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ABSTRACT  We present a new computational
method of docking pairs of proteins by using spheri-
cal polar Fourier correlations to accelerate the
search for candidate low-energy conformations. In-
teraction energies are estimated using a hydropho-
bic excluded volume model derived from the notion
of “overlapping surface skins,” augmented by a
rigorous but “soft” model of electrostatic comple-
mentarity. This approach has several advantages
over former three-dimensional grid-based fast Fou-
rier transform (FFT) docking correlation methods
even though there is no analogue to the FFT in a
spherical polar representation. For example, a com-
plete search over all six rigid-body degrees of free-
dom can be performed by rotating and translating
only the initial expansion coefficients, many infea-
sible orientations may be eliminated rapidly using
only low-resolution terms, and the correlations are
easily localized around known binding epitopes
when this knowledge is available. Typical execution
times on a single processor workstation range from
2 hours for a global search (5 x 10® trial orienta-
tions) to a few minutes for a local search (over 6 x
107 orientations). The method is illustrated with
several domain dimer and enzyme-inhibitor com-
plexes and 20 large antibody-antigen complexes,
using both the bound and (when available) unbound
subunits. The correct conformation of the complex
is frequently identified when docking bound sub-
units, and a good docking orientation is ranked
within the top 20 in 11 out of 18 cases when starting
from unbound subunits. Proteins 2000;39:178-194.
© 2000 Wiley-Liss, Inc.
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INTRODUCTION

A characteristic feature of biochemical protein reactions
is that the protein must first bind to its ligand; either
permanently, e.g., during transportation or inhibition, or
temporarily, e.g., in catalysis. One of the current chal-
lenges in computational biology is to predict reliably
whether and how a pair of proteins might associate. This is
often referred to as “the docking problem.”>? Several
crystallographic structures of protein complexes have now
been determined, and these frequently exhibit high de-
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grees of steric and chemical complementarity at the pro-
tein—protein interface.®>® Often, docking algorithms are
developed and refined according to their ability to repro-
duce these known structures, although a more stringent
test is to predict the structure of a complex when only the
unbound structures of the constituent proteins are known
in advance.® 2

Protein—protein docking is a hard problem to address
computationally, even when one neglects the crucial pres-
ence of solvent, principally owing to the large number of
atoms and hence degrees of freedom involved. It is cur-
rently feasible to use molecular mechanics to refine hypoth-
esized docking orientations,'® but the computational load
is too great for this approach to be used to locate the
binding epitopes ab initio.'* For this reason most macromo-
lecular docking algorithms assume rigid bodies, hence
limiting the problem to a six-dimensional (6D) search
space. However, it is not uncommon for docking methods
to test hundreds of thousands'®'® or many millions*”'® of
distinct rigid-body relative orientations. The most common
way to reduce the amount of computation is to perform an
initial geometric analysis of each surface to locate signifi-
cant geometric features such as cavities,? local knobs and
holes' and their associated surface normals.'® These
approaches reduce the complexity of the problem to a
combinatorial search over a relatively small number of
complementary surface features, which can be performed
quite quickly using, e.g., geometric hashing.'®>2° However,
such geometric methods generally require a post-process-
ing step to remove sterically prohibited orientations.!®2!
In contrast, the Fourier correlation approach?®? uses a
simple Cartesian grid model of protein topology which
favors close contacts and automatically penalizes steric
clashes. Calculating the degree of overlap of a pair of grids
at successive translational increments can be performed
very efficiently using a fast Fourier transform (FFT)
technique.??> However, high-resolution Fourier correla-
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tions can still take many CPU-hours,?? or even CPU-
days.®

Nonetheless, the Fourier approach is attractive because
in addition to correlating surface shapes, it may also be
used to correlate other surface properties such as hydropho-
bicity®® or to accelerate the calculation of electrostatic and
van der Waals force field models of protein—small-ligand
systems.?*25 Another attractive feature of this method is
that one can perform fast low-resolution searches, for
example, to estimate main-chain complementarity®® and
to locate a ligand near a receptor-binding site.?” In other
words, there is an inherent degree of “softness” in a
Fourier correlation which can be controlled by the number
of terms employed. Even in high-resolution correlations
this softness may be useful for accommodating small
conformational changes that might be expected when
docking unbound protein structures.'®

The main disadvantages of existing Fourier docking
methods are that a large grid is required to accommodate
translations of one molecule about the second stationary
molecule and that a new FFT must be calculated for each
rotational increment of the stationary molecule. Hence,
when docking large proteins such as antibody—antigen
systems, the sampling resolution is limited to around 1 A
cubes for the problem to fit into main memory,'® and
accurate coverage of rotational space adds a significant
overhead to a 6D docking calculation. Some progress has
been made to alleviate the rotational search problem by
using hydrogen bond filters®® and surface segmentation
techniques.?® However, we feel that a much more substan-
tial revision of the method is required to overcome these
fundamental problems.

Here, we attempt to exploit the known computational
advantages of Fourier-based approaches and to address
the limitations described above. In our method, each
protein surface shape is represented by a “double skin”
model that describes thin regions of space exterior and
interior to the molecular surface. The use of analytical
surface skins in relation to molecular superposition has
been described previously,° but this approach would be
extremely expensive if applied to the protein—protein
docking problem. Hence in order to avoid the geometrical
complexities of manipulating explicit surface shapes, we
represent each skin as a Fourier series expansion of real
orthogonal radial and spherical harmonic basis functions.
These functions are similar to those found in the solution
to Schrodinger’s equation for the hydrogen atom,?! but are
specially scaled to the dimensions of typical protein do-
mains. In this surface skin model, the shape complementa-
rity of a given docking orientation is scored by evaluating
the degree of overlap between opposing pairs of interior
and exterior molecular skins.

