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RESEARCH ARTICLE Open Access

Protein docking prediction using predicted
protein-protein interface
Bin Li1 and Daisuke Kihara2,1,3*

Abstract

Background: Many important cellular processes are carried out by protein complexes. To provide physical pictures
of interacting proteins, many computational protein-protein prediction methods have been developed in the past.
However, it is still difficult to identify the correct docking complex structure within top ranks among alternative
conformations.

Results: We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface
prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on
cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a
binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface
with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction
algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the
provided protein-protein binding interface prediction as constraints, which is followed by the second round of
docking with updated docking interface information to further improve docking conformation. Benchmark results
on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as
compared with docking without using binding site prediction or using the binding site prediction as post-filtering.

Conclusion: We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein
binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy
over alternative methods in the series of benchmark experiments including docking using actual docking interface
site predictions as well as unbound docking cases.

Keywords: protein docking prediction, protein-protein interaction, interaction site prediction

Background

Many important cellular processes, such as gene expres-
sion regulation and transport, are carried out by protein
complexes [1-3]. The importance and the abundance of
protein interactions and complexes have been recently
further highlighted by large-scale protein-protein inter-
action maps revealed for many organisms [4-7]. The ter-
tiary structure of proteins is necessary for understanding
the underlying molecular mechanism of protein interac-
tion [2], however, it is often difficult to obtain complex
structures by experimental methods, e.g. the X-ray crys-
tallography or NMR. Thus, experimentally solved pro-
tein complex structures only share a small fraction

among known protein complexes confirmed by bio-
chemical experiments. Therefore, an important task in
bioinformatics is to develop efficient and accurate com-
putational methods for predicting protein-protein dock-
ing conformations.
Many protein-protein docking methods have been

developed in the past employing various ideas and tech-
niques [8-20]. Typically a docking prediction for a pair
of proteins produces a few thousands of docking confor-
mations (docking decoys), which are subject to ranking
using a scoring function. Conformational search algo-
rithms employed include the Fast Fourier Transform
(FFT) [16,17,21], the Geometry Hashing [18,22], Monte
Carlo algorithms [13], genetic algorithm [23,24], and
Langevin dynamics [25]. For scoring a docking decoy,
usually several terms are combined, which include phy-
sics-based scores [26] and those concern geometrical
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shape complementarity [18,27,28]. Clustering of docking
decoys is also shown to be effective in selecting near
native conformations [29-31]. Some of the recent dock-
ing algorithms have more elaborate procedures, for
example, by considering alternative conformations of
flexible protein chains [32] or post docking optimization
steps [14,33]. Nevertheless, despite significant efforts of
developing methods, it is still difficult to identify and
rank the correct conformations in top ranks among
hundreds of decoys [18,27,34] as is also evidenced by
results from recent Critical Assessment of Prediction of
Interactions (CAPRI), a community wide experiment on
the comparative evaluation of protein-protein docking
methods [10].
The accuracy of docking prediction could improve

when a part, even if not all, of protein-protein interface
(PPI) residues are known. PPI residues for a pair of
interacting proteins can be identified by experiments
including point mutation such as the alanine scanning
[35-38], chemical modification of residues [39,40], NMR
[41], hydrogen/deuterium exchange [42], and disulfide
cross-linking [43]. If several PPI residues are known,
they can be simply used for filtering, i.e. to select dock-
ing decoys which have the known PPI residues at their
docking interface [44,45]. Alternatively, known PPI resi-
dues from interacting proteins can be incorporated as
distant constraints [14]. However, experimental methods
are time consuming. This is particularly true if identifi-
cation of a whole PPI region of an interacting protein
pair is attempted or if investigating many interacting
proteins in a network is planned.
PPI residues can be also predicted by computational

methods, which capture sequence and structural fea-
tures of PPI regions [46]. There are a number of PPI
site prediction methods developed. Sequence features
used for PPI site prediction include amino acid residue
propensity [46-52], sequence conservation [53-57], and
correlated mutation [58-60]. Structure information used
include hydrophobic patches, the secondary structure
propensity [51], atom group propensity [61], relative
accessible surface area [47], geometrical surface shape
[47], the crystallographic B-factor [51], and energetic
characteristics of PPI residues [62,63]. Current protein
interface prediction methods choose one or combina-
tions of these features to construct scoring functions for
machine learning techniques [51,55,56,64-67]. Recent
development of PPI site prediction methods has been
overviewed in recent review articles [68,69]. The obvious
advantage of the computational methods over experi-
mental methods is that the former can be performed
much faster than the latter. However, the problem of
computational prediction methods is that they are not
always accurate. For example, the Meta-PPISP method
[70], one of the state-of-the-art methods, predicts PPI

residues on average with a precision of 50% at the cov-
erage of 50% for enzyme-inhibitor complexes [71].
Moreover, the prediction accuracy varies depending on
target proteins and thus it is difficult to estimate the
accuracy for individual cases. Therefore, computational
PPI residue prediction cannot be reliably used for simple
post-filtering of docking decoys. A naive use of PPI resi-
due prediction for post-filtering may actually decrease
the prediction accuracy, as we will show in Results.
Here, we present a novel protein docking algorithm,

