
Protein Engineering vol.10 no.11 pp.1241–1248, 1997

Protein distance constraints predicted by neural networks and
probability density functions
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We predict interatomic Cα distances by two independent
data driven methods. The first method uses statistically
derived probability distributions of the pairwise distance
between two amino acids, whilst the latter method consists
of a neural network prediction approach equipped with
windows taking the context of the two residues into account.
These two methods are used to predict whether distances
in independent test sets were above or below given thres-
holds. We investigate which distance thresholds produce
the most information-rich constraints and, in turn, the
optimal performance of the two methods. The predictions
are based on a data set derived using a new threshold
which defines when sequence similarity implies structural
similarity. We show that distances in proteins are predicted
more accurately by neural networks than by probability
density functions. We show that the accuracy of the predic-
tions can be further increased by using sequence profiles.
A threading method based on the predicted distances is
presented. A homepage with software, predictions and data
related to this paper is available at http://www.cbs.dtu.dk/
services/CPHmodels/.
Keywords: distance prediction/neural network/pair density
function/protein structure/threading

Introduction

It is widely believed that the tertiary structure of proteins
is determined by the primary structure (Anfinsen, 1973).
Determination of tertiary protein structure from the sequence
can be seen as consisting of two tasks: (i) the definition of an
energy or cost function that gives the native conformation a
lower energy or cost than all other conformations; (ii) the
development of algorithms that, given such a cost or energy
function, can find the correct conformation. Both the precision
of the currently used potentials and the computer time needed
to simulate protein folding are at present bottlenecks for
ab initio calculation of protein structure (Karplus and Petsko,
1990; Elofssonet al., 1995).

Two main types of potentials have been applied to evaluate
the ‘nativeness’ of protein conformations: classical empirical
potentials such as CHARMM (Brookset al., 1983) and pair
potentials based on the distribution of distances in proteins
(Tanaka and Scheraga, 1976; Sippl, 1990). For some proteins
the CHARMM potential failed to distinguish between correctly
and incorrectly folded protein models (Novotnyet al., 1984).
This prompted a pursuit for alternative energy measures
(Kocheret al., 1994). However, a genetic algorithm could find
conformations with lower cost than the native structure, when
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using pair potentials as the cost function (Elofssonet al.,
1995). These observations indicate that the quality of the
potentials is a highly problematic part of the protein structure
prediction problem today.

If a sequence similar protein with known structure exists,
homology modeling is probably still the most powerful method
for determining the approximate structure of a protein from
its sequence (Blundellet al., 1987; Moismannet al., 1995).
A similar sequence with a known structure can be found for
approximately one out of seven of the newly determined
sequences (Borket al., 1992). Loops and insertions are still
difficult to model and often no improvement is made in relation
to the initial model when the sequence identity is in the order
of 30% or less (Moismannet al., 1995).

Many methods have been proposed for predicting the
structure from sequences for which no significantly similar
sequence with known structure exists (Eisenhaberet al., 1995).
One popular technique is that of threading a sequence through
a structure (Novotny´ et al., 1984; Hendlichet al., 1990; Bowie
et al., 1991; Joneset al., 1992; Miyazawa and Jernigan, 1996).
A public ‘blind’ test has shown that the threading methods, in
some cases, can lead to the correct conformation (Lemeret al.,
1995). However, these methods can only be applied if a similar
protein structure is known.

