
Table 3, Supplementary Data 1). These experiments span a wide
range of mutation types, lengths, and sequence diversity. The
autoregressive model consistently outperforms a hidden Markov
model (HMM, hmmer3)73,74 in predicting the relationship
between sequence and thermostability of nanobodies.

Previous alignment-dependent generative models are con-
strained to predicting the effects of missense mutations. However,
in-frame insertions and deletions can also have large phenotypic
consequences for protein function, yet these changes have proved
difficult to model. We compare the fitness predictions calculated
as log probabilities by the autoregressive model to experimental
assays for the fitness of mutated biomolecules, using rank
correlation (ρ) for quantitative measurements and area under
the receiver-operator curve (AUC) for binary fitness categoriza-
tion, identifying the two groups with a two-component Gaussian
mixture model. The model is able to capture the effects of single
amino acid deletions on PTEN phosphatase75 (ρ= 0.69, N= 340,
HMM ρ= 0.75; PROVEAN ρ= 0.7; Fig. 2c, Supplementary
Data 2) and multiple amino acid insertions and deletions in
imidazoleglycerol-phosphate (IGP) dehydratase76 (AUC= 0.90,
N= 6102, HMM AUC= 0.88; Fig. 2d, Supplementary Table 4,
Supplementary Data 3). Here we use the AUROC metric for IGP
dehydratase as the experimental data are bimodal with a large
fraction at zero fitness. While PROVEAN77 predicted the effect of
single PTEN deletions comparably to our model, it fails to predict
the effect of multiple insertions, deletions, and substitutions as
were tested in IGP dehydratase and it cannot generate new
sequences. Three additional insertion and deletion mutation scan
fitness predictions are included in the supplement: yeast snoRNA
(ρ= 0.49; Supplementary Data 4), beta-lactamase (ρ= 0.45;
Supplementary Data 5), and p53 (ρ= 0.035; Supplementary
Data 6) (see Supplementary Fig. 6). Predicting the effects of indels
can be important for disease-related genes : the four different
single amino acid deletions annotated as pathogenic by Clinvar78

in two cancer genes, BRCA1 and P53, and one Alzheimer’s-linked
gene, APOE, is in the bottom 25th percentile of predicted deletion
effect distributions (Supplementary Fig. 7). Other indels that are
predicted to be highly deleterious by the autoregressive model
may be of clinical interest for the experimental study of
pathogenicity. We expect that the autoregressive model can
predict mutation effects in disordered and low-complexity
sequences. As a proof-of-concept, we have provided an in silico
mutation scan of the human tau protein, which contains regions
of low complexity and is strongly associated with neurodegen-
erative diseases (Supplementary Fig. 8; Supplementary Data 7).
Our mutation effect prediction distinguishes between 40
pathogenic and 10 non-pathogenic mutations (two-tailed inde-
pendent t=−4.1, p= 0.001, AUC= 0.86; Supplementary Data 8)
that were collected from the Alzforum database79.