PI-LZerD (using Predicted Interface with Local 3D Zer-
nike descriptor-based Docking algorithm), which utilizes
imperfect PPI residue prediction for guiding protein-
protein docking. PI-LZerD performs iterative improve-
ment of docking results starting from an initial run of
docking that uses potentially inaccurate PPI prediction
as restraints. The base of the docking algorithm used is
the LZerD (Local 3D Zernike descriptor-based Docking
algorithm), which we have developed previously [18].
The idea of using additional predicted information for
aiding protein docking has been explored by a few pre-
vious works. In their works, PPI information is used for
post-filtering docking decoys [16,71-73] or incorporated
as an additional scoring term [14,45,74,75]. Compared
to these related works, the current work is significantly
different in the design and some important aspects:
First, we have developed a novel algorithm which is spe-
cifically designed to utilize imperfect PPI prediction.
Thus, we don’t use PPI information simply for post fil-
tering. Second, we perform thorough investigation on
how the accuracy of PPI prediction affects to the dock-
ing prediction accuracy. PI-LZerD is shown to be able
to consistently improve docking predictions when actual
PPI predictions are used for unbound docking cases.
The datasets used and the developed PI-LZerD program
are made freely available for academic community.

Methods

Pairwise protein docking algorithm, LZerD: the original

algorithm

We start with brief explanation of the original LZerD
pairwise protein-protein docking algorithm [18]. As will
be explained in the next section, PI-LZerD performs an
iterative use of a modified version of LZerD. LZerD takes
two protein tertiary structures (Protein Data Bank, PDB
[76], files) as input (termed a ligand and a receptor pro-
tein) and outputs over 30000~50000 of docking decoys
ranked by a scoring function. The geometric hashing
algorithm [77] is used for docking conformational search.
Given a protein tertiary structure, protein surface is

constructed and then points are distributed evenly on
the surface. Typically, about 1500~2000 points are dis-
tributed for a 200-250 amino acid long protein (Figure
1A). The geometric hashing procedure pre-computes
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and records all possible orientations of the ligand pro-
tein (the hashing stage). This is done by defining a coor-
dinate system for each pair of surface points (called base
points), based on which the coordinates of the other
neighboring surface points (within 15Å to the base
points) are computed. Note that a three dimensional
coordinate system can be uniquely defined by two
points by using the average of normal vectors of the two
points as additional parameter. Once all the poses of the

ligand protein are recorded in a hash table, each possi-
ble pose of the receptor protein is computed in the
same way, which are then compared with the poses of
the ligand protein stored in the hash table (the matching
stage). If a sufficient number of points from the two
proteins match (voting stage), the conformation is
further evaluated by a physics-based score.
The scoring function is a weighted sum of the fol-

lowing terms: van der Waals, where, repulsive and
attractive parts of the term are considered separately
[13]; an electrostatics term, which considers repulsive/
attractive and short-range/long-range contributions
separately [78]; a hydrogen and disulfide bond term
[79]; two solvation terms [80,81]; and a knowledge-
based atom contact term [82]. Weighting factors for
the linear combination of the terms were trained on
two datasets, the protein-protein docking benchmark
2.0 [83], which contains 84 pairwise unbound-unbound
and bound-unbound docking structures, and also on
851 protein-protein dimeric complexes compiled by
Huang and Zou [84]. The combination of weight
values were determined by using logistic regression
with the interface root mean square deviation (iRMSD)
between predicted decoys and the native structure as
the target function to be optimized.

Modified LZerD to incorporate PPI prediction

We modified the LZerD algorithm so that additional
information of a PPI region can be used to restrict the
docking search space. Figure 1B illustrates the two
methods of restricting conformational search space in
geometric hashing. Given a set of (predicted) PPI resi-
dues in a ligand or a receptor protein, each surface
point is classified into either PPI (points within the gray
ellipsoid in Figure 1B) or non-PPI depending on
whether the closest atom for the point belong to a PPI
residue or not. In the geometry hashing, two base points
(two crosses) are selected to define a reference coordi-
nate system, based on which the other local points are
transformed. Base points are selected only from the PPI
surface points for both ligand and receptor proteins.
Then, in the voting stage, matching points between the
ligand and receptor are counted either only from the
PPI surface points (i.e. matches are only considered
within the predicted PPI regions; triangles in the region
in gray in Figure 1B) or from all the surface points (tri-
angles and squares) including non-PPI points.
Obviously, the former seeks for a geometrical comple-
mentarity of the two proteins only at the predicted PPI
regions while the latter explores a wider surface area to
identify well fitting docking conformation in the vicinity
of the predicted PPI regions. PI-LZerD uses these two
search areas in different stages of docking conformation
search. The more permissive search area is considered

Figure 1 Surface points used in geometric hashing. A, Example
of surface points. Surface points of 1A2K chain B (left, purple, 248
residues) are colored in blue for non-PPI surface (1652 points) and
yellow for the PPI region (25 residues, 248 points). Critical points of
1A2K chain C (right, yellow, 196 residues) are colored in green for
non-PPI surface (1332 points) and red for the PPI region (16
residues, 165 points). B, Two schemes for restricting docking
interface using predicted PPI regions in geometric hashing. Two
base points are selected from points that locate within the
predicted PPI regions (gray ellipsoid). Given the two base points
(crosses), points in their neighborhood (within 15Å; showed in two
circles) are transformed based on the coordinate system defined by
the base points, which are then stored in a hash table. Fitness of
local regions around the base points of the ligand and the receptor
proteins are evaluated by the number of equivalent matching
points (the voting stage). In a permissive search, points from outside
of the PPI region (squares) as well as points within the PPI region
(triangles) are considered. For a restrictive search, only the points in
the PPI region (triangles) are considered.
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for the initial LZerD run and the more restricted
searches are performed for the subsequent iterations.