A general method would be to generate distance constraints
and subsequently use these in an algorithm that computes the
folded structure. Interatomic distances in proteins can be
predicted by methods using the distribution of distances in
proteins with known structures (Tanaka and Scheraga, 1976;
Wako and Scheraga, 1982a; Miyazawa and Jernigan, 1985;
Sippl, 1990; Maiorov and Crippen, 1992; Grossmanet al.,
1995; Huanget al., 1995; Mirny and Shaknovich, 1996), or
using correlated mutations (Go¨bel et al., 1994; Shindyalov
et al., 1994; Taylor and Hatrick, 1994). Recently, a superior
performance was reported from using a combination of the
two (Thomaset al., 1996), and a combination of correlated
mutations with other sources of sequence information (Olmea
and Valencia, 1997). Another approach has been to predict
β-sheet tertiary structure (Lifson and Sander, 1980; Kikuchi
et al., 1988; Hubbard, 1994). Estimated distances based on
statistical studies of protein structures have been used to
determine the approximate structure of proteins (Wako and
Scheraga, 1982b; Ycˇas, 1990; Wako and Kubota, 1991; Seitoh
et al., 1993; Mongeet al., 1994; Mumenthaler and Braun,
1995; Aszo´di et al., 1995; Skolnicket al., 1997). These
methods, based on distance distributions, have been the most
successful means of obtaining protein structures from
sequences with little similarity to sequences for which the
structure is known. These methods, however, do not take into
account the sequence context around the amino acid pairs.
Neural networks, using a string of amino acids as input,
have proven highly successful in the prediction of secondary
structure in proteins (Rost and Sander, 1995). Neural networks
trained on homologous sequences have previously been used
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to predict distances between amino acids and these predictions
have in turn been used to determine the structure of proteins
(Bohr et al., 1990, 1993; Reczko and Bohr, 1994). Neural
networks have also been used to predictβ-strand contact
patterns (Krogh and Riis, 1996) and to represent empirical
protein potentials (Grossmanet al., 1995).

We have described how distance intervals suitable for
structure prediction may be defined (Reeseet al., 1996), and
also how the structure of proteins may be derived from a
limited set of constraints (Lundet al., 1996). Here we define
a threshold above which sequence similarity implies structural
similarity and analyze the effect of using different alignment
methods, matrices and gap penalties. This threshold is then
used to extract a set of non-sequence similar protein chains
from the Brookhaven Protein Data Bank (PDB) (Bernstein
et al., 1977). We divide this set into a training set, which we
use to develop methods for predicting distances in proteins,
and a test set with which we evaluate the performance of the
methods.

We compare the predictions of distance inequalities made
from two data driven methods: artificial neural networks and
pair density functions. The predictions of distance inequalities
in proteins presented here gave a leading edge performance.
The predicted distance inequalities might enhance the perform-
ance of methods like threading,ab initio folding and homology
modeling.

Materials and methods

Protein structure data

Two data sets were extracted from the Brookhaven Protein
Data Bank, release 76 containing 4432 entries. Set I was
extracted in order to establish a threshold above which sequence
similarity implies structural similarity. This threshold was used
to generate Set II: a low similarity data set used to develop
and validate methods for predicting distances in proteins.
Entries were excluded from Set I if (i) they were not determined
by X-ray diffraction (796 entries), since no commonly accepted
measure of quality is available for NMR or theoretical model
structures. (ii) The secondary structure of the proteins could
not be assigned by the program DSSP (Kabsch and Sander,
1983) (765 entries), since we wanted to use the DSSP assign-
ment to quantify the secondary structure identity in the pairwise
alignments. (iii) The proteins had any physical chain breaks
(defined as neighboring amino acids in the sequence having
Cα-distances exceeding 4.0 Å (732 entries). (iv) They had a
resolution greater than 1.8 Å (3466 entries), since resolutions
better than this enable the crystallographer to remove most
errors from the model. Exclusion of the above data gave 795
entries with 1035 chains of high quality. Of these, chains with
a length of less than 30 amino acids were also discarded (93
chains). The final Set I consisted of 942 chains.

To generate a set of non-sequence similar protein chains
(Set II) we extracted a new basic set of data from PDB. In
this selection we did not apply the same strict criteria for
inclusion as in Set I, for reasons of statistics. We accepted
resolutions up to 2.5 Å (658 entries discarded) and structures
determined by NMR, but excluded entries if the DSSP program
detected chain breaks or incomplete backbones (658 entries)
leaving us with 4319 chains. A representative set with low
pairwise sequence similarity was selected by running algorithm
#1 of Hobohmet al. (1992). The sequences were aligned using
the local alignment program,ssearch(Myers and Miller, 1988;
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Fig. 1. DSSP secondary structure identity in alignments as a function of the
alignment length and the percent sequence identity. In these calculations we
used a pam120 matrix with opening gap penaltyf 5 –12 and gap
elongation penaltyg 5 –4. (a) The 942 sequences of Set I. (b) The order of
the amino acids in the sequences in Set I has been shuffled.

Pearson, 1990) using the pam120 amino acid substitution
matrix (Dayhoffet al., 1978), with gap penalties –12, –4. As
a cutoff for sequence similarity we applied a threshold for
when sequence similarity implies structure similarity (see
below). Finally, we obtained Set II, consisting of 525 distinct
protein chains containing 105 773 amino acids to be employed
for the statistical examination and prediction algorithm
development. The chains in Set II were divided randomly into
a training set of 420 chains and a test set of 105 chains. This
was done in such a way that the distribution of sequence
lengths were approximately equal in the two sets.