Generating an efficient library of functional nanobodies.
Screening large, high-throughput libraries of antibodies and
nanobodies in vitro has become increasingly prevalent because it
can allow for rapid identification of diverse monoclonal binders
to target antigens. However, these synthetic libraries contain a
large fraction of non-functional nanobody sequences. Natural
nanobody sequences are selected against unfavorable biochemical
properties such as instability, poly-reactivity, and aggregation
during affinity maturation6. Similarly to nanobody thermo-
stability prediction, we sought to learn the constraints that
characterize functional nanobodies by fitting the autoregressive
model to a set of ~1.2 million nanobody sequences from the
immune repertoires of seven different naïve llamas57. Using this
trained model and conditioning on the germline framework-
CDR1-CDR2 nanobody sequence, we then generate over 107 fit
sequences, generating one amino acid at a time based on the
learned sequential constraints. As nanobody CDR3s often contact
the framework in 3D, conditioning in this way allows the model
to learn any resulting constraints on the CDR3 sequence and
incorporate them during generation. We remove sequences that
do not end with the final beta-strand of our nanobody template,
duplicate sequences, and CDR3s likely to suffer post-translational
modification to obtain ~3.7 million sequences (Supplementary
Table 5). From these, we select 185,836 highly diverse CDR3 se-
quences for inclusion in our designed library. We compare our
designed library to a state-of-art synthetic library8, which was
constructed combinatorically based on position-specific amino
acid frequencies of nanobody sequences with crystal structures in
the PDB database. This library contains CDR3 sequences that
have a similar distribution of biochemical properties as the naïve
llama immune repertoire (“Methods”; Fig. 3a). The distribution of
hydrophobicity and isoelectric points are similar to the natural
llama repertoire even though explicit constraints on these prop-
erties were never imposed during the generation or selection of
sequences for the designed library. The lengths of the
CDR3 sequences in the designed library are shorter than the
natural repertoire; this is due to the strategy of choosing cluster
centroids during the selection of the 105 sequences and can be
adjusted by changing the sampling method. Longer CDR3s may
also be attained by allowing interloop disulfide bridges that sta-
bilize longer CDR3s in some VHH domains80; this would require
a different nanobody template and ideally camel or dromedary
nanobody repertoires. The sequences in the designed library are
diverse; they are more distant from each other than sequences in
the natural repertoire (Fig. 3b) while maintaining nearly as much
diversity as an equivalent sample of a combinatorial synthetic
library8 (Supplementary Fig. 9). In addition, we are exploring new
regions of sequence space because the generated sequences in the
designed library are diverse from the naïve repertoire (Fig. 3c).

Using these designed CDR3 sequences, a nanobody library was
constructed using our yeast-display technology for experimental
characterization alongside a combinatorial synthetic nanobody
library8. The designed library had more length diversity and a
longer CDR3 median length (13) than the synthetic library (12)
(Supplementary Fig. 9), while the synthetic library included
designed diversity in specific residues of the CDR1 and CDR2.
Individual nanobody sequences were expressed on the surface of
yeast cells, allowing for rapid sorting of nanobody clones based on
expression and/or binding levels. Upon induction, the designed
nanobody library contained a 1.5 times higher proportion of cells
expressing and displaying nanobodies on their cell surface than
the synthetic nanobody library (Fig. 4a, b and Supplementary
Fig. 10). In the designed library, we can also see a clearer
separation of cells expressing nanobodies and those that are not.
Of cells expressing nanobodies, the mean nanobody display levels
from the designed library are almost twice the level of the
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previous library (Fig. 4a, b). Furthermore, the designed library
had nearly half the fraction of poorly expressed nanobodies (cells
with fluorescence below 10,000 AU) as compared to the synthetic
library (Fig. 4a, b) as well as a significant increase in the fraction
of highly expressed nanobodies, as can be seen in the upper limits
in the respective expression distributions (Fig. 4a and Supple-
mentary Fig. 10). Expression experiments were performed with
two replicates in addition to a single control experiment of yeast
expressing a single well-behaved nanobody clone (Nb. 174684).
These experimental results demonstrate that with the autore-
gressive model trained on natural llama nanobody sequences, we
successfully designed a smart library consisting of a higher
proportion of stable, well-expressed nanobodies.

With this small designed library, we selected nanobody
sequences that bound to human serum albumin (HSA) using
fluorescence-activated cell sorting (FACS) (Fig. 4c), from which
we were even able to identify weak to moderate binders—the
strongest binder has a predicted Kd of 9.8 μM (Fig. 4d). This
experiment is a proof-of-concept that this small library contains
antigen-binding sequences that can be starting points for affinity
maturation to identify strong binders. Though not explicitly
designed to minimize poly-reactive nanobody sequences, training
on a naïve llama repertoire, which presumably contains a
moderate proportion of poly-reactive sequences81–87, the
designed library shows similar levels of poly-reactivity to the
synthetic library, which had been designed according to a small
set of highly specific nanobodies (Supplementary Fig. 11). These
results indicate that we have successfully designed an efficient
library containing a high proportion of promising diverse, stable,
specific, and sensitive nanobody sequences.