PI-LZerD algorithm

The PI-LZerD algorithm performs pairwise protein-pro-
tein docking prediction using additional information of
PPI residues as constraints. The algorithm is illustrated
in Figure 2. First, given the tertiary structure and (pre-
dicted) PPI regions of the two proteins to be docked,
the modified LZerD is run to yield typically
30000~50000 docking decoys (the right branch of the
diagram). For this initial run of the modified LZerD, all
neighboring surface points to the base points are consid-
ered in the voting stage (the permissive search as dis-
cussed in the previous section). The docking decoys are
ranked by the physics-based score and top 1000 best
scoring decoys are selected.
The 1000 decoys are subject to clustering by consider-

ing the similarity of docking interface regions. For a
given pair of docking decoys, common atoms between
the two PPI regions from the two decoys are selected.
Then, the RMSD is computed for the common atoms
only when the common atoms share more than 60% of
all interface atoms of both PPI sites (if the common
atoms do not exceed 60% then the two proteins are not
clustered together). We call it the common interface
RMSD (ciRMSD) of two docking decoys. The ciRMSD
is more suitable for the PI-LZerD algorithm as com-
pared to the conventional coordinate RMSD [85] or the
ligand RMSD [86], since it focuses on capturing the
similarity of docking interface regions.
Once the ciRMSD is computed for all the pairs of

decoys, 60 decoys are selected by considering the phy-
sics-based score and the cluster size of the decoys. First,
the decoy with the lowest score (the lower, the better) is
selected and close decoys with a ciRMSD ≤ 4.0Å are dis-
carded from the pool. This process is repeated until 30
decoys are identified. Next, additional 30 decoys are
selected based on the cluster size. For each of the
decoys, the number of the other decoys within 4.0Å
ciRMSD is computed. Then, the largest cluster (i.e. the
center decoy with the largest number of close decoys) is
selected. If several clusters with the same size are found,
the one which has the center decoy with the lowest phy-
sics-based score is selected. All the decoys in the cluster
are removed, and the process is repeated until 30 repre-
sentative decoys are selected. Consequently, 30 decoys
are selected based on the lowest energy and 30 more
decoys are selected based on the cluster size. It was
shown that combining the energy value and the cluster
size can find more hits than using a single metric alone
(Additional file 1, Figure S1).
The selected 60 decoys are passed to the subsequent

process. For each of the 60 docking decoys, PPI residues

are extracted. PPI residues are defined as those which
have a heavy atom closer than 5.0 Å to any atom to the
docking partner. The decoys do not necessarily have the
identical PPI region as the initially provided PPI infor-
mation because the modified LZerD has explored the
vicinity of the input PPI in the docking conformation
search. Using the identified PPI residues as the updated
constraint, the modified LZerD is run for the second
time. In this round, only the PPI surface points are con-
sidered at the voting stage in the geometric hashing (the
restrictive search). From the resulting docking decoys,
the top 1000 lowest energy docking decoys are clustered
based on ciRMSD, whose cluster centers are sorted by
the physics-based score. Since the modified LZerD is
run for each of the 60 decoys, in total of 60 LZerD runs
are performed.
In addition to the 60 runs of the modified LZerD, we

run the original LZerD without using predicted PPI
information followed by post-filtering by using the pre-
dicted PPI residues (naive-filtering method) (the left
branch of Figure 2). In the naive-filtering method, dock-
ing decoys are sorted not by the physics-based score but
by the agreement of the docking interface residues to
the predicted PPI residues. Therefore, the overall proce-
dure produces 61 runs of docking predictions, i.e. 61
ranked lists of docking decoys. To make the final rank-
ing of docking decoys, first, the top ranked docking
decoys from each of the 61 lists are ranked by the phy-
sics-based score, and then the decoys in the same subse-
quent ranks from the 61 lists are ranked in the same
way. Thus, the decoys from all the lists are first sorted
by their ranks in each list then sorted by the physics-
based score. If the identical decoys appear, one which is
ranked lower in the entire final list is removed (it is not
common but possible that identical docking decoys
appear in different LZerD runs).

Dataset of protein complexes and PPI information

The first dataset we use for benchmarking PI-LZerD is
the protein-protein docking benchmark version 3.0 [87]
with 124 bound cases. The average length of the pro-
teins is 256 and the number of docking interface resi-
dues of the proteins range from 10 to 70 with an
average of 25.
To investigate how the accuracy of PPI prediction

affects to the docking prediction, we first use “simu-
lated” PPI predictions as input. The actual PPI region of
a ligand and a receptor proteins are shifted by 5, 10, 12,
and 15 residues to two opposite directions on the pro-
tein surface along the major axis of the PPI region. To
shift a PPI region on the surface, n PPI residues (n = 5,
10, 12, 15) at one end of the PPI site along the axis are
removed and the same number of residues are added on
the opposite side of the PPI site. Thus, the shifting of
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PPI regions are done geometrically rather than along the
protein sequence (Additional file 1, Figure S2). By com-
bining two shifted PPI regions from a ligand and a
receptor protein, four test cases are made for each

protein complex (because the PPI region on each pro-
tein is shifted in two opposite directions). The protein
complexes are removed from the dataset if one of pro-
teins has a smaller PPI region than the number of