Derivation of a sequence similarity threshold
We aligned the 942 sequences in Set I, all against all, and
evaluated the percentage of DSSP (Kabsch and Sander, 1983)
secondary structure identity as a function of the alignment
lengthL and the sequence identityIseq (Figure 1). Most of the
alignments had either a short length or a low percentage of
sequence identity (Figure 1a). In only a small fraction of the
alignments a combination of a high percentage of sequence
identity and a long alignment length was seen. In almost all
of these alignments there was a high percentage of secondary
structure identity. When the order of the amino acids in each
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of the sequences were shuffled no alignments could be found
with a combination of a high percentage identity and a long
alignment length (Figure 1b). This shows that alignments with
a combination of long length and high percentage of sequence
identity implies structural similarity, whilst alignments with
either of the two may be found in alignments of shuffled
sequences. Like Sander and Schneider (1991), we divided
the alignments into two groups depending on whether their
secondary structure identity in the alignments was above or
below 70%. We chose threshold curves of the formIseq5 K/√L,
whereK is a variable to be optimized. This functional form
fitted well to the boundary of the area of alignments of shuffled
sequences (Figure 1b). To obtain the optimal threshold curve
we determined, as a function ofK, the number of alignments
above a given threshold curve which had a secondary structure
identity above 70% (true positives), and the number of align-
ments above a given threshold curve which had secondary
structure identity below 70% (false positives).

In this study we used substitution matrices from the pam
series (Dayhoffet al., 1978). The pam20, pam120 and pam250
matrices were taken from the fasta package, and the pam350
was taken from the clustalW package (Thompsonet al., 1994)
and changed into the fasta matrix format. We also used the
blosum50 matrix (Henikoff and Henikoff, 1992) from the fasta
package and identity matrices, either taken directly from the
fasta package, or modified from the fasta package to obtain
identity matrices with different diagonal and off-diagonal
substitution scores. The alignments were performed using both
the rigorous Smith–Waterman algorithm (Smith and Waterman,
1981) implemented in thessearchprogram as well as thefasta
program (Pearson and Lipman, 1988; Pearson, 1990). The
ssearchprogram found more true positives as a function of
the number of false positives than thefastaprogram and was
thus found to perform significantly better.

The decision on which alignment matrix to choose depends
on the acceptable fraction of errors. When accepting less than
3% false positives we found that the number of true positives
was maximized when using the pam120 matrix with gap
penalties –12, –4 together with the threshold curveIseq5 290/
√L as shown in Figure 1a. An almost identical performance
was obtained using the alignment scoreAsco5 60 as threshold.

The secondary structure identity was also calculated using
a three state secondary structure assignment rather than the
eight state assignment assigned by the DSSP program. This
was done by maintaining the helix (H) and extended sheet (E)
assignments and converting all other assignments to coil (C).
Such assignment is identical to the one used by Sander and
Schneider (1991), (Schneider, personal communication). Using
these re-assignments, only five alignments above the threshold
curve had a secondary structure identity of less than 70%.
Note that Figure 1 was made using the full eight state DSSP
secondary assignments, and that more than five alignments
according to this assignment scheme have a secondary structure
identity of less than 70%.

In order to establish the correspondence between sequence
identity and structural identity, we also calculated the root
mean square (r.m.s.) of distances of Cα atoms of equivalent
amino acids in the alignments. The r.m.s. of distances forM
pairs of amino acids is defined as (Wako and Kubota, 1991)

(d1,ij – d2,ij)2[ Σ
M

i 5 1
Σ
i–1

j 5 1
]1/2

(1)
((M2 – M)/2)

whered1,ij andd2,ij are the distances between the Cα atoms of
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Fig. 2. Root mean square of distances of equivalent Cα atoms in the
alignments of 942 sequences as a function of√LIseq. The vertical line
corresponds to the sequence-similarity-implies-structural-similarity threshold
√LIseq 5 290 and the horizontal line is at 2.5 Å.

the corresponding amino acidsi and j in the first and the
second sequence, respectively. The relation between√LIseqand
the r.m.s. of distances is shown in Figure 2. The points to the
right of the vertical dotted line represent alignments with a
sequence similarity above our threshold (Iseq 5 290/√L), and
the points above the horizontal dotted line represent alignments
in which the r.m.s. of distances is more than 2.5 Å. Less than
2% of the alignments which had a similarity above the
threshold had an r.m.s. of distances of more than 2.5 Å.
This confirms the above results using secondary structure
assignments that most of the alignments with a similarity
above our threshold are structurally similar.

