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We predict interatomic C% distances by two independent
data driven methods. The first method uses statistically
derived probability distributions of the pairwise distance
between two amino acids, whilst the latter method consists
of a neural network prediction approach equipped with
windows taking the context of the two residues into account.
These two methods are used to predict whether distances
in independent test sets were above or below given thres-
holds. We investigate which distance thresholds produce
the most information-rich constraints and, in turn, the
optimal performance of the two methods. The predictions
are based on a data set derived using a new threshold
which defines when sequence similarity implies structural
similarity. We show that distances in proteins are predicted
more accurately by neural networks than by probability
density functions. We show that the accuracy of the predic-
tions can be further increased by using sequence profiles.
A threading method based on the predicted distances is
presented. A homepage with software, predictions and data
related to this paper is available at http://www.cbs.dtu.dk/
services/CPHmodels/.

using pair potentials as the cost function (Elofssnal.,
1995). These observations indicate that the quality of the
potentials is a highly problematic part of the protein structure
prediction problem today.

If a sequence similar protein with known structure exists,
homology modeling is probably still the most powerful method
for determining the approximate structure of a protein from
its sequence (Blundekt al., 1987; Moismanret al., 1995).

A similar sequence with a known structure can be found for
approximately one out of seven of the newly determined
sequences (Borkt al, 1992). Loops and insertions are still
difficult to model and often no improvement is made in relation
to the initial model when the sequence identity is in the order
of 30% or less (Moismanst al.,, 1995).

Many methods have been proposed for predicting the
structure from sequences for which no significantly similar
sequence with known structure exists (Eisenhabet., 1995).

One popular technique is that of threading a sequence through
a structure (Novothet al., 1984; Hendlictet al., 1990; Bowie
etal, 1991; Jonest al, 1992; Miyazawa and Jernigan, 1996).

A public ‘blind’ test has shown that the threading methods, in
some cases, can lead to the correct conformation (Letredr,
1995). However, these methods can only be applied if a similar
protein structure is known.

A general method would be to generate distance constraints
and subsequently use these in an algorithm that computes the
folded structure. Interatomic distances in proteins can be

Keywords: distance prediction/neural network/pair density predicted by methods using the distribution of distances in

function/protein structure/threading

Introduction

proteins with known structures (Tanaka and Scheraga, 1976;
Wako and Scheraga, 1982a; Miyazawa and Jernigan, 1985;
Sippl, 1990; Maiorov and Crippen, 1992; Grossmetnal.,
1995; Huanget al, 1995; Mirny and Shaknovich, 1996), or

It is widely believed that the tertiary structure of proteins USing correlated mutations (@el et al, 1994; Shindyalov

is determined by the primary structure (Anfinsen, 1973)€t al, 1994; Taylor and Hatrick, 1994). Recently, a superior
Determination of tertiary protein structure from the sequenc€rformance was reported from using a combination of the
can be seen as consisting of two tasks: (i) the definition of afvo (Thomaset al, 1996), and a combination of correlated
energy or cost function that gives the native conformation dnutations with other sources of sequence information (Olmea
lower energy or cost than all other conformations; (ii) the@nd Valencia, 1997). Another approach has been to predict
development of algorithms that, given such a cost or energf}-sheet tertiary structure (Lifson and Sander, 1980; Kikuchi
function, can find the correct conformation. Both the precisior€t al, 1988; Hubbard, 1994). Estimated distances based on
of the currently used potentials and the computer time needegfatistical studies of protein structures have been used to

to simulate protein folding are at present bottlenecks foidetermine the approximate structure of proteins (Wako and
ab initio calculation of protein structure (Karplus and Petsko,Scheraga, 1982b; s, 1990; Wako and Kubota, 1991; Seitoh

1990; Elofssoret al., 1995).

et al, 1993; Mongeet al, 1994; Mumenthaler and Braun,

Two main types of potentials have been applied to evaluatd995; AsZali et al, 1995; Skolnicket al, 1997). These
the ‘nativeness’ of protein conformations: classical empiricaimethods, based on distance distributions, have been the most

potentials such as CHARMM (Brookst al, 1983) and pair

successful means of obtaining protein structures from

potentials based on the distribution of distances in proteinsequences with little similarity to sequences for which the
(Tanaka and Scheraga, 1976; Sippl, 1990). For some proteisructure is known. These methods, however, do not take into
the CHARMM potential failed to distinguish between correctly account the sequence context around the amino acid pairs.

and incorrectly folded protein models (Novotey al.,, 1984).