Figure 2 Overview of the PI-LZerD algorithm. See the text for the explanation. “LZerD” is the original version of the LZerD docking program.
Modified LZerD (p) and (r) stands for the permissive search space and the restrictive search space employed in the geometric hashing stage, respectively.
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shifted residues. The total number of tested protein
complexes with 5, 10, 12, and 15 PPI residues shift are
124 (124 × 4 = 496 test cases), 122 (488 cases), 118 (472
cases), and 104 (416 cases), respectively. Since four dif-
ferent combinations of shifted PPI regions of a ligand
and a receptor are tested, the number of tested cases is
four times of the number of protein complexes, which is
shown in the parentheses.
Figure 3A shows the distribution of the sensitivity of

shifted PPI regions (i.e. the fraction of the correctly pre-
dicted PPI residues among actual PPI residues). The
sensitivity depends on the size of the proteins PPI
regions for the same number of residues shifted. The
average sensitivity for the 5, 10, 12, and 15 residue
shifted PPI sites are 0.767, 0.535, 0.447, and 0.324,
respectively. The specificity value (the fraction of cor-
rectly predicted PPI residues over the total number of
predicted PPI residues) is the same as the sensitivity
because the size of a shifted PPI region is the same as
the actual one. In Figure 3B, the fraction of correctly
interacting PPI residue pairs in the protein complexes
with shifted PPI regions is shown (the fraction of the
native contacts, fnat [88]). The fnat value depends on
the shifting directions even for the same pair of shifted
PPI sites. The average fnat value for proteins pairs with
5 residue shifted PPI is 0.673. The fnat value distributes
more broadly for more shifted PPI sites. The average
PPI sites for 10, 12, 15 shifted residues are 0.364, 0.275,
and 0.191.
We also test PI-LZerD using actual PPI predictions

with a state-of-the-art PPI prediction method, meta-
PPISP [70]. Meta-PPISP is a meta server which com-
bines predictions by three methods, Promate [51],
PINUP [49], and cons-PPISP [54]. The benchmark data-
set is selected from the iPFAM database [89], a subset
of PFAM database [90], which provides multiple
sequence alignments (MSA) of interacting proteins. We
used iPFAM because meta-PPISP needs a MSA as an
input. The iPFAM entries were pruned using the follow-
ing criterion: (1) PFAM families with 20 to 100 seed
sequences were selected. (2) PFAM families consisting
local domain sequences were replaced with their corre-
sponding full-length sequences from UniProt [91]. A
representative PDB structure was then selected from
each PFAM family given by the association in iPFAM.
(3) Protein structures that do not have any observable
interacting partners in their PDB files were removed. (4)
Proteins with their PDB entries that have non-standard
amino acids and obsolete PDB files were filtered out. (4)
PDB structures with antibody-antigen and protein-
DNA/RNA interactions were removed. (5) Protein com-
plexes with more than two chains are removed. (6)
Complexes were eliminated if they are classified as
monomers bound by crystal contacts in the PQS

definition [92]. (7) Proteins with the size between 75 to
300 amino acids were selected. (8) In the final dataset,
PFAM families with redundant representative structures
with ≥35% sequence identity were filtered out. Given
that MSAs in PFAM may not have the PDB structure as
a part of the alignment, we employed MUSCLE (ver.
3.6) [93] with default parameters to compute MSAs
from PFAM unaligned sequences and one sequence
from the selected PDB structure. The final dataset

Figure 3 Accuracy of the shifted PPI regions. Distributions of A,
the sensitivity (= specificity); B, the fnat value; of the shifted PPI
regions by 5, 10, 12, and 15 residues.
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includes 127 protein complexes. Using prediction output
of the meta-PPISP server, residues which have a meta-
PPISP score of 0.1 or higher are identified as PPI
residues.

Availability and requirements

The executable program of PI-LZerD for Linux is freely
available to academic institutions at our website, http://
kiharalab.org/PI-LZerD. The datasets used in this study
are also available at the same webpage. The program
requires a computer with at least 1.5 GB RAM operated
by Linux OS. The average times combining both dock-
ing and scoring range are about 1-2 hours for small pro-
teins (about 400 points on the receptor and ligand) and
it may take longer for larger proteins. This timing is
reported on a computer with a dual-core 2.1 GHz pro-
cessor with 8 GB RAM. In addition, the pairwise dock-
ing program, LZerD, which is the base of PI-LZerD, is
also made available at http://kiharalab.org/
proteindocking.

Results and Discussion

Naive post-filtering method

An obvious approach to use predicted PPI information
for protein docking prediction is to select docking
decoys with a PPI site that agrees well to the provided
PPI information. This approach, termed as the naive
post-filtering method, was tested on datasets with the
five different accuracy levels of PPI prediction. In addi-
tion to the set of accurate PPI information, we used PPI
sites shifted by 5, 10, 12, and 15 residues. For each pro-
tein complex with PPI information, we run original
LZerD to produce top 1000 scoring docking decoys.
Then, for each docking decoy, the fraction of the over-
lap of residues in the provided PPI information the PPI
region of the docking decoy is computed for both ligand
and for the receptor proteins, and the average of the
two are used for sorting decoys.
In Figure 4, the fraction of the protein complexes

where correct prediction (interface RMSD ≤ 2.5Å in Fig-
ure 4A; 4.0Å in Figure 4B) exist within specified ranks
cutoff (x-axis) are shown. The prediction accuracy of
original LZerD without using the PPI information is
also shown for comparison. The naive post-filtering
achieved near perfect prediction accuracy when the per-
fectly accurate PPI information was provided. When the
PPI information was shifted by five residues, the predic-
tion accuracy at top 1 rank dropped significantly, from
90% to 51% when iRMSD of 2.5 Å is used as the thresh-
old (Figure 4A). Interestingly, using further deteriorated
PPI information of ten residues shift made prediction
results indistinguishable from running LZerD without
PPI information. Using more inaccurate PPI prediction
of twelve or fifteen residue shifts was shown to be even