Mean distances between amino acids in proteins
If proteins are assumed to be spherical and the amino acids
are randomly distributed in the sphere the mean distance
between two amino acids can be calculated as

3r2 3q2

2 ∫
R

0
∫
q

0
R3 R3

sin φ[ ∫
π

0

√(q – r cosφ)2 1 (r sin φ)2 dφ ] drdq5 36
35R, (2)

2

where R is the radius of the sphere. The factors3r2/R3 and
3q2/R3 are the derivatives of the probabilities for finding a
point within spheres of radiusr and q, respectively. The two
outer integrals sum over all pairs of points within a sphere of
radius R. The expression inside the square brackets is the
mean distance between a point on the spheric shell with radius
r and a point on the spheric shell with radiusq . r. If it is
assumed that an amino acid on average occupies a volume of
Va 5 161 Å3 (Creighton, 1984), then the mean distancedm
between two amino acids in anL amino acid long protein
chain is

3VaL36
35R 5 36

35 µ 3.47 √
3
LÅ (3)√3

4π

If proteins are assumed to be shaped like rods with a
length 3.8LÅ, the mean distance between amino acids should be
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Fig. 3. Schematic drawing of the neural network architecture used.

3.8
LÅ µ 1.27LÅ. (4)

3

We also estimated the mean distancedN
m between amino

acids separated by a given number of amino acids in the
sequence (in the following referred to as the sequence separa-
tion). If we assume that theN amino acids, after a given amino
acid, form a sphere with volumeVaN Å3, and theNth amino
acid is placed at maximal separation within this sphere, then
the mean distance between two amino acids separated by

N amino acids is 2√
3
(3VaN)/(4π) 5 6.75 √

3
NÅ.

Prediction of distances
We have used pair density functions and artificial neural
networks to predict whether distances in the test set were
above or below a given distance threshold. The pair density
functions were used to predict distances in the test set in the
following way: for each of the 400 types of amino acid pairs
ab at a given sequence separationN, we counted the number
of distancesFN

ab in the training set above the threshold and
the distancesCN

ab below the threshold. IfFN
ab was larger than

CN
ab, then distances in the test set between the amino acid pair

ab, at sequence separationN, were predicted to be larger than
threshold (non-contact), otherwise the distance was predicted
to be lower than the threshold (contact). The distance between
a particular pair of amino acids, at a given sequence separation,
is thus always predicted with the same outcome.

We used standard neural networks without hidden units or
with one layer of hidden units and adjusted the weights by
conventional back propagation (Rummelhart, 1986). For details
of the implementation of neural networks to analyze biological
sequences see for example Brunaket al. (1991). The main
novel feature of the neural network architecture was the two
window input layer. In the schematic illustration shown in
Figure 3 the distance is predicted between D (in GDE) and A
(in GAS), which have the sequence separation 16. The two
symmetric windows both have a size of three amino acids.

Evaluation of results
The Mathews correlation coefficientC (Mathews, 1975) was
used to evaluate the performance of the networks and the pair
density functions

Px Nx – Nfx Pfx
C 5 (5)

√(Nx 1 Nfx)(Nx 1 Pfx)(Px 1 Nfx)(Px 1 Pfx)

Here, we use the following notation:Px: true positive
(experimentally contact, predicted contact);Nx: true negative
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Fig. 4. Distribution of distances in the proteins in our training set. (a) Mean
distance as a function of the cubic root of the sequence length for chains
from PDB entries with one chain; and from PDB entries with multiple
chains. (b) Mean distance as a function of the cubic root of the sequence
separation.

(experimentally non-contact, predicted non-contact);Pfx: false
positive (experimentally non-contact, predicted contact) and
Nfx: false negative (experimentally contact, predicted non-
contact).C 5 1 and C 5 –1 correspond to a perfect and a
completely wrong prediction, respectively.