Discussion
Here we show how neural network-powered generative auto-
regressive models can be used to model sequence constraints
independent of alignments and design novel functional sequences
for previously out-of-reach applications such as nanobodies. The

capability of these models is based on demonstrated state-of-the-
art performance and on an extended range of applicability in the
space of sequences. In the particular version in this paper, we
validated our model first on deep mutational scan data, with on-
par performance with the best currently available
model29–31,34,77, and demonstrated application to examples for
which robust alignments cannot be constructed, such as
sequences with multiple insertions, deletions, and substitutions,
and cases for which protein structures and experimental data are
not available. As for the comparison with a potentially competing
alignment-free model, while we do not discount the utility of
semi-supervised methods (exploiting mutation effect-labeled
experimental data), great care must be taken in the way the
split between training and test is conducted to evaluate the true
generalizability of the method. For instance, randomized subsets
excluded from training will still be learned from the labeled data
in a way that is not generalizable to required predictions for other
proteins53,88,89. Our model is not subject to these limitations as its
training is fully unsupervised.

Due to their flexibility, deep autoregressive models could also
open the door to new opportunities in biological sequence ana-
lysis and design. Unlike alignment-based techniques, since no
homology between sequences is explicitly required, generative
models with autoregressive likelihoods can be applied to variants
with insertions and deletions, disordered proteins, multiple pro-
tein families, promoters, and enhancers, or even entire genomes.
Specifically, the prediction of insertions and deletions and
mutation effects in disordered regions has been a difficult
research area, despite their prevalence in human genomes. Dis-
ordered regions are enriched in disease-associated proteins, so
understanding variant effects will be important in understanding
the biology and mechanism of genes indicated in cardiovascular,
cancer, and neurodegenerative diseases. For example, classical
tumor suppressor genes, such as p53, BRCA1, and VHL, and
proteins indicated in Alzheimer’s disease, such as Tau, have long
disordered regions where these models may prove particularly
useful.
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Fig. 3 The designed library has comparable biochemical property distributions and improved diversity to the natural llama repertoire. a Conditioned on

the framework-CDR1-CDR2 sequence, a diverse set of CDR3 sequences are generated and selected. These designed CDR3 sequences (green) are similar

to the natural repertoire (blue) in their distributions of hydrophobicity105 and isoelectric point106, 107, while having shorter length distributions due to

selection strategies in the final library construction. b The designed library contains more diversity in sequences than the natural repertoire as evidenced by

the larger cosine distance to its nearest neighbor. c Each sequence in the designed library is diverse from any sequence seen in the natural repertoire,

indicating that we have learned fit sequence constraints but are traversing previously unexplored regions of sequence space.
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With this model, we designed a smart, diverse, and efficient
library of fit nanobody sequences for experimental screening
against target antigens. Designing individual hypervariable CDR
sequences that make up a library of diverse, functional, and
developable nanobodies allows for the much faster and cheaper
discovery of new therapeutics, minimizing both library waste and
necessary experimental steps. Our streamlined library (1000-fold
smaller than combinatorial synthetic libraries) enables rapid,
efficient discovery of candidate nanobodies, quickly providing a
starting point for affinity maturation to enhance binding affinity.
In combination with a continuous evolution system, candidate
binders from the designed library have been identified and affi-
nity matured after only a few rounds of selection with a single
experiment90. As the cost to synthesize sequences decreases, the
demand for methods that can design highly optimized and
diverse sequences will increase as compared to constructing
libraries via random or semi-random generation strategies.