Neural networks, using a string of amino acids as input,

This prompted a pursuit for alternative energy measuretave proven highly successful in the prediction of secondary

(Kocheret al., 1994). However, a genetic algorithm could find structure in proteins (Rost and Sander, 1995). Neural networks
conformations with lower cost than the native structure, whertrained on homologous sequences have previously been used
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to predict distances between amino acids and these predictim(a)
have in turn been used to determine the structure of protein
(Bohr et al, 1990, 1993; Reczko and Bohr, 1994). Neural
networks have also been used to prediestrand contact
patterns (Krogh and Riis, 1996) and to represent empirica
protein potentials (Grossmaat al., 1995).

We have described how distance intervals suitable fo
structure prediction may be defined (Reesal., 1996), and
also how the structure of proteins may be derived from &
limited set of constraints (Lundt al., 1996). Here we define 8
a threshold above which sequence similarity implies structura @
similarity and analyze the effect of using different alignment
methods, matrices and gap penalties. This threshold is the

quence identity (%)

used to extract a set of non-sequence similar protein chair 0L— : : : . : : :
from the Brookhaven Protein Data Bank (PDB) (Bernstein 0 50 100 150 200 250 300 350 400 450
et al, 1977). We divide this set into a training set, which we Alignment length

use to develop methods for predicting distances in proteins
and a test set with which we evaluate the performance of th

methods. 100

We compare the predictions of distance inequalities mad(P) L ' ' o ' ---!|50<-- '
from two data driven methods: artificial neural networks and i 50-60%
pair density functions. The predictions of distance inequalities __ 80 |m 60-70% =
in proteins presented here gave a leading edge performancs® 70-80% -+
The predicted distance inequalities might enhance the perforn = thre;?l?)lﬁ o

ance of methods like threadingj initio folding and homology 60

modeling.

40 ja
Materials and methods

Protein structure data 20 |8

Two data sets were extracted from the Brookhaven Proteil

Data Bank, release 76 containing 4432 entries. Set | wa
extracted in order to establish a threshold above which sequen:i 0
similarity implies structural similarity. This threshold was used

to generate Set II: a low similarity data set used to develop

and validate methods for predicting distances in proteinsFig- 1. DSSP secondary structure identity in alignments as a function of the

: s ; lignment length and the percent sequence identity. In these calculations we
Entries were excluded from Set | if (i) they were not determlned’"Se d a pam120 matrix with opening gap penélty —12 and gap

by X-ray diffraction (796 entries), since no commonly acceptetyjongation penalty = —4. (8) The 942 sequences of Set ) (The order of
measure of quality is available for NMR or theoretical modelthe amino acids in the sequences in Set | has been shuffled.

structures. (i) The secondary structure of the proteins could
not be assigned by the program DSSP (Kabsch and Sand

1983) (765 entries), since we wanted to use the DSSP assig
ment to quantify the secondary structure identity in the pairwisé“
alignments. (iii) The proteins had any physical chain break
(defined as neighboring amino acids in the sequence havi
Co-distances exceeding 4.0 A (732 entries). (iv) They had

resolution greater than 1.8 A (3466 entries), since resolution ¢ the statistical examination and orediction alaorithm
better than this enable the crystallographer to remove mo N pre goritf
evelopment. The chains in Set Il were divided randomly into

errors from the model. Exclusion of the above data gave 79 o ) ; .
entries with 1035 chains of high quality. Of these, chains with@ training set of 420 chains and a test set of 105 chains. This

a length of less than 30 amino acids were also discarded (%\gas gone in such a wa31 that t:u_e drl]stnbutlon of sequence
chains). The final Set | consisted of 942 chains. engths were approximately equal in the two sets.

To generate a set of non-sequence similar protein chairigerivation of a sequence similarity threshold
(Set 1) we extracted a new basic set of data from PDB. InWe aligned the 942 sequences in Set |, all against all, and
this selection we did not apply the same strict criteria forevaluated the percentage of DSSP (Kabsch and Sander, 1983)
inclusion as in Set |, for reasons of statistics. We acceptedecondary structure identity as a function of the alignment
resolutions up to 2.5 A (658 entries discarded) and structuréengthL and the sequence identity., (Figure 1). Most of the
determined by NMR, but excluded entries if the DSSP progranalignments had either a short length or a low percentage of
detected chain breaks or incomplete backbones (658 entriesgquence identity (Figure 1a). In only a small fraction of the
leaving us with 4319 chains. A representative set with lowalignments a combination of a high percentage of sequence
pairwise sequence similarity was selected by running algorithnidentity and a long alignment length was seen. In almost all
#1 of Hobohmet al. (1992). The sequences were aligned usingof these alignments there was a high percentage of secondary
the local alignment programssearch(Myers and Miller, 1988;  structure identity. When the order of the amino acids in each
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earson, 1990) using the pam120 amino acid substitution
atrix (Dayhoffet al., 1978), with gap penalties -12, —4. As
cutoff for sequence similarity we applied a threshold for
hen sequence similarity implies structure similarity (see
elow). Finally, we obtained Set Il, consisting of 525 distinct
rotein chains containing 105 773 amino acids to be employed