Using spherical harmonic functions to represent protein
surface shape is not in itself new.>2-° However, with the
exception of Duncan and Olson’s novel surface mapping
approach,'>36 it seems that the usefulness of this type of
representation in the docking problem has been limited by
the absence of a radial component. The introduction of
special purpose radial functions, described here, allows

179

arbitrary (e.g., re-entrant) shapes to be modeled and is
crucial to the development of a 6D Fourier correlation
model for macromolecular docking. The main reason for
choosing to use spherical harmonic functions is that they
transform among themselves under rotation.>” From this,
it follows that a rotation transforms the coefficients of a
spherical polar parametrization in a predictable manner.
In order to exploit this property, the 6 degrees of freedom
in the rigid-body search space are divided into 5 Euler
rotation angles and an intermolecular distance. Thus,
apart from varying the intermolecular separation, the two
molecules remain at fixed positions in space and are
rotated about their own centroids. Consequently, this
approach resolves the main disadvantages of existing FFT
methods because the expansion coefficients need only be
determined once, a large Cartesian grid is not required,
and, during a docking search, both the search step size and
the resolution of the correlation may be varied indepen-
dently. Currently, a drawback with this approach is that it
involves the calculation of many two-center overlap inte-
grals.®® However, these are independent of the protein
identities and so may be calculated just once and stored on
disc for subsequent use.

In this article, we describe the construction of paramet-
ric surface skins using real spherical polar basis functions.
As the use of such functions for protein shape representa-
tion is novel, a brief summary of their properties is also
provided. We then give a description of the algebraic
manipulations necessary to develop an efficient search for
docking orientations by incrementally rotating and trans-
lating the parametric representations. We also show that
this spherical polar approach provides a natural way to
model macromolecular electrostatic complementarity.

Although our docking algorithm is presented in terms of
a blind search, often the location of one (or both) of the
binding sites is known in advance. This knowledge can be
used, e.g., in the form of distance constraints,'® to help
reduce the number of “false-positive” solutions obtained,
particularly when attempting to predict a docking orienta-
tion using unbound subunits. When our spherical polar
correlation is used predictively we also find that it helps to
constrain the search space, but here specific distance
constraints are not used. Instead, we attempt to let good
solutions emerge relatively unaided by restricting the
search to the region(s) of interest using only a simple
constraint on one (or two) of the angular degrees of
freedom. These angular constraints are natural ones if the
task is to investigate a hypothesized binding orientation.
For example, using our program, Hex, it is straightforward
to maneuvre a pair of proteins into an approximate
docking orientation and to search rapidly millions of trial
docking modes local to the given starting position. This is
possible because our spherical polar docking expression
can be evaluated selectively (in contrast to Cartesian FFT
methods which produce 3D arrays of translational correla-
tion scores®?), using only those orientations that fall
within the region of interest. Additionally, because most
trial orientations are trivially infeasible, many of them
may be eliminated by performing a low-resolution scan of
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the search space: Only a relatively small number of
surviving orientations need be evaluated at high resolu-
tion. Hence, execution times can often be reduced to a
matter of minutes.

The docking algorithm is demonstrated using the struc-
tures of 30 protein complexes taken from the Protein Data
Bank (PDB).2° These include two domain dimers, eight
enzyme—inhibitor systems, and 20 antibody complexes. In
24 cases the known structure is ranked within the top ten
orientations (18 are ranked first) in a global 6D search of
some 5 X 108 trial orientations. For 18 of the complexes,
one or both of the protein structures have been determined
crystallographically in the unbound conformation, and in
these cases we attempt to predict the orientation of the
complex starting from randomly oriented unbound sub-
units. The rank obtained depends largely on the degree of
conformational change induced by binding: By constrain-
ing the ligand to tumble over the receptor binding site, a
good solution is often found within the top few hundred
orientations. By further focusing the search around the
ligand epitope, the rank of the correct orientation can be
improved to within the top 20 in 11 of the 18 cases.

METHODS
Theory

In this article protein shape and electrostatic properties
are represented using series expansions of orthonormal
spherical polar basis functions. For example, letting A(r)
represent an arbitrary function in 3D space we have

N

A(K) = E anlmRnl(r)ylm(er d)), N =n> l = |m| = O (1)

nlm

where a,,;,, are the expansion coefficients, to be deter-
mined, and N is the order of the expansion: for docking, we
use N = 25. The functions y,,,(0, &) = 9, (cos 0)¢,,(d)
are real spherical harmonics; these functions have been
described extensively elsewhere.?”*%*! The radial func-
tions, R,,,(r), are based on the generalized Laguerre polyno-
mials, Ly (p).*? For surface shape representations we use
shape-scaled radial functions, S,,,(r), of the form

2\ (-1 D™
Sulr) = [(W) T+ 1/2)] e I e) @

where the square root term is a normalization factor, and p
is a scaled distance, p = r%k, with scaling parameter 2 =
20. This choice of radial scaling ensures that most of the
zeros of the radial function fall within about 30A of the
origin. Effectively, these functions are scaled to the dimen-
sions of typical globular protein domains. For half-integral
arguments, the gamma function may be evaluated using
theidentity I'(n + 1/2) = Vw(1/2), where (x), = x.(x +
D...(x + n — 1) is a rising factorial and (x), = 1.
Electrostatic potentials are represented using unscaled
radial functions, V,,,(r):
n—1— 1"
Vulr) = [(2/&)3M] e LY 2(p)  (3)
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where p = 2Ar, with scale factor A = 1/2. In quantum
mechanics the functions S,,,(r) and V,,,(r) correspond to the
radial eigenfunctions of the harmonic oscillator and cer-
tain Coulomb potential problems, respectively.*?