A challenge of using synthetic libraries is the poly-reactivity of
many sequences that in vivo, would be cleared by an organism’s
immune system. Naïve llama repertoires also contain poly-
specific sequences, so training a model on sequences from mature
or memory B cell repertoires may provide information on how to
improve library design in the future and minimize the poly-
reactivity of the designed library sequences. Multi-chain proteins
such as antibodies present an additional challenge that multiple
domains must be designed together. Models incorporating direct
long-range interactions such as dilated convolutions or attention
may identify the relevant dependencies between domains, even
when the domains are simply concatenated and generated
sequentially. Paired antibody chains are more challenging to
sequence than nanobodies, but more repertoires are becoming
available91. Beyond antibody and antibody fragment libraries, this
method is translatable to library design for any biomolecule of
interest, including disordered proteins.

Fig. 4 The designed library contains stable and functional nanobody sequences that are well expressed and can bind target antigens. a Fluorescence

distributions of cells expressing nanobodies comparing the synthetic combinatorial library (pink) and our designed library (green) in two biological

replicate experiments as well as a control experiment of a single, well-expressed nanobody clone (Nb174684, purple). The distributions of the designed

library are consistently right-shifted compared to the combinatorial library and resemble the control nanobody. b Compared to the combinatorial library,

the designed library has almost double the mean expression level (166,193 AU compared to 92,183 AU), nearly half the fraction of poorly expressed

nanobodies (of cells expressing nanobodies) (15.4% compared to 25.7% of clones with less than 10,000 AU indicated as a gray bar in panel (a)), and one

and a half times the fraction of total cells that express nanobodies (39.6% compared to 25.1%). The thresholds for determining the proportion of total cells

expressing nanobodies were found by identifying the local minima on the distributions and are displayed in Supplementary Fig. 10. Values displayed on the

bar graphs are means of two biological replicates for the two libraries and one replicate for the control experiment of the single nanobody clone. Replicate

measurements are displayed as dots for the two library experiments. c Fluorescence distributions of nanobodies bound to HSA show a rightward shift after

screening and selection, indicating a successful enrichment of binders to the target antigen. d On-yeast binding assay of Nb.174684, an HSA binder

identified from the designed library with moderate binding affinity. The means of HSA binding (AU) of three replicates are shown and error bars represent

standard deviations in measurements at each concentration of HSA. e CDR3 sequence of binder Nb.174684 and the sequences of the nearest neighbors

from the natural llama repertoire that was used to train the autoregressive model.
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Our model is the first alignment-free method demonstrating
state-of-art mutation effect prediction without experimental data
and applied at scale to design of protein sequences. New devel-
opments in machine learning will enhance the power of such
autoregressive models and incorporating protein structural
information may further improve the capacity to capture long-
range dependencies92 for these applications. The addition of
latent variables could also allow for the targeted design of high
affinity and specificity sequences to a desired target
antigen56,93–95. Conversely, we also anticipate better exploration
of broader spans of sequence space for generation, either by
exploiting variance explained by latent variables96 or diverse
beam search strategies97. With the increased number of available
sequences and growth in both computing power and new
machine learning algorithms, autoregressive sequence models
may enable exploration into previously inaccessible pockets of
sequence space.