Protein distance constraints

of the sequences were shuffled no alignments could be found 20 N ' ‘ T T ' i
with a combination of a high percentage identity and a long < 18 | g;‘g;%o
alignment length (Figure 1b). This shows that alignments with § 16|
a combination of long length and high percentage of sequence
identity implies structural similarity, whilst alignments with < 14 | Gl
either of the two may be found in alignments of shuffled T 12
sequences. Like Sander and Schneider (1991), we dividecg
the alignments into two groups depending on whether their g 10
secondary structure identity in the alignments was above org
below 70%. We chose threshold curves of the foggm= K/VL,
whereK is a variable to be optimized. This functional form o
fitted well to the boundary of the area of alignments of shuffled E
sequences (Figure 1b). To obtain the optimal threshold curve3
we determined, as a function &f, the number of alignments . ‘ o Sutatlihob, o
above a given threshold curve which had a secondary structure 0 200 400 60 800 1 000 1200 i 1 4
identity above 70% (true positives), and the number of align- %identity*sqrt(Alignment length)
ments above a given threshold curve which had secondary
structure identity below 70% (false positives). Fig. 2. Root mean square of distances of equivalefita@ms in the

In ths study we used substtution matrces from the pamIIIn o342 sseres 28 ety T vecane
series (Dayhof&t al., 1978). The pam20, pam120 and pam250, —~— : P
matrice(s V\yere taken from) the fatl)sta pacﬁage, and thg pam3§%lseq_ 290 and the horizontal line fs at 2.5 A
was taken from the clustalW package (Thompsbal., 1994)
and changed into the fasta matrix format. We also used thg,o corresponding amino acidsand j in the first and the

blosum50 matrix (Henikoff and Henikoff, 1992) from the fasta gocong sequence, respectively. The relation betwkeg,and
package and identity matrices, either taken directly from thgpe ¢ m 5. of distances is shown in Figure 2. The poirq1ts to the
fasta' package, or ”.‘Od'f'.ed from the fasta package 1o Obta'ﬂght of the vertical dotted line represent alignments with a
identity matrices with different diagonal and off-diagonal seqence similarity above our thresholgh{= 290K/L), and
substitution scores. The alignments were performed using boffye’ hoints above the horizontal dotted line represent alignments
the rigorous Smith-Waterman algorithm (Smith and Watermany, \yhich the r.m.s. of distances is more than 2.5 A. Less than
1981) implemented in thesearctprogram as well as thi@sta 594" of the alignments which had a similarity above the
program (Pearson and Lipman, 1988; Pearson, 1990). Thgreshold had an r.m.s. of distances of more than 2.5 A.
ssearchprogram found more true positives as a function ofrhis” confirms the above results using secondary structure
the number of false positives than tfestaprogram and was  aqgjgnments that most of the alignments with a similarity

thus found to perform significantly better. above our threshold are structurally similar.
The decision on which alignment matrix to choose depends

on the acceptable fraction of errors. When accepting less thadean distances between amino acids in proteins

3% false positives we found that the number of true positivedf proteins are assumed to be spherical and the amino acids
was maximized when using the pam120 matrix with gapare randomly distributed in the sphere the mean distance
penalties —12, —4 together with the threshold curyg= 290/  between two amino acids can be calculated as

an s

o N A O

VL as shown in Figure la. An almost identical performance RA4 32 g0
was obtained using the alignment scétg, = 60 as threshold. S 22
The secondary structure identity was also calculated using .!,!. R R

a three state secondary structure assignment rather than the
eight state assignment assigned by the DSSP program. Th}sTI sin @

was done by maintaining the helix (H) and extended sheet (E V(g —r cos®)? + (r sin )2 d(p] drdg= %SR, (2)

assignments and converting all other assignments to coil (Ck o

Such assignment is identical to the one used by Sander anghereR s the radius of the sphere. The fact@€/Re and
Schneider (1991), (Schneider, personal communication). Usin /R® are the derivatives of the probabilities for finding a

these rﬁ-zssignmenfjs, 0”'% ﬁV? alig_rzjmetr_ltts a?(ive thti thre7soho int within spheres of radius and g, respectively. The two
CNurtvethat Ff"‘ secin ary s r(;“'c ure 1 tehn Ifyllo . ehsts . ?nDSS uter integrals sum over all pairs of points within a sphere of
ote that Figure 1 was made using he full eignt state radius R The expression inside the square brackets is the

secondary assignments, and that more than five ahgnmenmean distance between a point on the spheric shell with radius
according to this assignment scheme have a secondary structyre (4 4 point on the spheric shell with radigs> r. If it is

; . o . : :
identity of less than 70%. assumed that an amino acid on average occupies a volume of