Expansions such as equation 1 are useful in the rigid
body docking problem for several reasons. First, given
some function, A(r), which might be available only as
discrete samples, the orthonormality property allows the
expansion coefficients to be determined easily. Multiplying
both sides of equation 1 by R,, ;. (r)y,.,,,(0, $) and integrat-
ing gives an expression for each coefficient:

Apim = fA(C)Rn’l’(r)yl’m’(e9 d)) dV (4)

An expansion to order N = 25 involves the calculation of
NN + 1)@2N + 1)/6 = 5,525 such integrals.

The second property we wish to exploit is that the series
representation of A(r) may be rotated by transforming only
the expansion coefficients. For example, applying a rota-
tion to each side of equation 1 gives

R(OL, B’ '\/)A(Z) = A’(’:) = 2 ar’zlmRnl(r)ylm(ey (b) (5)

nlm

and it can be shown that the rotated coefficients, a,,,,,, are
related to the unrotated coefficients, a,,,,,,, by
1
a;zlm = E anlm’Rivll)m’(ay B’ 'Y) (6)

m' = -1

Each rotation matrix, R“’, isareal (20 + 1) X (2] + 1)
matrix whose elements are functions of the Euler rotation
angles, (o, B, v). Equation 6 follows directly from the
special rotational properties of the spherical harmonic
functions.*”*' The real rotation matrix elements, RY), .,
may be derived from the complex Wigner D-matrices as
described previously.?® Because there are N distinct val-
ues of /, it can be seen that a series expansion to order N
can be rotated using just N rotation matrices, with each
rotation matrix, R?’, being used N — [ times. For rota-
tions about only the z-axis (3 = y = 0), equation 6 reduces
to

A = Qi COS MA + @7 SIN ML (7

It can also be shown that translating A(r) by Az along the
positive z-axis may be represented as

N
T(A2)A(r) = A"(r) = 2 @R ou(r)yim(6, b) 8)

nlm

"
nlm>

where the translated coefficients, a are given by an

expression of the form

N
Wi = 2 i T (A2)8, 9)

n'l'm'
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in which each 7", (Az) represents a translation matrix
element appropriate for the chosen radial basis. It may be
noted that taking the transpose of the translation matrix

gives

N
a;:lm = E an'l'm’ﬂ"yll’l,)nl(AZ)amm'

n'l'm'

(10)

which corresponds to a translation of A(r) along the
negative z-axis. However, since a direct calculation of the
translation matrix elements is somewhat involved,***° we
currently estimate them numerically, as outlined below.

Finally, representing 3D functions as orthonormal expan-
sions provides a straightforward way of calculating the
correlation, or degree of overlap, between pairs of func-
tions. Even after rotating and translating the original
functions, the correlation has the form

N
j A'(MB'()dV = 2, aymbim = a'b". (11)

nlm

Thus, in the present case, our aim is to reduce the task of
evaluating candidate docking orientations in a rigid-body
search to one of calculating scalar products of suitably
rotated and translated coefficient vectors.

Correlating Surface Skins

In order to exploit the above properties, protein surfaces
are represented by a “double skin” shape model. This is
derived from a dot representation of the familiar molecular
surface,*® defined by rolling a probe sphere over the van
der Waals surface of the molecule. The first, exterior, skin
is defined as the volume bounded by the molecular surface
and the solvent-accessible surface (which is offset from the
molecular surface by the radius of the probe sphere). Here,
these surfaces are estimated using our own algorithm®”
which is an adaptation of Shrake and Rupley’s*® method of
calculating solvent-accessible dot surfaces. It is convenient
to define the second, interior, skin as the union of the van
der Waals volumes of all atoms just inside the molecular
surface. Both skins are represented as density functions,
o(r) and 7(r), respectively, defined to have a value of unity
inside the skin and zero everywhere else:

1; r € exterior skin

olr) = { 0; otherwise, (12)
1; r € surface atom

T = { 0; otherwise. (13)

Approximating these density functions as series expan-
sions to order N gives, for example,

N
o) = 2 a%nSu)yim(6, ). (14)

nlm

The skin density functions for each protein are esti-
mated by projecting skin sample points onto a 3D Carte-
sian grid, represented as bits in a 3D byte array. A grid

181

spacing of 0.75A requires an array of about 10° elements
(1Mb) to sample the skins of typical protein domains. Each
protein’s coordinate origin is taken as the “center of mass”
of all heavy atoms. Skin sample points are generated by
centering a small test sphere, with a diameter of the
desired skin thickness, on each molecular dot surface
normal so that at each position the sphere just touches the
molecular surface. A local Cartesian grid of (0.2A)3 cells is
centered on the test sphere, and any local grid cell whose
center lies inside the test sphere is taken as a sample point
to be projected onto the main grid. Many sample points
may map to the same main grid cell, although only
non-empty grid cells are considered in the following inte-
gration step. The coefficient integrals (equation 4) are
estimated using

aglm = 2 Snl(rc)ylm(ecy (bc)AV

c

(15)

where the summation is over all non-zero bits in the grid,
AV is the cell volume and (r, 6., ¢.) are the spherical polar
coordinates of the centre of the c¢*® cell. The interior skin is
sampled in a similar manner, this time by centering local
0.2A grids on each surface atom. The centre of each local
grid cell is considered within the interior skin if that point
falls within the van der Waals volume of the atom. The
basis functions are evaluated at each non-zero grid cell
using standard recursion formulae.?**? Figure 1 shows
the resolution with which the skin density functions are
encoded when using various expansion orders, N. This
figure shows that atom-scale features (i.e., 3A features)
begin to be resolved at around N = 16, although signifi-
cantly higher-order expansions are required to properly
distinguish the mutually exclusive exterior and interior
skin volumes. As there is relatively little visible improve-
ment on going from N = 25to N = 30, an upper limit of
N = 25 was chosen to give a reasonable compromise
between speed and accuracy in the following docking
calculations.