Methods
Model. Sequences are represented by a 21-letter alphabet for proteins or a five-
letter alphabet for RNAs, one for each residue type and a “start/stop” character.
Training sequences are weighted inversely to the number of neighbors for each
sequence at a minimum identity of 80%, except for viral families, where a 99%
identity threshold was used, as was done previously30. Sequence sets are derived
from alignments by extracting full sequences for each aligned region; sequence
identities, boundaries, and weights are the only information provided to the model
by alignments. The log-likelihood for a sequence is the sum of the cross-entropy
between the true residue at each position and the predicted distribution over
possible residues, conditioned on the previous characters. Since we encountered
exploding gradients62 during training on long sequence families with LSTM63 or
GRU64 architectures, we parameterize an autoregressive likelihood with dilated
convolutional neural networks (Supplementary Fig. 1). These feed-forward deep
neural networks aggregate long-range dependencies in sequences over an expo-
nentially large receptive field65–67. Specifically, we use a residual causal dilated
convolutional neural network architecture with six blocks of nine dilated con-
volutional layers and both weight normalization98 and layer normalization99,
where the number of blocks and layers were chosen to cover protein sequences of
any length. To help prevent overfitting, we use L2 regularization on the weights and
place Dropout layers (p= 0.5) immediately after each of the six residual blocks100.
We use a batch size of 30 for all sequence families tested. Channel sizes of 24 and
48 were tested for all protein families, and channel size 48 was chosen for further
use. Six models are built for each family: three replicates in both the N-to-C and C-
to-N directions, respectively. Each model is trained for 250,000 updates using
Adam with default parameters101 at which point the loss had visibly converged,
and the gradient norm is clipped62 to 100.

Data collection. Forty datasets which include experimental mutation effects, the
sequence families, and effect predictions were taken from our previous
publication30 and five datasets that include indels and nanobody thermostability
data were added for this work (references and data in Supplementary Table 4 and
Supplementary Data 1–4). For new mutation effect predictions such as the indel
mutation scans, sequence families were collected from the UniProt database in the
same procedure as described in previous published work30, using jackhammer74

and a default bit score of 0.5 bits/per residue for inclusion of sequence unless there
was low coverage of the target sequence or not enough sequences. Pathogenic
mutations for the Tau protein were downloaded from the Alzforum database79.
The naïve llama immune repertoire was acquired from57. Due to a large number of
sequences in the llama immune repertoire, sequence weights were approximated
using Linclust102 by clustering sequences at both 80 and 90% sequence identity
thresholds.

Nanobody library generation. Using the N-to-C terminus model trained on llama
nanobody sequences, we generated 33,047,639 CDR3 sequences by ancestral
sampling61, conditioned on the germline framework-CDR1-CDR2 sequence, and
continued until the generation of the stop character. Duplicates of the training set
or generated sequences and those not matching the final beta-strand of our
nanobody template were excluded. CDR3 sequences were also removed if they
contained glycosylation (NxS and NxT) sites, asparagine deamination (NG) motifs,
or sulfur-containing amino acids (cysteine and methionine), resulting in
3,690,554 sequences.

From this large number of sequences, we then sought to choose roughly 200,000
CDR3 sequences that are both deemed fit by the model and as diverse from one
another as possible to cover the largest amount of sequence space. First, we
featurized these sequences into fixed length, L2 normalized k-mer vectors with

k-mers of sizes 1, 2, and 3. We then used BIRCH clustering103 to find diverse
members of the dataset in O(n) time. We used a diameter threshold of 0.575,
resulting in 382,675 clusters. K-mer size and BIRCH diameter threshold were
chosen to maximize the number of clusters within a memory constraint of 70 GB.
From the cluster centroids, we chose the 185,836 most probable sequences for final
library construction.

Construction of nanobody library. FragmentGENE_NbCM coding for the
nanobody template was amplified with oligonucleotides NbCM_pydsF2.0 and
NbCM_pydsR and then cloned into the pYDS649 yeast-display plasmid8 using
HiFi Mastermix (New England Biolabs). The original NotI site in pYDS649 was
then removed by amplification with primers NotI_removal_1F and
Pyds_NbCM_cloning_R followed by cloning again into pYDS649 to generate the
pYDS_NbCM display plasmid for the nanobody template.