In order to establish the correspondence between sequenge _ 3 : ;
. e = 161 A3 (Creighton, 1984), then the mean distarthe
a 1 )
identity and structural |de'nt|ty, we also calculated'the root Srveen two amino acids in an amino acid long protein
mean square (r.m.s.) of distances of &oms of equivalent

amino acids in the alignments. The r.m.s. of distancedvfor
pairs of amino acids is defined as (Wako and Kubota, 1991) 2 s 3f 3Vl 3
v (- dy)? | BR= 35-\/ ~ 3.47VLA ®3)
1j 2jj 41T
Z Z M2 — M)/2 @)
o1 o (M =M)2) If proteins are assumed to be shaped like rods with a
whered, j; andd, ; are the distances between thé &oms of  length 3.8 A, the mean distance between amino acids should be
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Sequence separation a)

[ B 40 ; —
—~ 35 P o
$ v * ++ J:&&; oo °
o o e
5 25 ORI o
(@] f++++:$'% : 2
© 20 r L++ °¢¢-6>+
2 A One chain
g 15 - s Multiple chains  + 1
5 s 4*LN1/3)
, c 10 | 3.47*LN1/3) ;
Output: Contact or non-contact 8 //’7 s 0.63* -
Fig. 3. Schematic drawing of the neural network architecture used. = 5r .
0 T 1 L .
3.8 0 2 4 6 8 10
— LA =1.27LA. (4) Cubic root of chain length
3
. . . b
We also estimated the mean distardf§ between amino ) 35
acids separated by a given number of amino acids in the ' ' ' ' '
sequence (in the following referred to as the sequence separa-_
tion). If we assume that thd amino acids, after a given amino < 30 r
acid, form a sphere with volumé,N A3, and theNth amino Tv‘l
acid is placed at maximal separation within this sphere, then © 251 ]
the mean distance between two amino acids separated by&,I 20
. L 3— L |
N amino acids is 2(3V,N)/(4m) = 6.75VNA. S
Prediction of distances § 15 + .
We have used pair density functions and artificial neural *g
networks to predict whether distances in the test set were 2 10 Training set  ©
above or below a given distance threshold. The pair density $ . Far end of sphere
functions were used to predict distances in the test set in the = 5r¢
following way: for each of the 400 types of amino acid pairs
ab at a given sequence separatidnwe counted the number 0 . : . . : : -
of distancesFg° in the training set above the threshold and T 15 2 25 3 35 4 45 5

the distance€{P below the threshold. IF{P was larger than Cubic root of sequence separation

" ; . - i .
CR’, then distances in th? test set between the amino acid paiy, 4. pistribution of distances in the proteins in our training sej.Mean
ab, at sequence separatidh were predicted to be larger than distance as a function of the cubic root of the sequence length for chains
threshold (non-contact), otherwise the distance was predictegbm PDB entries with one chain; and from PDB entries with multiple

to be lower than the threshold (contact). The distance betwedifains. b) Mean distance as a function of the cubic root of the sequence
a particular pair of amino acids, at a given sequence separation, 2 2o

is thus always predicted with the same outcome. ; : .
; ; . experimentally non-contact, predicted non-contdet); false
We used standard neural networks without hidden units c:h b Y P

. X . ) . ositive (experimentally non-contact, predicted contact) and
with one layer of hidden units and adjusted the weights b . false negative (experimentally contact, predicted non-
conventional back propagation (Rummelhart, 1986). For deta"éontact) C = 1andC = -1 correspond to a perfect and a
of the implementation of neural networks to analyze bi°|°gica|completély wrong prediction, respectively
sequences see for example Bruretkal. (;991). The main The percentage of correct predictiom ¢ N)/(P, + N, +
novel feature of the neural network architecture was the we, N is also used
window input layer. In the schematic illustration shown in X ' " '

Figure 3 the distance is predicted between D (in GDE) and ARegyits

(in GAS), which have the sequence separation 16. The tw

symmetric windows both have a size of three amino acids. ] ) Rt ) ]
Evaluation of results We first studied the distribution of distances between amino
acids in the proteins in the training set in order to derive

The Mathews correlation coefficied (Mathews, 1975) was  gjstance thresholds for the predictions. The theoretically

used to evaluate the performance of the networks and the pair . , ) . 3—
density functions derived expression for spherical proteins 3V4A corresponds

well to the lower limit of the mean distancdg, in the proteins
c Py Ny — Nix Py 5) of the training set (Figure 4a). This is expected since the
= spheric form minimizes the average distances between points
V(N + N (N + Prd(Pc + N (P + Py enclosed in a given volume. The points below the line may
Here, we use the following notatior®,: true positive correspond to proteins with a closer packing, or with a high
(experimentally contact, predicted contadt); true negative fraction of small amino acids.
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Protein distance constraints