The percentage of correct predictions (Px 1 Nx)/(Px 1 Nx 1
Pfx 1 Nfx) is also used.

Results
Derivation of distance thresholds
We first studied the distribution of distances between amino
acids in the proteins in the training set in order to derive
distance thresholds for the predictions. The theoretically

derived expression for spherical proteins 3.47√
3
LÅ corresponds

well to the lower limit of the mean distancesdm in the proteins
of the training set (Figure 4a). This is expected since the
spheric form minimizes the average distances between points
enclosed in a given volume. The points below the line may
correspond to proteins with a closer packing, or with a high
fraction of small amino acids.
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A least squares fit of the data from the training set to the line

dm 5 α√
3
L gave the relationdm 5 3.96 √

3
LÅ µ 4 √

3
LÅ

(see Figure 4a). We will use 4√
3
LÅ as one of the thresholds

for predicting distances, since this choice for large sequence
separations should ensure that approximately as many distances
are above as below the threshold. The points far above this
line represent the ‘rod’ shaped proteins, and almost all of these
correspond to chains from PDB entries with more than one
chain. There are only 12 single chain proteins above a line

defined bydm 5 4.5 √
3
LÅ. Six of these are protein fragments,

three are multimeric in their natural environment, two are
metal-binding proteins and one is a calcium binding protein.
Thus, it is likely that all these chains are stabilized by other
molecules, in their natural environment.

If proteins are assumed to be rod-shaped the mean distance
between amino acids should be 1.27LÅ. Figure 4a shows that
0.531.27L 5 0.63LÅ is an upper limit to the mean distances
between amino acids in the proteins of the training set. All
proteins in the training set are thus less than half as long as
they could be if they were rod shaped. Note that this line is
curved in Figure 4a because thex-axis is the cubic root of the
chain length.

For short sequence separations we will apply thresholds
specific for the sequence separations. The mean distancedm

N

between amino acids with a sequence separation ofN scales
approximately with the cubic root of the sequence separation
(Figure 4b). The points on this curve represent averages for
all 420 proteins in the training set. Although the relation

dm
N 5 6.75√

3
NÅ derived earlier fits these data reasonably well,

we will use the mean distances derived directly from the
training set as thresholds.

Predictions of distances
We first evaluated the ability of the neural networks and the
pair density functions to predict whether distances in the
independent test set were larger or smaller than the mean
distancedm

N in the training set for a given sequence separation
N. Pair potentials could correctly predict whether distances
were larger or smaller thandm

N in at least 54.9% of the test
examples, depending on the separation between the amino
acids in the sequence (Figure 5). The correlation coefficients
reached a maximum of only 0.21 for these predictions. We
evaluated the performance of neural networks with input
window sizes from 2 up to 46. For short sequence separations,
we found that the optimal window size was 18 (i.e. two input
windows each of width nine amino acids). The windows were
centered around each of the two amino acids between which
the distance was to be predicted. This is not surprising, since
window sizes of 9–13 are good for secondary structure
predictions. Using neural networks with a window size of 18,
and five hidden units, more than 57.4% of the distances were
predicted correctly and correlation coefficients of up to 0.42
were obtained. For sequence separations 2–100 the neural
networks had on average correlation coefficients which were
more than twice as large as those from pair density functions.

A random prediction of the constraints will be 50% correct
on average. The number of distancesNd in the test sets
varied between 11 437 and 20 684 depending on the sequence
separation. For each of the sequence separations tested, the
number of correct predictionsNc was more than eight standard
deviations above 50% (assuming that the number of correct
predictions follows a Poisson distribution:Nc – Nd/2 .
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Fig. 5. Performance of neural networks with 18 amino acids in the input
windows and five hidden units, (NNs) and the pair density functions (PDFs)
as a function of the sequence separation. The mean distance at the given
sequence separation in the training set was used as thresholds. Performance
when using NN predictions on sequence profiles is also shown.
(a) Correlation coefficients. (b) Fraction of distances predicted correctly.

8√(Nc 1 Nd/2)/2). Calculation of the correlation between the
predicted constraints and the correct constraints using Chi-
square statistics (Presset al., 1992) yieldedp values less than
10–15 for all sequence separations. Prediction of distance
inequalities in proteins is a very difficult task, and the obtainable
correlation coefficients may seem small. However, the predic-
tions presented here are significantly better than random.