The use of a surface skin representation to model protein
shape complementarity is justified by considering Figure
2. This figure suggests that a good strategy for finding
complementary orientations between a pair of proteins is
to maximize the overlap between the interior skin of one
protein with the exterior skin of the other. Steric clashes
may be penalized with an interior—interior skin overlap
penalty term. Using these ideas, the shape complementar-
ity score, S (in A3 units), for proteins A and B is written as

S = f O'A’TBdV + f ’TAO'BdV - Q f 'TA’TBdV (16)

where 0, = o,(ry) and 75 = 15(rp), etc., and @ is a steric
penalty factor: here, @ = 12. With a skin thickness of
1.4A, the first two terms give an expression for the volume
of solvent expelled from the protein surfaces upon associa-
tion (see Fig. 2). With a suitable scale factor, this expelled
volume can be used as a first-order approximation to the
hydrophobic free energy of association.*®

Substituting the appropriate series expansion for each
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N=12
30 R/A
N=16
30 R/A
N =20
30 R/A
N =25
30 R/A
N =30
30 R/A

Fig. 1. Plots of the exterior and interior skin density functions o(R) and
7(R) (solid and dashed lines, respectively) of lysozyme in the antibody
HyHel-5-lysozyme complex (3HFL) as a function of distance along the
intermolecular axis, calculated at several expansion orders, N. In the
sequence N = 12, 16, 20, 25, 30, the total number of shape coefficients
for each density function approximately doubles at each step (with 650,
1,496, 2,870, 5,525, and 9,455 coefficients, respectively). Here, lysozyme
is centered on the origin, and HyHel-5 (not shown) is located on the
positive R axis. The lysozyme center of mass (R = 0) lies between
LEU56:C, and LEUS56:C,,, and the intermolecular axis passes through
ARG45:C, ; near R = 20 causing the double peak around R = 17 and R =
23 (i.e., the axis cuts a reentrant region of the molecular surface in these
plots). At the origin, the initial surface sampling algorithm finds LEU56:C
and LEU56:C, to be accessible to a solvent probe, giving an interior skin
density of nearly unity and an exterior skin density of zero, as observed.

skin density function into the above overlap expression
(equation 16) gives

N N
S = E 2 (aglmb;z’l’m' + a:zlmbg’l'm’ - Qa;lmb;'l’m’)lnn'll'mm' (17)
nlm n'l'm'
and on writing %, = b2, — Qb%,,, this can be simpli-
fied to

N N
S = E E (azlm :L'Z'm' + a;lmbg'l'm')lnn/ll/mm" (18)

nlm n'l'm’

The factor 1,,,,.;:,nm- On the right-hand side arises from the
residual overlap of pairs of basis functions centered on
local coordinate systems, r, and rg:

Ly = J Snz("A)ﬁl\m\(COS eA)‘Pm(d’A)Sn’l’(rB)ﬁl'\m\'(cos 05)

X @ (dp)dV. (19)

These integrals may be simplified by aligning the intermo-
lecular axis with the global z-axis and by changing vari-
ables to a prolate spheroidal coordinate system.®® This
gives ¢, = ¢y = ¢ so that the circular functions, ¢,,(d),
can be integrated out. It can then be shown that the
remaining terms may all be expressed as functions of the
intermolecular separation, R. Hence

ot oo (BB (20)

Irm’ll'mm' =

However, owing to the large numbers of terms in a prolate
spheroidal expansion, calculating the K(R) integrals ana-
Iytically is not feasible; hence, they are estimated by
numerical integration in the (r, 6) plane and stored on disc
for subsequent use.*” Storing all K(R) integrals to N = 25
for R between 1A and 50A in 1A increments requires
around 55 Mb of disc space.

Composing Transformations

Although equation 18 could be used directly to evaluate
the complementarity score for candidate docking orienta-
tions, it is much more efficient to compose orientations by
rotating and translating each protein incrementally. Ini-
tially, both proteins are assumed to share a common
coordinate system, and the docking search is performed as
a nested sequence of rotation and translation operations.
The first four rotational degrees of freedom are taken as
Euler rotation angles, (84, v;) and (B, vs), calculated from
the angular coordinates of the vertices of a pair of tessel-
lated icosahedra. The remaining axial rotation, a, is
assigned to the ligand. Conceptually, at each intermolecu-
lar distance all pairs of vertices are rotated in turn onto the
intermolecular axis, followed by a search over the twist
angle, a,. This is illustrated in Figure 3. Translations are
calculated using the K(R) overlap integrals. For example,
expanding the first integral in equation 16 and collecting
terms with unprimed subscripts gives

N N
f oxtpdV = D, (2 @Ko m(R)Sm )i

n'l'm' nlm

(21)

_ "o T
- z @ nrmOnim-

But this could equally be calculated by first collecting
primed subscripts:

N N
f UATBdV = E azlm( E Knn'll’\m\(R)Bmm'b;'l’m’)

nlm n'l'm’

N
— o 1T
- z Apim nlm*

nlm

(22)

Comparing these expressions with equations 9 and 10
shows that the K(R) overlap integrals are formally equiva-
lent to the translation matrices, T(Az). Thus, the coeffi-
cient transformations are as follows:
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Fig. 2. Acartoonillustration of protein shape complementarity with the
“double skin” model. The exterior skin is the volume bounded by the
solvent-accessible surface (dashed lines) and the molecular surface
(solid lines). Shaded regions represent interior skins. On moving from the
orientation in (a) to that of (b) so as to maximize the degree of overlap

‘( BZ’Y2)

|

Ra |

Fig. 3. Schematic illustration of a six-dimensional docking search
using tessellated icosahedra. A and B label the receptor and ligand local
coordinate origins, respectively. The angular coordinates of each tessella-
tion vertex provide molecular rotational increments (B, vy). If desired, the
search may be localized to a known binding site on protein A, assumed to
be centered on the z-axis, by calculating the correlation only for orienta-
tions where B, = B,. A similar constraint may also be applied to B, if the
ligand epitope is known.