A least squares fit of the data from the training set to the line(a) 0.60 PIDFS VS. N'TIS .
dn = avL gave the relationd,, = 3.96 JIA ~ 4 JLA PDF
(see Figure 4a). We will use 1?4LA as one of the thresholds 0.50 NN_prO,ir[g;
for predicting distances, since this choice for large sequenc €
separations should ensure that approximately as many distanc éf 0.40
are above as below the threshold. The points far above thig _
line represent the ‘rod’ shaped proteins, and almost all of thes © ;5 |1
. . R = 4 1
correspond to chains from PDB entries with more than one.g ;
chain. There are only 12 single chain proteins above a lintg 0.20
defined byd,, = 4.5 \37LA. Six of these are protein fragments, g T
three are multimeric in their natural environment, two are 0.10
metal-binding proteins and one is a calcium binding protein '
Thus, it is likely that all these chains are stabilized by other
molecules, in their natural environment. 0.00 < 55 i = 2 i
If proteins are assumed to be rod-shaped the mean distan Sequence separation
between amino acids should be 1LA7 Figure 4a shows that
0.5x1.27L = 0.63A is an upper limit to the mean distances
between amino acids in the proteins of the training set. AII( ) PDFs vs. NNs
proteins in the training set are thus less than half as long & 0.80 ; ; : T
they could be if they were rod shaped. Note that this line is PDF
curved in Figure 4a because tkaxis is the cubic root of the 0.75 h+ NN
chain length. - NN-profiles
For short sequence separations we will apply threshold :
specific for the sequence separations. The mean distiffice @ 0701 1
between amino acids with a sequence separatioN s€ales 8
approximately with the cubic root of the sequence separatio 5 065 1
(Figure 4b). The points on this curve represent averages fc G :
all 420 proteins in the training set. Although the relation £  0.60 ||
dN = 6.75\3/NA derived earlier fits these data reasonably well,
we will use the mean distances derived directly from the 0.55
training set as thresholds.
Pred!ctlons of distances } 0.50 0 50 pr 2 P 3
We first evaluated the ability of the neural networks and the Sequence separation

pair density functions to predict whether distances in the

; ig. 5. Performance of neural networks with 18 amino acids in the input
independent test set were larger or smaller than the mea@mdows and five hidden units, (NNs) and the pair density functions (PDFs)

: N - ; .
dlstan_cedm In the training set for a given sequence separatiorys , function of the sequence separation. The mean distance at the given
N. Pair potentials could correctly predict whether distancesequence separation in the training set was used as thresholds. Performance