For relatively large sequence separations we found that
neural networks with 30 amino acid input windows were
optimal. When using 30 amino acids in the input window, the
correlation coefficients and the fraction of correctly predicted
distances of the networks declined for small sequence separa-
tions, relative to neural networks with a window size of 18,
but were markedly better for sequence separations 10–50. For
larger sequence separations there was no significant difference
in the performance of networks with 18 and 30 amino acids
in the input windows. For sequence separations 2–100 the
neural networks with 30 amino acids in the input window on
average predicted 3.9% more of the distances correctly than
did pair density functions. Using neural networks without
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hidden layers led to a decrease in correlation coefficients and
ten hidden units did not lead to improvement.

To evaluate the effect of using different distance thresholds,
we compared the performance of pair density functions and
neural networks using the fixed thresholds of 5.8, 7.1, 9.5 and
11.0 Å (Reeseet al., 1996). For sequence separations larger
than 7, the use of any of these thresholds led to a much poorer
performance compared with the use of the sequence separation
specific thresholdsdm

N. For these sequence separations most of
the decrease in the performance could be avoided by using
two additional fixed thresholds of 14.5 and 21.9 Å. The latter
threshold equals the average of the mean distancesdm for all
the proteins in the training set.

For sequence separations of 5 and 6, the mean distances in
the training set were 11.1 and 12.6 Å, respectively. For these
sequence separations the threshold of 11.0 Å (Reeseet al.,
1996) gave approximately the same performance.

For sequence separations of 2, 3 and 4 the thresholds
corresponding to the mean distances in the training set (6.03,
7.56 and 9.25 Å, respectively) performed significantly better
than the thresholds of 5.8, 7.1 and 9.5 Å. The similarity of
these two sets of thresholds shows that the predictability for
small sequence separations is very sensitive to the choice of
thresholds. This is most likely because the distance distributions
for small sequence separations are very narrow.

We proceeded to use the pair density functions and the
neural networks to predict whether distances in the test set

were above or below 4√
3
LÅ. This threshold was chosen because

it corresponds to the estimated mean distance in protein chains
with a chain length ofL. Using such a threshold thus ensures
that there are approximately as many distances above as below
the threshold for all large sequence separationsN. The pair
density functions could predict whether distances were above
or below this threshold with correlation coefficients up to
0.074, and predicted the distances correctly in more than 52%
of the examples in all test sets only. Using neural networks
the distances could be predicted with correlation coefficients
of up to 0.2. For sequence separations between 50 and 100,

the protein length dependent threshold 4√
3
LÅ led on average

to better correlation coefficients than the one based on the
average distance for a given sequence separationdm

N.
The results above show that the optimal threshold is a

function of the sequence separation. For all the described
thresholds the neural networks performed better than the pair
potentials, both in terms of the correlation coefficients and in
terms of the fraction of predictions which were correct.

We also investigated if the performance of the algorithm
could be enhanced by training and testing one neural network
using data from several sequence separations rather than
using a fixed separation. Training one network on sequence
separations of 48 to 52 and testing on the corresponding test
sets gave a 5% higher correlation coefficient than using only
sets corresponding to a sequence separation of 50.

Predictions for whole proteins

We subsequently set up a program to predict distance inequali-
ties for whole proteins. Individual neural networks trained on
sequence separations 2–20 were used to predict inequalities
for these separations. For sequence separation intervals 21–
24, 25–34, 35–44, . . . and 951 the inequalities were predicted
by neural networks trained on sequence separations 20, 30,
40 . . . and 100, respectively. All networks had 18 amino acids
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in the input windows and five hidden units. This program
predicted 55.6% of the inequalities in the test set correctly,
and the average correlation coefficient for the 105 proteins in
the test set was 0.174.

In order to assess quantitatively the significance of the
neural network output, we used the training set to establish a
relation between the neural network outputoand the probability
p that two amino acids are closer than a given distance
threshold. For each sequence separation, the network predic-
tions were used to construct a table relatingo and p, using
bin sizes of 0.01 foro. Using this table to convert the neural
network output to probabilities, 61.7% of the inequalities in
the test set were predicted correctly, and the average correlation
coefficient for the 105 proteins in the test set was 0.204.