1. Rotate the receptor (protein A):

l

al’leO- = 2 aglerEer(O, Bly 'Yl) (23)
m' = -1
2. Translate the receptor along the negative z-axis:
nlmU E an I'm n ‘nl’ l\m|(R) (24)
n'l’
3. Rotate the ligand (protein B):
nlm - 2 bnlm Rift)m'(o, BZ’ ’YZ) (25)
4. Twist the ligand about the z-axis:
b2 =b!2 cos may + b2 sin ma,. (26)

Similar operations are applied to the remaining coefficient
vectors, a” and b".

between respective pairs of interior and exterior skins, an inevitable
consequence is to bring the two surfaces into very close contact. The
central hatched area shows the solvent-accessible volume occluded on
association.

Rather than calculating coefficient scalar products explic-
itly, the amount of computation can be reduced by substi-
tuting the above-transformed coefficients into equation 16
and collecting coefficients of a, to give

L
E Q. cosmay, + Q,, sinmay, L=N—-1 (27)

m=—-L

Where S = S(R’ 817 Y1, X, 82, "/2) aIld

Qm = Qr:: (R7 817 Y1, 627 'Y2

no T nT
z (anlm nlm + @ nim nlm)

Qr; = QW: (R: Bl’ Y1, BZ’ 'Yz) =
(29)

Finally, using the identities cos md cos m¢ and sin
md = — sin md, equation 27 may be simplified to obtain
areal Fourier series in ay:

L
S=Q, + O Q, cosmay+ @, sinma, (30)
m=1
for which the coefficients are given by
Qn =@y + Qi(1— 3,0 (31)
and
Qn = Qs — Qn (32)

In contrast to the discrete correlations of the FFT
method, the above Fourier series (equation 30) gives the
shape complementarity score as a continuous function of
all six rigid-body degrees of freedom (although discrete
steps in R must be taken when using precalculated overlap
integrals). For a given partial orientation, (R, B4, V1, Bs,
vs), the docking score at successive twist increments, s,
can be calculated extremely rapidly using equation 30.
Indeed, on contemporary workstations, it is feasible to
store in memory precalculated vectors of rotated coeffi-



184 D.W. RITCHIE AND G.J.L. KEMP

800 1
-5
oy
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N=16
—800 ~
800 1
-5
Qg
0 - ' ;
—90 w 90
N=20
-~800 +
800 1
-S
Qg
0 t t +
—90 \V\J 90
N=25
—800 +

Fig. 4. The shape complementarity score, S (equation 30, in KJ/mol
units), as a function of the twist angle, «,, for the HyHel-5-lysozyme
complex shown at increasing expansion orders, N. The minimum near the
center of the plots (a, = 0) corresponds to the crystallographic orientation.

cients for each rotational increment of the ligand, along
with arrays of cos ma, and sin ma,. Thus, the innermost
two cycles of a docking search require only O(N?) opera-
tions to update the @,, coefficients (equations 28 and 29)
and just O(N) operations to evaluate the correlation at
successive twist increments (equation 30). Plots of the
shape complementarity score (equation 30, multiplied by a
negative constant described below) for the HyHel-5—
lysozyme complex are shown in Figure 4. These plots show
that the shape correlation function produces a strong
signal for the correct crystallographic orientation even
when only low-resolution (e.g., N = 16) terms are used.

Correlating Electrostatics

As suggested in the Introduction, spherical polar correla-
tions provide a natural way to model electrostatic comple-
mentarity. Proper treatment of solvent effects is difficult
(for reviews, see e.g., refs. 50 and 51), so in this initial
development an in vacuo electrostatic model is used.
Because we wish to evaluate electrostatic interactions
across (often extensive) protein—protein interfaces, assum-
ing an isotropic medium is, at least in part, justified.
Classically, the electrostatic energy of a charge distribu-
tion, p(r), under the influence of a potential, ¢(r), is given
by52

1
E= 2[ p()b(r)dV. (33)

Writing p(r) = palry) + pplre) and &) = dury) +
&p(rg), and representing each function as a spherical polar

expansion (using the V(r) radial functions, equation 3)
immediately gives an expression for the electrostatic inter-
action energy of a pair of proteins:

1 N N
E(R7 Bl? Y1, U, BZ: y?) = § Z E (ar/L?m r/Lle)’m' + ar’zﬁrzbr/&’m')

nlm n'l'm’

X Jnn'll’\m\(R)Smm’ (34)

where a5 and a.}, denote rotated coefficients of the
charge density and electrostatic potential expansions of
protein A, etc., and where J(R) is the matrix of overlap
integrals calculated in the V(r) basis. With an infinite
number of terms equation 34 would be exact although, as
before, the expansion is truncated at N = 25 to give a
“soft” electrostatic correlation.