Figure 4 The prediction accuracy of the naive post-filtering

method. The percentage of the cases among the tested complexes
is shown where the naive post-filtering method obtained a near
native structure of below A, 2.5 Å iRMSD; B, 4.0 Å iRMSD; within
specified ranks at the x-axis. PPI site information of five different
accuracy levels are used: correct PPI (pentagons); 5 residue shifted
(downward triangles); 10 residue-shifted (upward triangles), 12
residue-shifted (diamonds); and 15 residue-shifted PPI regions
(squares). For comparison, results of the base LZerD which do not
use PPI information are also shown (filled triangles).
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harmful, producing worse predictions than LZerD with-
out PPI information. The consistent trend was observed
in Figures 4A and 4B. Overall, the results show that the
naive post-filtering is sensitive to the accuracy of PPI
residue information used for the filtering. Thus, it is not
reliable to apply PPI prediction simply for post-proces-
sing when the accuracy of the prediction is not well
known.

PI-LZerD with simulated PPI predictions

Next we examine performance of PI-LZerD on the data-
set of simulated PPI predictions. This experiment is for
understanding the effect of various levels of inaccuracy
in PPI predictions to the docking results. In the later
sections we discuss the results using actual PPI predic-
tions on bound and unbound docking cases. The full
implementation of PI-LZerD (Figure 2, PI-LzerD-2) was
compared with four other variations of LZerD, namely,
the original LZerD without PPI information (the base
LZerD), the original LZerD followed by post-clustering
without using PPI information, LZerD with naive post-
filtering with the PPI information, and PI-LZerD using
PPI information with only one iteration of the modified
LzerD (PI-LZerD-1). PI-LZerD-1 clusters output of
docking decoys using the ciRMSD.
Figure 5 shows prediction results of the five methods

using 0, 5, 10, 12, and 15 residue shifted PPI informa-
tion. The y-axis shows the fraction of successful cases
where a correct prediction exists within specified ranks
cutoff on the x-axis. When the provided PPI residues
are 100% accurate, the naive post-filtering can naturally
select correct predictions among the pool of docking
decoys (Figures 5A &5B). PI-LZerD with one or two
iterations performs better than the base LZerD. Since
PI-LZerD does not restrict the conformation search
space to the provided PPI site but also explores its
neighborhood, PI-LZerD obtained a hit for a less num-
ber of complexes within top 30 ranks than the naive
post-filtering method. However, when top 100 ranks are
considered, both naive post-filtering and PI-LZerD-2
and PI-LZerD-1 made successful prediction for almost
all the tested cases. The clustering step made a slight
improvement of accuracy when applied to decoys gener-
ated by the base LZerD.
As the accuracy of the PPI information starts to dete-

riorate, the docking prediction accuracy by the naive
post-filtering quickly drops relative to the others. When
5 residue shifted PPI information was used, the post-fil-
tering method still showed the highest number of suc-
cessful cases up to the 100 ranks (Figures 5C &5D).
When PPI regions were further shifted by 10 residues,
PI-LZerD clearly outperformed the post-filtering
method. The performance of the post-filtering method
went down as low as the base LZerD which did not use

the PPI information. It is also noticed that the PI-
LZerD-2 performed better than PI-LZerD-1.
Figures 5G &5H show that when the 12 residue

shifted PPI regions were used, the naive filtering method
performed even worse than the base LZerD. In contrast,
remarkably, PI-LZerD-2 managed to successfully use the
inaccurate PPI information, showing a higher accuracy
than the base LZerD. The accuracy of PI-LZerD-1 is
now comparable to the base LZerD when 2.5 Å iRMSD
threshold was used (Figure 5G) but better for 4.0 Å
iRMSD threshold (Figure 5H). Finally, with 15 residue
shifted PPI regions (Figures 5I &5J) PI-LZerD-2 still
remained superior to the base LZerD while the accuracy
by the naive post-filtering went further down. It is
worth mentioning that the prediction accuracy by PI-
LZerD-2 stays almost the same with 5, 10, 12, and 15
shifted PPI regions. Importantly, the stability of the pre-
diction by PI-LZerD was observed only for PI-LZerD-2
but not PI-LZerD-1. This indicates that the two itera-
tions of modified LZerD run are necessary to effectively
explore the vicinity of specified PPI region to find the
lowest energy conformation.
In Additional file 1, Figures S3 and S4, we analyzed

the same results by classifying the shifted PPI sites by
their accuracy. In Additional file 1, Figure S3, the pro-
tein complexes are classified by the average sensitivity of
the shifted PPI sites of the receptor and the ligand pro-
teins, while they are classified based on the fnat of
shifted PPI sites of the receptor and the ligand proteins
in Additional file 1, Figure S4. Essentially the same
trend was observed in Additional file 1, Figures S3 & S4
as Figure 5. Using the naive post-filtering, near perfect
prediction accuracy can be achieved only when the cor-
rect PPI information is provided. However, its results
quickly deteriorate as the accuracy PPI site information
drops. In contrast, PI-LZerD can take advantage of PPI
information even when it is not very accurate. For the
range of the PPI site information accuracy tested, PI-
LZerD always showed better performance than the base
LZerD without using PPI information. It is very impor-
tant that employing additional information (in this case
PPI site prediction) do not deteriorate prediction results
even if the quality of information is not high, which is
successfully achieved by PI-LZerD.