To test if the overall performance was indeed reliable for
sequences not used in the training or testing of the networks,
we extracted 131 new sequences from the latest release 79 of
PDB. All 208 sequences had sub-threshold sequence similarity
to the 525 sequences in the training and test sets. The simple
non-profile based scheme predicted 61.7% of the inequalities
in this set correctly, and the average correlation coefficient for
the 208 proteins was 0.189. This confirmed the reliability of
the evaluation of the performance. Thirty-nine of the 208 new
sequences belong, according to the SCOP (Murzinet al., 1995)
classification of protein structures to fold classes not present
in our set of 525 proteins used for training and testing of the
proteins. The percentage of correct predictions in this subset
was 59.8% and the average correlation coefficient was 0.200.
This shows that the performance of our algorithm is also
sustained on proteins with no homology with the proteins used
to develop the algorithm.

It has been reported that the accuracy of prediction schemes
can be dramatically increased when using profiles of aligned
sequences (Gribskovet al., 1987; Rost and Sander, 1993) as
input rather than single sequences. To test this we aligned
each of the test sequences usingfastawith default parameters
against Swiss-Prot. All sequences reported byfasta with
expectation values less than 0.01 were included in a profile.
Sequences fulfilling this criterion were subsequently aligned
to the query sequence using the programalign from the fasta
package. Regions corresponding to gaps in the query sequence
were removed and regions with gaps in the database sequence
were replaced with the corresponding amino acids from the
query sequence. On the average there were 17 sequences in
each profile. We calculated the probability of contact as an
average of the predictions on the sequences in the profile. In
this way 63.2% of the inequalities in test set were predicted
correctly, and the average correlation coefficient for the 105
proteins was 0.233. The largest increase in performance was
observed for sequence separation 17, where the percentage
point of correctly predicted inequalities increased by 5 and the
correlation coefficient increased by 0.09 (see Figure 5). These
improvements are comparable to those found when using
profiles for secondary structure prediction (Rost and Sander,
1993).

Threading

One application of the predicted distances is to align a query
sequence against all entries in a database of structures with
the aim of finding which structure the sequence is most likely
to adopt (threading). For this task, we define a score which is
large if the predicted distances between a residue in the query
sequence and other residues in this sequence are similar to the
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distances between a residue in a database structure and other
residues in the structure. More specifically, we define a score
Sm,n for aligning residuem in the query sequence with a
residuen in the database sequence. The score is defined as a
sum over log odds ratios for sequence separations up tol,

log(qm,m1k)ps for dn,n1k 5 1
Sm,n 5 Σ

k ∈ (–l,–l,11. . .,–2,2,3. . .l )
{ (6)

log(1–qm,m1k) for dn,n1k 5 01–ps

qi,j is the predicted probability of a contact between residuei
and j. di,j is unity if residuesi and j in the database sequence
are in contact and zero otherwise.ps is the probability for
contact between any pair of amino acids at that sequence
separation. In the following we have setps 5 0.5.

Each of the sequences in the test set were used as a query
sequence and threaded against a database consisting of all the
sequences in the test set, using the score defined above with
l 5 20. In these alignments, gaps were only allowed at the
ends of the database sequences, and these gaps were unpenal-
ized. Sixty-seven of the 105 sequences (63.8%) could find
their own structure using the non-profile based score. This
compares favorably with the 58% previously reported for a
Cα atom score based on pair density functions (Kocher
et al., 1994).

We also evaluated the ability of our method to find the
approximate structure from the sequences. For this task we
used the SCOP database (Murzinet al., 1995) which classifies
proteins according to their structure. Proteins in the same SCOP
family have a clear evolutionary relationship. A superfamily is
defined as a set of families between which there is low
sequence similarity, but where structural and functional features
suggest a common evolutionary origin. The 35 test set
sequences, which had another sequence belonging to the same
SCOP superfamily in the test set, were extracted for this task.
We subsequently threaded each of these sequences against the
other 34 and found the top scoring one among these. The
success of the threading was defined as the number of top
scoring sequences which is in the same SCOP superfamily as
the query sequence. Using a global alignment algorithm
(Needleman and Wunsch, 1970) with opening gap penalty
–12 and elongation penalty –4, we could find the correct
superfamily for 13 of the 35 sequences using our profile based
score. Using a Blosum50 substitution matrix together with the
same alignment procedure, 14 of the sequences were identified
correctly. The performance of our threading method is thus
roughly equal to that found by a conventional alignment
method. For this task, it has been reported that a potential
based on predicted secondary structure has a performance
that is approximately 35% worse than a normal amino acid
substitution matrix (Fischer and Eisenberg, 1996). Using a 50/
50 combination of our potential with a Blosum50 matrix, we
found the correct superfamily for 15 of the sequences.