The charge density coefficients for each protein are
calculated by equating a series expansion to the classical
expression®? for the charge density due to a distribution of
point charges, q;, located at positions x; = r;:

N

o) = > qdx — %) = >, @ Vo (P)y (8, &) (35)

n'l'm'

where 3(x) is the Dirac delta function in three dimensions.
Multiplying both sides of equation 35 by V,,,(r)y,,,(8, &) and
integrating gives the remarkably simple result:

A = E @V u(r)yim(6;, b)) (36)

The expansion coefficients for the potential are calcu-
lated from the charge density coefficients by solving Pois-
son’s equation:

V2d(r) = —4mp(r). (37

Substituting the series expansion for each side, applying
V2 to the basis functions, multiplying both sides of the
resultby V,,.,.(ry, . (0, $), and integrating gives

N w
2 @ f (Vulr) + 2V, (r)r = 1A + 1)V (r)/r)V, (r)rdr
n=101+1 0

(38)

= — P
- 41Tan’lm

where V' denotes 0V/or, etc. Integrating by parts the term
in V) (r) gives

N
& O — _ p
E anlmGnn’ - 41Tan’lm

(39
n=101+1
where the elements of G’ have the symmetric form
G =~ f V@V + 11 + 1)V, (r)V,(r) dr.
0
(40)

It can be seen that for each ! (and m), equation 39
represents a set of simultaneous equations in the coeffi-
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Fig. 5. Electrostatic interaction energy, E (equation 34, in KJ/mol
units), as a function of the twist angle, «,, for the HyHel-5-lysozyme
complex shown at increasing expansion orders, N. The minimum near the
center of the plots (o, = 0) corresponds to the crystallographic orientation.

cients, a?,,,, which can be determined by inverting each
G matrix. The elements of G¥> may be calculated by
direct manipulation of the series expansion for V,,(r).
Using

. & (g + o) (=p)
Lye = 2 <q—2> %!

k=0

(41)

and denoting by C,,;, the coefficients of p in the expansion
of L?" %, ? (p), one obtains after some working

oo A{(n —l-Dn —1- 1)!]1’2

r+l+D)(n +1+1)!

n—Il-1n"-1-1

X > > CuCon(@l+k+E)

k=0 k=0

X Q22+ 1)+ 1) +Ek+E —(E—F)). (42)

It should be noted that with large numbers of charges
the above method of calculating the potential as an
expansion about a single point is not especially accurate.
Greater accuracy can be obtained using so-called tree code
fast multipole methods.?®%* Nevertheless, since equation
34 can also be rearranged into a Fourier series in «, (cf.
equation 30), this approach provides an extremely efficient
way to estimate macromolecular electrostatic complemen-
tarity at arbitrary orientations. Figure 5 shows the varia-
tion of the electrostatic interaction energy (equation 34) as

a function of a, for the HyHel-5-lysozyme complex, calcu-
lated using all polar atoms. Although the minima are less
marked than in the steric case (Fig. 4), this figure clearly
shows that our electrostatic correlation can help to identify
the crystallographic orientation.

The Docking Correlation

The electrostatic energy, E, and the steric complementa-
rity score, S, may be combined to give a pseudo energy for
the complex (in KJ/mol units) using

13914
total — (43)

T}e) E + KgS.
Here, the relative permittivity, Kz, and hydrophobic free
energy factor, K, are treated as adjustable parameters:
K, = 8 is used to approximate the electrostatic energy
calculated explicitly for the HyHel-5-lysozyme complex,>®
and K;; = —-0.8 KJ/mol/A® was chosen empirically to
produce a reasonable weighting of the two contributions to
E, .- These values tend to overestimate the absolute
binding energy for most complexes, although only relative
energies are needed to distinguish different docking orien-
tations.

As it is time-consuming to evaluate equation 43 at high
resolution for every orientation in a docking search, the
calculations described below were accelerated by perform-
ing an initial low-resolution (N = 16) filtering scan of the
search space. This involves generating partial orientations
(R, B1, Y1, Bas vo) for the complex and recording the lowest
energy found after searching over the twist angle, ay. Any
partial orientation that gives a positive energy = 100
KJ/mol is immediately discarded. The top 25% of the
surviving orientations (subject to a maximum of 20,000)
are then passed to a final high-resolution scoring stage
which uses a simple “peak picking” algorithm to locate all
local minima in each twist angle search. Because the
initial scan is considered primarily as a proximity test, the
electrostatic contribution is calculated only in the final
stageat N = 25.

RESULTS

Our docking algorithm was applied to the known struc-
tures of two protein domain dimers, eight enzyme-
inhibitor complexes, and 20 antibody complexes, taken
from the PDB. These are listed in Table I. In crystal
structures where the unit cell contains multiple copies, the
first instance of each structure was used. All water mol-
ecules were removed prior to docking, as were any alter-
nate (e.g., “B”) atom positions. Polar hydrogens were
added using standard geometries, as necessary. Atom
charges and united atom radii were assigned from the
AMBER®® parameter set. No attempt was made to model
missing heavy atoms (e.g., antibody F9.13.7). All antibody
calculations used only the F, fragments, with the excep-
tion of the F,,—protein G complex (IGC), in which only the
F_. was used. The idiotype—anti-idiotype antibody com-
plexes (IAI, DVF and KB5) are the largest complexes we
have attempted to model using the current method.

Molecular and solvent-accessible surfaces were calcu-
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TABLE I. Protein Complexes Used in the Current Docking Study”