An oligonucleotide library was synthesized (Agilent) with the following design
ACTCTGT [CDR3] ATCGT where CDR3 is a sequence for one of the
computationally designed clones. Two hundred picomoles of the library were PCR
amplified over 15 cycles with oligonucleotides Oligo_library_F and
Oligo_library_R using Q5 polymerase (New England Biolabs). Amplified DNA was
PCR purified (Qiagen) and ethanol precipitated in preparation for yeast
transformation. In total, 4.8 × 108 BJ5465 (MATα ura352 trp1 leu2Δ1 his3Δ200
pep4::HIS3 prb1Δ1.6 R can1 GAL) yeast cells, grown to OD600 1.6, were
transformed, using an ECM 830 Electroporator (BTX-Harvard Apparatus), with
2.4 µg of NotI digested pYDS_NbCM vector and 9.9 µg of CDR3 library PCR
product yielding 2.7 × 106 transformants. Library aliquots of 2.4 × 108 cells per vial
were frozen in tryptophan dropout media containing 10% DMSO. A list of
oligonucleotides can be found in Supplementary Table 6.

Characterization of nanobody library. Yeast displaying the computationally
designed or combinatorial synthetic nanobody library8 were grown in tryptophan
dropout media with glucose as the sugar source for 1 day at 30 °C and then
passaged into media with galactose as the sole sugar source to induce expression of
nanobodies at 25 °C. After 2 days of induction, one million cells from each library
were stained with a 1:25 dilution of anti-HA AlexaFluor647 conjugated antibody
(Cell Signaling Technology) in Buffer A (20 mM HEPES pH 7.5, 150 mM NaCl,
0.1% BSA, 0.2% maltose) for 30 min at 4 °C. After staining, cells were centrifuged,
the supernatant was removed, and cells were resuspended in Buffer A for flow
analysis with an Accuri C6 (BD Biosciences, Supplementary Fig. 12).

To find nanobody binders to HSA one round of magnetic-activated cell sorting
(MACS) followed by two rounds of FACS (FACS, with SONY SH800Z Sorter) were
performed on our yeast-displayed library of nanobodies. For MACS, 4 × 107

induced cells were resuspended in binding buffer (20 mM HEPES pH 7.5, 150 mM
NaCl, 0.1% ovalbumin) along with anti-fluorescein isothiocyanate (FITC)
microbeads (Miltenyi) and FITC-labeled streptavidin for 35 min at 4 °C and then
passed through an LD column (Miltenyi) to remove binders to microbeads and
streptavidin. The remaining yeast was centrifuged and resuspended in binding
buffer and incubated with 500 nM streptavidin-FITC and 2 µM of biotinylated
HSA for 1 h at 4 °C. Yeast was then centrifuged and resuspended in binding buffer
containing anti-FITC microbeads for 15 min at 4 °C before passing them into an LS
column and eluting and collecting the bound yeast. For the first round of FACS,
induced yeast was first stained with 1 µM of biotinylated HSA for 45 min at 4 °C
and then briefly stained with 500 nM of streptavidin tetramer along with antiHA-
488 to assess expression levels. Both yeast stainings were performed in FACS buffer
(20 mM HEPES pH 7.5, 150 mM NaCl, 0.1% ovalbumin, 0.2% maltose). In total,
5 × 106 yeast were sorted and 28,000 were collected and expanded for the second
round of FACS. The second round of FACS was performed under the same
conditions as the first and from 3.8 × 106 sorted yeast 21,455 were collected.
Nanobody Nb174684 was isolated from a screen of 36 clones for binding to HSA
using a flow cytometer and then sequenced. In order to characterize the binding of
Nb174684, yeast displaying Nb174684 were stained with varying amounts of
AlexaFluor 488 labeled HSA and fluorescence was analyzed with a flow cytometer.
FACS measurements were analyzed using FlowJo and the python package
FlowCytometryTools.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All data generated and analyzed during the study are available in this published article, its

supplementary information files, and on the github repository (https://github.com/

debbiemarkslab/SeqDesign; https://doi.org/10.5281/zenodo.4606785 104).

Code availability
All code used for model training, mutation effect prediction, sequence generation, and

library generation is also available on the github repository (https://github.com/

debbiemarkslab/SeqDesign; https://doi.org/10.5281/zenodo.4606785 104).
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