Discussion

Using carefully prepared data, we defined a sequence-simil-
arity-implies-structural-similarity threshold and used this
threshold to generate a non-sequence similar set of proteins.
The main result in this paper could be summarized by stating
that neural networks trained and tested on this data were better
at predicting distances than a method based on pair density
functions, and that the predicted distances can be used in a
threading algorithm.
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It is well established that a large sequence similarity implies
structural similarity (Chothia and Lesk, 1986; Sander and
Schneider, 1991), but the quantitative aspects are still not fully
understood. In contrast to the study of Sander and Schneider
(1991) we found that for long alignment overlaps, the size of
the safe region, where sequence similarity implies structural
similarity, still depends on the alignment length. In their study,
the similarity threshold was constant at 25% identical amino
acids when the alignment lengthL was larger than 80 amino
acids. We demonstrate that the safe region is confined by the
non-constant identity equivalent to 290/√L. With this criterion,
a sequence similarity below 25% will for sufficiently long
alignments still imply structural similarity. The boundary of
the safe region was shown to correspond well to the maximal
similarity found by alignments of shuffled sequences.

We found that the best alignment matrix for the task of
finding the maximal number of alignments with a secondary
structure identity of more than 70% was the pam120 matrix.
It has been argued on theoretical grounds that a matrix with
an entropy similar to that of pam120 should be optimal for
database searches (Altshul, 1991). This corresponds well to
our finding that identity matrices with an entropy close to that
of pam120 also performed well. Johnson and Overington
(1993) compared a number of matrices in order to find which
one was most suitable for sequence comparisons. They found
the pam120 matrix to be among the ones exhibiting better
performances in their study. In an assessment of alignment
matrices the blosum50 matrix performed better than the
pam120 matrix (Vogtet al., 1995). The reason behind this
discrepancy may be that the entropy of the blosum50 matrix
was more suited for their particular test scheme. For the task
of finding signal peptide cleavage sites, for example, matrices
with an entropy of approximately 3.0 [a (6,–6) identity matrix
and pam20 matrix] were found to be the optimal choice
(Nielsenet al., 1996).

When using neural networks and pair density functions to
predict distances in proteins we found that, for sequence
separations up to 50 amino acids, the best results were obtained
using thresholds equal to the mean of all distances at that
sequence separation in the training set. A good performance
could also be obtained with our previously defined thresholds
(Reeseet al., 1996) supplemented by two additional thresholds
of 14.5 and 21.9 Å. For larger sequence separations the best
results were obtained with the protein chain length dependent

threshold 4√
3
LÅ. This indicates that, for large sequence separa-

tions, distances are governed more by the size of the protein
than by the sequence separation. The performance of the neural
networks could be further increased by training and testing
simultaneously on data from several sequence separations.

The best distance threshold is the one which results in most
information. The information is maximized if there are an
equal number of distances above and below the threshold and
the optimum threshold is therefore given by the median of the
distance distribution. Due to the approximate symmetry of the
distributions of distances between amino acids in proteins the
mean and the median of the distributions are close to each
other and for practical reasons the mean may be used instead
of the median. It is a common belief that, for protein structure
determination, knowing that two amino acids are close to each
other is more useful than knowing that amino acids are far
apart. However, if constraints between all pairs of amino acids
are considered, the optimal distance threshold for determination
of protein structure is close to the mean (Bohret al., 1993).
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Predicting constraints with 100% accuracy may not be
necessary in order to determine the structure of proteins. The
success of alignment and threading algorithms, for example,
is not based on the unambiguous recognition of a small number
of matches, but on the significance of the summed score over
all aligned positions.

It has recently been shown that a combination of pair
potentials and correlated mutations is better at predicting
contacts in proteins than pair potentials alone (Thomaset al.,
1996). We also found that the performance of our method
could be further enhanced by predicting on sequence profiles
(Gribskovet al., 1987; Rost and Sander, 1993) rather than on
single sequences.

The distances predicted by neural networks can potentially
be used to construct improved potentials that can enhance the
performance of threading and protein folding algorithms. They
may also find use in homology modeling of loops and
insertions/deletions.
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