were larger or smaller thadl in at least 54.9% of the test when using NN predictions on sequence profiles is also shown.
examples, depending on the separation between the amirkd Correlation coefficients.b) Fraction of distances predicted correctly.
acids in the sequence (Figure 5). The correlation coefficients
reached a maximum of only 0.21 for these predictions. We, —— i i
evaluated the performance of neural networks with inputS\/(N,c + Ng/2)/2). Calculation of the correlation between the
window sizes from 2 up to 46. For short sequence separationQ,red'Cted constraints and the correct constraints using Chi-
we found that the optimal window size was 18 (i.e. two inputSquare statistics (Press al., 1992) yieldedb values less than
windows each of width nine amino acids). The windows werel0 > for all sequence separations. Prediction of distance
centered around each of the two amino acids between whidiRequalities in proteins is a very difficult task, and the obtainable
the distance was to be predicted. This is not surprising, sincgorrelation coefficients may seem small. However, the predic-
window sizes of 9-13 are good for secondary structurdions presented here are significantly better than random.
predictions. Using neural networks with a window size of 18, For relatively large sequence separations we found that
and five hidden units, more than 57.4% of the distances wergeural networks with 30 amino acid input windows were
predicted correctly and correlation coefficients of up to 0.420ptimal. When using 30 amino acids in the input window, the
were obtained. For sequence separations 2—100 the neugglrrelation coefficients and the fraction of correctly predicted
networks had on average correlation coefficients which werélistances of the networks declined for small sequence separa-
more than twice as large as those from pair density functiongions, relative to neural networks with a window size of 18,
A random prediction of the constraints will be 50% correctbut were markedly better for sequence separations 10-50. For
on average. The number of distanchg in the test sets larger sequence separations there was no significant difference
varied between 11 437 and 20 684 depending on the sequeniethe performance of networks with 18 and 30 amino acids
separation. For each of the sequence separations tested, thethe input windows. For sequence separations 2—-100 the
number of correct predictions, was more than eight standard neural networks with 30 amino acids in the input window on
deviations above 50% (assuming that the number of corre@verage predicted 3.9% more of the distances correctly than
predictions follows a Poisson distributio, — Ng/2 > did pair density functions. Using neural networks without
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hidden layers led to a decrease in correlation coefficients anich the input windows and five hidden units. This program
ten hidden units did not lead to improvement. predicted 55.6% of the inequalities in the test set correctly,
To evaluate the effect of using different distance thresholdsand the average correlation coefficient for the 105 proteins in
we compared the performance of pair density functions anthe test set was 0.174.
neural networks using the fixed thresholds of 5.8, 7.1, 9.5 and In order to assess quantitatively the significance of the
11.0 A (Reeseet al, 1996). For sequence separations largemeural network output, we used the training set to establish a
than 7, the use of any of these thresholds led to a much pooreglation between the neural network outpuaind the probability
performance compared with the use of the sequence separatipnthat two amino acids are closer than a given distance
specific thresholdd}, For these sequence separations most ofhreshold. For each sequence separation, the network predic-
the decrease in the performance could be avoided by usirigons were used to construct a table relatm@nd p, using
two additional fixed thresholds of 14.5 and 21.9 A. The latterbin sizes of 0.01 foo. Using this table to convert the neural
threshold equals the average of the mean distadgder all network output to probabilities, 61.7% of the inequalities in
the proteins in the training set. the test set were predicted correctly, and the average correlation
For sequence separations of 5 and 6, the mean distancesdnefficient for the 105 proteins in the test set was 0.204.
the training set were 11.1 and 12.6 A, respectively. For these To test if the overall performance was indeed reliable for
sequence separations the threshold of 11.0 A (Rees#.,  sequences not used in the training or testing of the networks,
1996) gave approximately the same performance. we extracted 131 new sequences from the latest release 79 of
For sequence separations of 2, 3 and 4 the threshold2DB. All 208 sequences had sub-threshold sequence similarity
corresponding to the mean distances in the training set (6.08) the 525 sequences in the training and test sets. The simple
7.56 and 9.25 A, respectively) performed significantly bettemon-profile based scheme predicted 61.7% of the inequalities
than the thresholds of 5.8, 7.1 and 9.5 A. The similarity ofin this set correctly, and the average correlation coefficient for
these two sets of thresholds shows that the predictability fothe 208 proteins was 0.189. This confirmed the reliability of
small sequence separations is very sensitive to the choice #ie evaluation of the performance. Thirty-nine of the 208 new
thresholds. This is most likely because the distance distributionsequences belong, according to the SCOP (Mwetzad., 1995)
for small sequence separations are very narrow. classification of protein structures to fold classes not present
We proceeded to use the pair density functions and thé our set of 525 proteins used for training and testing of the
neural networks to predict whether distances in the test sgtroteins. The percentage of correct predictions in this subset
were above or below\gh:A. This threshold was chosen becauseV2S 59.8% and the average correlation coefficient was 0.200.

it corresponds to the estimated mean distance in protein chairi—%;| Is?aisnr:a%Wc?n thr(pjlottetiz(; xﬁ;f%;mﬁgr%ilgf ovldirthatlﬁgmg&r']ss Slsseod
with a chain length of.. Using such a threshold thus ensures b 9y P

- ; 0 develop the algorithm.
that there are approximately as many distances above as bel&w -
the threshold for all large sequence separatiinghe pair It has been reported that the accuracy of prediction schemes

density functions could predict whether distances were abov(éan be dramatically increased when using profiles of aligned

or below this threshold with correlation coefficients up to equences (Gribskost al, 1987; Rost and Sander, 1993) as

. ) : dnput rather than single sequences. To test this we aligned
0.074, and predicted the distances correctly in more than 52 égach of the test sequences usfagtawith default parameters
of the examples in all test sets only. Using neural networksa

g}eudlstgarcl)cg ch(;)ruISde bfeﬁ:;dlscéeg r\z;vtlitcr)] ngot;re(zatl\ztelgrr: cé%e;f:]cclie% pectation values less than 0.01 were included in a profile.
P o q P equences fulfilling this criterion were subsequently aligned

the protein length dependent threshoﬁﬂ.A led on average to the query sequence using the progralign from thefasta
to better correlation coefficients than the one based on thgackage. Regions corresponding to gaps in the query sequence
average distance for a given sequence separdffon were removed and regions with gaps in the database sequence
The results above show that the optimal threshold is avere replaced with the corresponding amino acids from the
function of the sequence separation. For all the describequery sequence. On the average there were 17 sequences in
thresholds the neural networks performed better than the pagach profile. We calculated the probability of contact as an
potentials, both in terms of the correlation coefficients and iraverage of the predictions on the sequences in the profile. In
terms of the fraction of predictions which were correct. this way 63.2% of the inequalities in test set were predicted
We also investigated if the performance of the algorithmcorrectly, and the average correlation coefficient for the 105
could be enhanced by training and testing one neural netwonfroteins was 0.233. The largest increase in performance was
using data from several sequence separations rather thabserved for sequence separation 17, where the percentage
using a fixed separation. Training one network on sequencgoint of correctly predicted inequalities increased by 5 and the
separations of 48 to 52 and testing on the corresponding tesbrrelation coefficient increased by 0.09 (see Figure 5). These
sets gave a 5% higher correlation coefficient than using onlymprovements are comparable to those found when using
sets corresponding to a sequence separation of 50. profiles for secondary structure prediction (Rost and Sander,
1993).