Docking Prediction using actual PPI site prediction

Next, we use actual PPI site prediction for PI-LZerD.
127 protein complexes taken from the iPFAM database
were used in this experiment. PPI site predictions were
computed by Meta-PPISP [70] using MSAs taken from
the iPFAM database. The average sensitivity and the
specificity of the prediction by meta-PPISP were 0.648
and 0.297, respectively (Figures 6A &6B), when the cut-
off score of 0.1 was used. The average sensitivity value
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Figure 5 Docking prediction with simulated protein interface predictions. Four other methods are listed to compare with PI-LZerD-2: the
base LZerD (LZerD), LZerD with clustering using ciRMSD (LZerD+Clustering), LZerD with one interaction of modified LZerD (PI-LZerD-1), and
Simple residue filtering method (post-filtering). The x-axis indicates the ranks in logarithmic scale and the y-axis shows the percentage of cases
where correct predictions are ranked equal or better than the corresponding ranks. Left panels, A, C, E, G, I, use the 2.5 Å as threshold for
correct predictions, while right panels, B, D, F, H, J, use 4.0 Å as the cutoff for near hit predictions. A &B use the correct protein interface
information; C/D use the simulated predictions with 5 residue shifts, E/F, G/H, and I/J use the simulated predictions with 10, 12, and 15 residue
shifts, respectively.
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is better while the specificity value is worse than the
simulated PPI site predictions we used in the previous
section, which were 0.535 for both sensitivity and the
specificity.
On this dataset, PI-LZerD-2 performed consistently

the best at every rank cutoff (x-axis) with both 2.5 Å
and 4.0 Å (Figures 6C &6D) iRMSD thresholds. Within
top 10 predictions, PI-LZerD-2 made at least one hit for

51.2% of the cases, while the base LZerD and the naive
post-filtering obtained hits for 42.5%, 31.5% of the cases
with the 2.5 Å iRMSD cutoff (Figure 6C). Within the
rank of 100, the successful cases for the methods
increased to 72.4, 55.1, and 38.6%, respectively. Thus,
PI-LzerD-2 improved the success rate over the base
LZerD by 8.7 and 17.3% points within the rank of 10
and 100. When 4.0Å is used for iRMSD cutoff (Figure

Figure 6 Docking prediction results using meta-PPISP binding site prediction. The meta-PPISP server predicted PPI regions of 127
complexes selected from the iPFAM database. Distribution of A, the sensitivity and B, the specificity of the meta-PPISP prediction. The docking
prediction results using C, 2.5 Å iRMSD cutoff; D, 4.0 Å iRMSD to define correct predictions.
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6D), PI-LZerD-2 obtained at least one hit for 33.1/59.8/
85.0/95.3% within top 1/10/100/1000 predictions,
respectively. The naive post-filtering performed consis-
tently worse than the base LZerD. An important conclu-
sion from these results is that blind PPI site predictions
cannot be used for improving docking prediction with
the post-filtering procedure. On average it will only
deteriorate prediction accuracy.

Unbound protein docking using actual PPI site prediction

We have further benchmarked PI-LZerD on unbound
docking cases. Out of 128 unbound docking cases in the
protein-protein docking benchmark dataset 3.0 [87], 118
cases were selected that are not longer than 800 resi-
dues and have an MSA in the iPFAM database. The PPI
sites were predicted by the meta-PPISP server. The
iRMSD between bound and unbound complexes of this
dataset ranges from 0.17 Å to 8.38 Å with an average of

Figure 7 Docking results on the unbound dataset using meta-PPISP prediction. 118 unbound-unbound protein complexes were taken
from the docking benchmark dataset version 3.0. The distribution of A, the sensitivity; and B, the specificity. C and D use 2.5 Å and 4.0 Å,
respectively, for the iRMSD cutoff value to define correct prediction.
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1.34 Å. Figures 7A &7B provide the distribution of the
sensitivity and the specificity of the PPI site predictions
by meta-PPISP. The average value was 0.684 and 0.231
for the sensitivity and the specificity, respectively.
We observe again the same trend as we observed in

the previous experiments: PI-LZerD-2 showed consis-
tently better success rate than the base LZerD at each
rank cutoff (Figures 7C &7D). At the rank cutoff of 10,
100, 1000, PI-LZerD-2 made successful predictions
within 2.5 Å iRMSD (Figure 7C) for 9.32%, 23.73%, and
44.92% of the cases, while the success rate of the base
LZerD was 7.63%, 20.34%, and 38.98%. With 4.0 Å
iRMSD cutoff, (Figure 7D), the success rate of PI-
LZerD-2/the base LZerD was 16.95/11.86, 39.83/29.66,
and 61.02/53.39 at 10, 100, 1000 ranks. The naive post-
filtering performed again worse than the base LZerD at
most of the rank cutoff values.
The same prediction results are categorized according