Case Receptor Ligand A PDB Ref.
DHB Hemoglobin o, Hemoglobin B, 2.8 2DHB 65
CCY Cytochrome C" A Cytochrome C' B 1.7 2CCY 66
CSE Subtilisin Carlsberg Eglin C 1.2 1CSE 67
SNI Subtilisin BPN’ CI-2 2.1 2SNI 68
SIC Subtilisin BPN' SSI 18 2SIC 69
KAI Kallikrein A BPTI 2.5 2KAI 70
PTC Trypsin BPTI 1.9 2PTC 71
CGI Chymotrypsinogen A HPTI 2.3 1CGI 72
CHO a-chymotrypsin OMTKY3 1.8 1CHO 73
BGS Barnase Barstar 2.2 1BGS 74
GGI 50.1 Peptide 2.8 1GGI 75
TET TE33 Peptide 2.3 1TET 76
FPT C3 Peptide 3.0 1FPT 77
IGF B1312 Peptide 2.8 2IGF 78
JEL Jel42 HPr 2.8 1JEL 79
BQL HyHel-5 Quail lysozyme 2.6 1BQL 80
HFL HyHel-5 Chicken lysozyme 2.7 3HFL 81
HFM HyHel-10 Chicken lysozyme 3.0 3HFM 82
VFB D13 Chicken lysozyme 1.8 1VFB 60
MLC D44.1 Chicken lysozyme 2.1 1IMLC 61
MEL cAb Chicken lysozyme 25 1MEL 83
JHL D11.15 Pheasant lysozyme 24 1JHL 84
FBI F9.13.7 Guineafowl lysozyme 3.0 1FBI 85
NCA NC41 N9 neuraminidase 2.5 INCA 86
NMB NC10 N9 neuraminidase 2.5 1INMB 87
NSN N10 Staph. nuclease 2.9 INSN 88
TAI 730.14 409.5.3 2.9 1IAI 89
DVF D1.3 E5.2 1.9 1DVF 90
KB5 Desire-1 KB5-C20 2.5 1KB5 91
IGC MOPC21 Protein G 2.6 1IGC 92

"These are listed by PDB code and crystallographic resolution and are grouped as 2 domain-dimers, 8

enzyme/inhibitors, and 20 antibody complexes.

lated from all heavy atoms using a 1.4A probe sphere and a
dot surface density of approximately 4 dots/A2. Surface
skins were sampled onto a (0.75A)% grid as described in
Methods. With this grid size, it takes from 1 to 2 minutes to
determine all skin coefficients up to N = 25 for each pair
of proteins (all times are given as elapsed times on a
Silicon Graphics R5000 processor). Calculating the charge
density coefficients takes about 2 seconds per protein, and
solving Poisson’s equation for the electrostatic potential
coefficients takes a further 0.2 seconds.

Recognizing Known Complexes

Although our ultimate goal is to predict the association
of unbound protein subunits, as we are describing a new
algorithm it is important to investigate its performance in
cases in which the expected result is known. Hence, we
first give some results for the recognition of known protein
complexes. This exercise also gives an indication of how
well a rigid-body docking algorithm might be expected to
perform, without expert intervention, in those cases (usu-
ally idealized) where conformational changes are negli-
gible.

Table IT shows how well our algorithm recognizes the
correct orientation of several complexes following a global
search in all 6 degrees of freedom, consisting of approxi-

mately 5.4 X 10® distinct trial orientations. When using
correlations to N = 25, this table shows that 18 of the 30
structures are correctly recognized and that 24 out of 30
are ranked within the top 10. Here, successful recognition
(a “match”) is assumed when the lowest energy orientation
found is within 3A RMS of the correct structure. RMS
deviations are calculated as the RMS distance between all
ligand C,, atoms of the docked orientation and those of the
complex, following a least-squares superposition®” of the
docked structure onto the complex using only receptor C,,
atoms (this is the same method of computing RMS devia-
tions as used by Fischer et al.'®). In this test, trial
orientations were generated using 492 vertices of a pair of
tessellated icosahedra to give angular increments of about
10° for each of the first four rotational degrees of freedom,
and by using 72 twist increments of 5° for the final twist
angle search (a smaller twist increment costs little and
helps to locate minima accurately). The angular search
was repeated at each of 31 intermolecular distances in
steps of 1A from the starting conformation of the com-
plex, with all distances being rounded to the nearest whole
number (thus the orientations of the “correct” structures in
Table II may differ from those of the complex by up to
+0.5A in R). All calculations were preceded by an initial
filtering scan at N = 16, as described in Methods. Each
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TABLE II. Recognition of Known Complexes in a Global 6D
Search over 5.4 x 10 Alternative Test Orientations’

N =16 N =20 N = 25
Case Top RMS Top RMS Top RMS
DHB 2 0.00 2 0.00 1 1.55
CCY 1 0.04 1 0.04 1 1.59
CSE 37 0.73 1 0.08 1 0.92
SNI 15 0.58 1 042 1 042
SIC 3,407 0.00 2 0.22 1 0.82
KAI 17 041 3 0.69 7 0.81
PTC 132 0.52 2 0.48 1 0.48
CGI 1 0.38 1 0.38 1 0.38
CHO 1 0.45 1 0.55 1 0.55
BGS 1 0.82 1 0.82 1 0.88
GGI 1 2.47 1 0.90 1 0.90
TET 5 148 1 1.16 1 1.03
FPT 102 1.04 1 042 1 042
IGF 3 0.71 1 0.77 1 0.77
JEL 4,867 0.81 1,060 0.81 2 0.81
BQL 524 1.85 12 0.96 1 0.39
HFL 318 1.01 5 1.00 1 1.00
HFM 7 2.19 27 1.09 10 1.09
VFB 8,344 149 216 0.20 9 0.20
MLC 1,401 0.00 116 0.00 187 0.84
MEL 9,898 1.03 27 1.03 3 1.03
JHL 385 0.62 8 0.38 1 1.08
FBI 14 1.09 1 1.09 1 0.38
NCA 68 1.53 1 0.32 1 0.32
NMB 160 243 1,630 1.39 1,009 1.39
NSN 19,992 111 716 0.75 1,130 2.29
TAI 1,381 1.48 111 0.37 20 1.39
DVF 11,145 0.00 88 1.38 49 0.44
KB5 140 0.34 1 0.34 78 1.38
IGC 1,328 1.74 269 0.81 1 0.34

Listed are the rank and C, RMS deviations of the lowest energy (top
scoring) orientation found within 3A RMS of the complex, evaluated at
increasing expansion orders, N. Calculation times are around 2 hours
per complex.

global scan takes about 2 hours, with final scoring at N =
25 adding a further 10 minutes per complex.