gainst Swiss-Prot. All sequences reported fagta with

Predictions for whole proteins

We subsequently set up a program to predict distance inequail-hreading

ties for whole proteins. Individual neural networks trained onOne application of the predicted distances is to align a query
sequence separations 2—-20 were used to predict inequalitisequence against all entries in a database of structures with
for these separations. For sequence separation intervals 2fke aim of finding which structure the sequence is most likely
24, 25-34, 35-44, . . . and 95the inequalities were predicted to adopt (threading). For this task, we define a score which is
by neural networks trained on sequence separations 20, 3@yrge if the predicted distances between a residue in the query
40 ... and 100, respectively. All networks had 18 amino acidsequence and other residues in this sequence are similar to the
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distances between a residue in a database structure and othetft is well established that a large sequence similarity implies
residues in the structure. More specifically, we define a scorstructural similarity (Chothia and Lesk, 1986; Sander and
Snn for aligning residuem in the query sequence with a Schneider, 1991), but the quantitative aspects are still not fully
residuen in the database sequence. The score is defined asuaderstood. In contrast to the study of Sander and Schneider
sum over log odds ratios for sequence separations lip to  (1991) we found that for long alignment overlaps, the size of

lo (qmmk) the safe region, where sequence similarity implies structural

B 9h for dynik = 1 similarity, still depends on the alignment length. In their study,

Smn = > |og(1*11m.m+k for dy i = O (6)  the similarity threshold was constant at 25% identical amino
kO (HA+1...-2,23. 1) —s n,n+k —

acids when the alignment lengthwas larger than 80 amino
acids. We demonstrate that the safe region is confined by the
non-constant identity equivalent to 290/ With this criterion,

a sequence similarity below 25% will for sufficiently long
d’%ignments still imply structural similarity. The boundary of
the safe region was shown to correspond well to the maximal

ai; is the predicted probability of a contact between residue
andj. d;; is unity if residues andj in the database sequence
are in contact and zero otherwisg, is the probability for
contact between any pair of amino acids at that sequen
separation. In the following we have set= 0.5. Sz 2 X
Each of the sequences in the test set were used as a quéiilarity found by alignments of shuffled sequences.

sequence and threaded against a database consisting of all }h%\./e foﬁnd that tk:e besbt aligzcnnﬂent matrix _fcr)]r the taslé of
sequences in the test set, using the score defined above witfding the maximal number o alégnments with a secondary
| = 20. In these alignments, gaps were only allowed at th ructure identity of more than 70% was the pam120 matrix.

ends of the database sequences, and these gaps were unpe Ji_as been argued on theoretical grounds that a matrix with

ized. Sixty-seven of the 105 sequences (63.8%) could find" €Ntropy similar to that of pam120 S.hOUId be optimal for
their ownystructure using the nc?n—profile (based )score. Thidatabase searches (Altshul, 1991). This corresponds well to

compares favorably with the 58% previously reported for zour finding that identity matrices with an entropy close to that

o : : ; f pam120 also performed well. Johnson and Overington
ect alat(igwgf)core based on pair density functions (KOChel?lg%) compared a number of matrices in order to find which

We also evaluated the ability of our method to find theONe was most suitable for sequence comparisons. They found

approximate structure from the sequences. For this task V\}Qe pam120 m_atrix to be among the ones exhibiting_ better
used the SCOP database (Mureiral, 1995) which classifies Performances in their study. In an assessment of alignment
proteins according to their structure. Proteins in the same SCOrIBarLr'lczeos r;hetri flo\iu"t]:to |m€it£;|s))(5 pe{ﬁ)rn:ed br?tLerhitrtw(?r;hithe
family have a clear evolutionary relationship. A superfamily isP& atrix (vogtet al, ). The reason be S

defined as a set of families between which there is Iov\p|screpancy may be that the entropy of the blosum50 matrix

sequence similarity, but where structural and functional feature‘é'f"’lf?nr(?igres‘?ur']tzld teortitgglz;lgg:/t:uéasri ttggt fi?h:xrga Ilzgrl;[qhairitca:g
suggest a common evolutionary origin. The 35 test sef’ g signal pep g ’ pe,

sequences, which had another sequence belonging to the samr%] agrigtéo?%/a?:igpwgémf%ﬁ% 3t'g [ge(et,r:g) éd?i?;g rgﬁ;g(e
SCOP superfamily in the test set, were extracted for this tas 'elspenet al, 1996) P

We subsequently threaded each of these sequences against h i .I K d pair density f .