to the three difficulty levels for protein docking assigned
by the docking benchmark dataset. The 118 unbound
cases contain 87 rigid-body docking cases, 16 medium
cases, and 15 difficult cases. In Figure 8, the success
rates for the three difficulty levels are separately shown.
For all the three levels, PI-LZerD consistently showed a
higher or equal success rate as compared LZerD. The
improvement by PI-LZerD over LZerD is more evident
when 4.0 Å iRMSD cutoff is used (Figure 8B).
Using this test set, we have also examined the effect of

using a different number of decoys in the second round
of LZerD run in PI-LZerD. As shown in the illustration
of the PI-LZerD algorithm (Figure 2), we use top 30

lowest energy decoys and another 30 decoys with the lar-
gest clusters, thus 60 decoys, as the sources of updated
PPI sites. We compared prediction results using 50 (i.e.
25 lowest energy decoys and 25 largest cluster decoys),
80, and 100 decoys in Additional file 1, Figure S5. The
results show that using 60 docking decoys performs over-
all best among tested when the cutoff of 2.5 Å is used.
When the cutoff of 4.0 Å is used to define near native
decoys, all of them showed similar performance.

Examples of docking prediction by PI-LZerD

Here we show examples of docking predictions that
illustrate difference of PI-LZerD as compared to the
base LZerD and the naive post-filtering. The first two
examples (Figures 9A &9B) are from prediction using
simulated PPI predictions. For all the cases actual PPI
regions were shifted by 10 residues. The best iRMSD
structures within top 50 decoys are shown.
First example is human cdk2 kinase complex with cell

cycle-regulatory protein ckshs1 (PDB ID: 1BUH). The best
predictions within top 50 using PI-LZerD/naive post-filter-
ing/LzerD were 1.03 Å (8)/9.09 Å (24)/9.91 Å (17) iRMSD,
respectively. In the parentheses the rank of the decoys are
shown. The second example (Figure 9B) is monoclonal
antibody fab d44.1 complexed with lysozyme (1MLC). The
best prediction using PI-LZerD-2/naive post-filtering/
LZerD were 0.89 Å (34)/8.37 Å (9)/14.35 Å (22) iRMSD,
respectively. The predicted ligand protein position by the
naive post-filtering method (shown in red) indicates where
the shifted PPI site information pointed. Thus, PI-LZerD
managed to find the near native docking pose (green)

Figure 8 Docking results on the unbound dataset using meta-PPISP prediction are classified by the docking difficulty. The same results
shown in Figure 7 are classified into three docking difficulty classes, rigid-body (87 cases), medium (16 cases), and, difficult (15 cases). A, B,
results using 2.5 Å and 4.0 Å, respectively, for the iRMSD cutoff value to define correct prediction. Black/red circles, the rigid-body category
results by PI-LZerD/LZerD; green/yellow triangles, the medium category by PI-LZerD/LZerD; Black/red squares, the difficult category by PI-LZerD/
LZerD.
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Figure 9 Examples of docking prediction. The best prediction within 50 ranks by PI-LZerD-2, the base LZerD, and naive post-filtering is shown
in green, yellow, and red, respectively. The correct docking pose is shown in blue. Receptor proteins are shown in gray. First, predictions using
10 residue-shifted PPI site information are shown for A, 1BUH; B, 1MLC. For 1BUH, the iRMSD (Å) of prediction by PI-LZerD-2/post-filtering/base
LZerD was 1.03/9.09/9.91. The rank of the decoys was 8/24/17. The sensitivity (= specificity, since the size of the shifted PPIs are same as the
correct PPI) of the shifted PPI region was 0.33 for 1BUHA and 0.44 for 1BUHB. For 1MLC, iRMSD (Å) and the rank of the best prediction within 50
ranks by PI-LZerD-2/post-filtering/base LZerD were 0.89 Å (34)/8.37 Å (9)/14.35 Å (22). The ranks are shown in the parentheses. The sensitivity (=
specificity) of the shifted PPI region was 0.55 for chain A and B, and 0.44 for chain E. C and D are predictions using actual PPI site predictions by
meta-PPPISP for proteins from the iPFAM dataset. C, 1ADU. The iRMSD (Å) and the rank of the predictions by PI-LZerD-2/post-filtering/base
LZerD were 1.04 Å (48)/14.90 Å (37)/10.85 Å (43). The sensitivity/specificity of PPI site predictions were 0.77/0.47 for 1ADUA, and 0.00/0.00 for
1ADUB. D, 1BMT. The iRMSD (Å) and the rank of the predictions by PI-LZerD-2/post-filtering/base LZerD were 2.31 Å (36)/14.44 Å (31)/13.02 Å
(44). The sensitivity/specificity of PPI site predictions were 0.11/0.06 for 1BMTA, and 0.22/0.11 for 1BMTB. The last two examples are unbound
docking cases with actual PPI predictions by meta-PPISP. E, 1OPH. The iRMSD (Å) and the rank of the predictions by PI-LZerD-2/post-filtering/
base LZerD were 3.76 Å (42)/5.71 Å (39)/10.28 Å (16). The sensitivity/specificity of PPI site predictions were 1.00/0.32 for 1OPHA, and 0.70/0.18 for
1OPHB. F, 1IQD. The PI-LZerD-2/post-filtering/base LZerD: 2.91 Å (23)/6.97 Å (16)/12.80 Å (32). The sensitivity/specificity of PPI site predictions
were 0.53/0.16 for 1IQDA, and 0.89/0.20 for 1IQDB.
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from the originally provided wrong PPI site information.
The near native pose (iRMSD ≤ 4.0 Å) was not found
among the top 50 lowest energy score decoys.
The next two examples are taken from the iPFAM

dataset where actual PPI predictions by meta-PPISP were
used (Figure 6). Figure 9C is a complex of adenovirus sin-
gle-stranded DNA-binding proteins (1ADU). The PPI site
prediction by meta-PPISP is fine for one protein

(sensitivity: 0.77) but totally missed the correct PPI site
for another protein (sensitivity and specificity of 0.0). PI-
LZerD-2 managed to identify a 1.04 Å iRMSD conforma-
tion (blue) while the naive post-filtering method made
significantly wrong prediction (red). The LZerD energy
function failed to identify the near native conformation
within top 50 ranks (yellow). Figure 9D is a complex of
methionine synthase (1BMT). The best PI-LZerD-2

Figure 10 Comparison of the docking prediction performance by PI-LZerD and CPORT. The dataset contains 57 unbound proteins. The
predictions were downloaded from the CPORT website. Distribution of A, the sensitivity and B, the specificity of the PPI site predictions by
CPORT. C, hits within 2.5 Å iRMSD; D, hits within 4.0 Å iRMSD.
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prediction is at 2.31 Å iRMSD, while the post-filtering
method and the base LZerD predictions are at iRMSD of
14.4 Å and 13.0 Å iRMSD, respectively. The PPI predic-
tion for the both chains are much worse than average.
The last two examples are from unbound docking

experiments using meta-PPISP predictions. The first
example is the predictions for a-1-antitrypsin precursor
and trypsinogen complex (1OPH). The best iRMSD pre-
dictions by PI-LZerD, the post-filtering, and base LZerD
were 3.76 Å, 5.71 Å, and 10.28 Å, respectively. The last
one, the complex of human factor VIII and human
monoclonal BO2C11 Fab (1IQD), again PI-LZerD-2
identified a near-native pose (an iRMSD of 2.91 Å) (Fig-
ure 9E). The base LZerD found lower energy decoys at
very different position, an iMRSD of 10.28 Å.

Comparison with an existing method

Finally, we compare PI-LZerD with a recently published
related method, CPORT [74]. CPORT takes a consensus
approach for PPI site prediction, combining six web ser-
vers. Predicted PPI site information is used for protein-
protein docking in the framework the HADDOCK dock-
ing program. CPORT-HADDOCK translates predicted
interface residues to what they call ambiguous interac-
tion restraints (AIRs), which are distance restraints
between provided (predicted) interface residues between
a receptor and a ligand protein [14]. We used PPI site
predictions of 57 unbound proteins that are made avail-
able as supplemental material of the paper at http://had-
dock.chem.uu.nl/services/CPORT. The distribution of
the accuracy of the PPI site predictions is provided in
Figures 10A &10B.
The performance of docking prediction with CPORT

and PI-LZerD are compared in Figures 10C &10D.
Overall, for both iRMSD threshold of 2.5 Å (Figure
10C) and 4.0 Å (Figure 10D), PI-LZerD-2 showed a
higher success rate at each rank cutoff (x-axis). For
example, PI-LZerD-2 obtained 14 success cases out of
57 complexes (24.6%) within 2.5Å when top 100 scoring
decoys are considered, while CPORT had 9 successful
cases (15.8%) at the same cutoff (Figure 9A). Using a 4.0
Å iRMSD threshold value, PI-LZerD-2 and CPORT
obtained 23 (40.4%) and 21 successful cases (36.8%)
within top 100 decoys, respectively.

Conclusion

We have developed PI-LZerD, a pairwise docking algo-
rithm that uses imperfect PPI prediction to improve
docking accuracy. In the series of experiments, we
showed that PI-LZerD successfully improved docking
results even when accuracy of PPI information is signifi-
cantly low. Unlike the post-filtering whose success lar-
gely depends on the accuracy of provided PPI
information, PI-LZerD can use imperfect PPI prediction

to improve prediction by exploring docking poses in the
neighborhood of provided PPI prediction. PI-LZerD
identifies matches of two proteins at local surface
regions that only partially overlap with the provided PPI
prediction. In addition, employing two iterations of
docking searches (PI-LZerD-2) is shown to be more
effective than one round of docking (PI-LZerD-1)
because the two iterations enable exploring further from
the provided PPI site prediction. Improvement of the
average docking accuracy by PI-LZerD over LZerD was
observed consistently in the series of benchmark experi-
ments including docking using actual PPI site predic-
tions as well as unbound docking cases.
While this work focused on pairwise docking, the

same procedure can be applied for multiple protein-pro-
tein docking algorithms [94-100]. As the protein interac-
tions and their networks have become a very important
research focus in systems biology, the procedure devel-
oped here will be valuable for providing physical picture
of such interactions.

Additional material

Additional file 1: Supplemental material for “Protein Docking

Prediction Using Predicted Protein-Protein Interface”. The file
contains following five figures. Figure S1. Selecting decoys by the scoring
function and/or by the cluster size. Figure S2. The procedure to compute
“simulated” incorrect PPI site predictions. Figure S3. Docking prediction
results using shifted PPI regions classified by the sensitivity of the PPI
predictions. Figure S4. Docking prediction results using shifted PPI
regions classified by the fnat of the PPI predictions. Figure S5.
Comparison of prediction results using different numbers of decoys for
running the second iteration of LZerD.
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