other 34 and found the top scoring one among these. The en using neural networks and pair density functions to

success of the threading was defined as the number of t[Eu2 CEARER R FOCTE 6 BVEC (0 T S e
scoring sequences which is in the same SCOP superfamily SP P '

the query sequence. Using a global alignment algorith sing thresholds equal to the mean of all distances at that

. . equence separation in the training set. A good performance
(—l\igeglr?(;nz?or?;;i(;/Xug:ﬁg]tylsa—740) V\\;\gthcoour;gn;i?% %ﬁg ggrr;gg ould also be obtained with our previously defined thresholds

superfamily for 13 of the 35 sequences using our profile base eeset al, 1996) supplemented by two additional thresholds

score. Using a Blosum50 substitution matrix together with th f 14.5 and 21.9 A. For larger sequence separations the best
- =sing 9 . : .er(asults were obtained with the protein chain length dependent
same alignment procedure, 14 of the sequences were identifie

3 -
correctly. The performance of our threading method is thughreshold 4LA. This indicates that, for large sequence separa-
roughly equal to that found by a conventional alignmenttions, distances are governed more by the size of the protein
method. For this task, it has been reported that a potentidhan by the sequence separation. The performance of the neural
based on predicted secondary structure has a performanBétWOka could be further increased by training and testing
that is approximately 35% worse than a normal amino acidimultaneously on data from several sequence separations.
substitution matrix (Fischer and Eisenberg, 1996). Using a 50/ The best distance threshold is the one which results in most

50 combination of our potential with a Blosum50 matrix, we information. The information is maximized if there are an

the optimum threshold is therefore given by the median of the
distance distribution. Due to the approximate symmetry of the
distributions of distances between amino acids in proteins the
Using carefully prepared data, we defined a sequence-similnean and the median of the distributions are close to each
arity-implies-structural-similarity threshold and used thisother and for practical reasons the mean may be used instead
threshold to generate a non-sequence similar set of proteinsf the median. It is a common belief that, for protein structure
The main result in this paper could be summarized by statingletermination, knowing that two amino acids are close to each
that neural networks trained and tested on this data were bettether is more useful than knowing that amino acids are far
at predicting distances than a method based on pair densigpart. However, if constraints between all pairs of amino acids
functions, and that the predicted distances can be used inae considered, the optimal distance threshold for determination
threading algorithm. of protein structure is close to the mean (Bettral.,, 1993).
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Predicting constraints with 100% accuracy may not beKikuchiT., Nemethy,G. and Scheraga,H.A. (198&) Protein Chem 7,

necessary in order to determine the structure of proteins. Th,?
success of alignment and threading algorithms, for examplggogn A" and  Riis,S K.

473-490.
ocher,J.-P., Rooman,M. and Wodak,S. (1994)ol. Biol., 235 1598-1613.
(1996) In Tourelzky,D.S., Mozer,M.C. and

is not based on the unambiguous recognition of a small number Hasselmo,M.E. (edsjdvances in Neural Information Processing Systems 8
of matches, but on the significance of the summed score overMIT Press, in press.

all aligned positions.

It has recently been shown that a combination of pai

Lemer,C.M.-R., Rooman,M.J. and Wodak,S.J. (19Bf)teins 23, 337-355.

}ifson,s. and Sanders,S. (198D)Mol. Biol.,, 139, 627—639.

Lund,O., Hansen,J.E., Brunak,S. and Bohr,J. (1836)ein Sci, 5, 2217-2225.

potentials and correlated mutations is better at predictingpajorov,V.N. and Crippen,G.M. (1992). Mol. Biol, 227, 876-888.

contacts in proteins than pair potentials alone (Thostaal.,

Mathews,B.W. (1975Biochim. Biophys. Acta405, 442—-451.

1996). We also found that the performance of our methodiry.L.A. and Shaknovich,E.l. (1996). Mol. Biol, 264, 1164-1179.

could be further enhanced by predicting on sequence profile',}é‘I

lyazawa,S. and Jernigan,R.L. (1988pacromoleculesl8, 534-552.
iyazawa,S. and Jernigan,R.L. (19985)Mol. Biol.,, 256, 623-644.

(Gribskovet al., 1987; Rost and Sander, 1993) rather than orjgismann,s., Meleshko,R. and James,M.N.G. (19feins 23, 301-217.

single sequences.

Monge,A., Friesner,R.A. and Honig,B. (199joc. Natl Acad. Sci. USA1,

The distances predicted by neural networks can potentially 5027-5029. o
be used to construct improved potentials that can enhance tfi#imenthaler,C. and Braun,W. (199BJotein Sci, 4, 863-871.

performance of threading and protein folding algorithms. The))V'

urzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1985)10l. Biol,
247, 536-540.

may also find use in homology modeling of loops andwyers E.w. and Miller,w. (1988 omput. Applic. Biosgj4, 11-17.

insertions/deletions.
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