As might be expected, Table II shows that a higher-order
expansion generally gives a better rank for the complex,
although this trend is not necessarily monotonic. However,
it is worth noting that even low-order correlations score
the correct docking orientation remarkably favorably.
Correlations at N = 16 place the correct solution well
within the top 1,500 orientations in all but six cases. The
most difficult complexes to recognize are the antibody
complexes with larger antigens, particularly the NC10—
neuraminidase complex (NMB) and the N10—staphylococ-
cal nuclease complex (NSN). However, even the large
idiotype—anti-idiotype antibody complexes (tabulated as
IAI, DVF, and KB5) are still ranked remarkably favorably.

Localizing the Search

In order to reduce the number of false-positive orienta-
tions for the large antibody complexes, the above calcula-
tions were repeated at N = 25 but with the search
constrained to the receptor binding site by excluding

rotational samples for which 3; > 45°. Table III shows that
this simple constraint is sufficient to improve the rank of
the best solutions to within the top ten in all but one case
and that 23 of the 30 complexes are now ranked first by the
algorithm. Also tabulated are the calculated steric and
electrostatic contributions to the total energy (E,,,. and
E .., respectively). E.;.. may be compared with the exact
electrostatic interaction energy, E_,,, given in the next
column, calculated from point atom charges using Cou-
lomb’s law with K, = 8. Considering the very large
numbers of polar atoms involved (up to = 3,000 per
complex), it is seen that the electrostatic correlation often
gives a remarkably good estimate of K, ;. Table III shows
that E.. is unfavorable for only four of the 20 antibody
complexes (VFB, NMB, KB5, IGC), although two of these
(KB5, IGC) are still ranked first. Unfavorable electrostat-
ics are also observed for the cytochrome C’' domain dimer
(CCY) and for two of the enzyme—inhibitor complexes (SIC
and PTC) although E,,,. dominates and all three com-
plexes are still correctly recognized.

Compared to a global search, using a receptor cut-off
angle of B; = 45°, reduces the number of trial orientations
by a factor of about 7. This does not affect the high rank of
the enzyme—inhibitor complexes, but it does help the
recognition of many of the antibody complexes, improving
their average rank by about a factor of 5. This suggests
that a good proportion of the false-positive antibody—
antigen orientations are located away from the binding
site, whereas the signal for the correct docking orienta-
tions of the other protein—protein complexes is much
clearer. This supports the proposition®® that antibody—
antigen interfaces exhibit poorer shape complementarity
than other protein—protein interfaces. The relatively low
rank obtained for NMB appears to be due to the largely
planar interface in this complex: Different translations in
the plane, and rotations perpendicular to it, are not easily
distinguished. Nonetheless, Table III shows that localizing
the search with a single simple constraint is sufficient to
bring the ranking of antibody complexes significantly
closer to the high levels observed for the enzyme—inhibitor
complexes.

Predictive Docking

Following the encouraging results of the above tests, we
used our algorithm to attempt to predict the orientations
of 18 complexes using wherever possible the unbound
structures of the constituent proteins. The structures used
are listed in Table IV. These include the same examples
investigated by Gabb et al.,’® except that we used more
recent structures 1VFA/IVFB and 3SSI for the D1.3
antibody-lysozyme (VFB) and subtilisin—SSI (SIC) com-
plexes, respectively. The barnase—barstar complex used
here (1BGS) has a mutation (C40A) relative to the un-
bound barstar (1A19), as not all wild-type structures are
available. In each case, the unbound structures were
separately superposed onto the structure of the complex by
C, least-squares fitting, to give a consistent “reference
orientation” for each calculation: The residual RMS devia-
tion between the complex and the reference structure
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TABLE III. Recognition of Known Complexes Using Correlations to IV = 25 With B, = 45° (Approximately
8 x 107 Trial Orientations)’

Case Rank E iu E ape E .. E. . Top Eip RMS Hits
DHB 3 —743.3 —685.1 —58.3 —36.4 1 —814.7 1.55 4
CCY 2 —-611.8 —686.1 +74.3 +94.6 1 —748.0 1.59 5
CSE 2 =721.7 —651.9 —69.8 =729 1 =732.7 0.92 4
SNI 1 —T773.2 7124 —60.8 —-36.1 1 —T773.2 0.42 6
SIC 1 —590.1 —659.1 +69.0 +59.9 1 —631.0 0.82 1
KAI 23 —1,436.8 —538.9 —897.8 —788.4 7 —1,535.4 0.81 4
PTC 1 —556.8 —704.1 +147.3 +137.9 1 —556.8 0.48 3
CGI 1 -1,106.4 —1,026.9 —-79.5 —69.6 1 -1,106.4 0.38 14
CHO 23 —555.4 —490.4 —65.0 —61.9 1 —732.9 0.55 4
BGS 3 —859.8 —554.4 —-3054 —242.0 1 —1,061.3 0.88 7
GGI 1,131 —430.5 —250.0 —180.4 -175.6 1 —718.2 0.90 33
TET 3 —512.6 —-504.3 —-8.3 —214 1 —-574.0 1.03 21
FPT 1 —605.6 —461.2 —1444 —127.6 1 —605.6 0.42 30
IGF 7 —4994 —385.0 —1144 -106.0 1 -591.9 0.77 56
JEL 6 —568.1 —541.3 —26.8 -17.1 2 —640.0 0.81 2
BQL 1 —845.7 —647.8 —-197.9 —183.6 1 —845.7 0.39 1
HFL 1 —852.1 —657.5 —194.6 —183.3 1 —877.2 1.00 2
HFM 4 —815.1 —588.3 —226.8 —196.8 8 —890.6 1.09 2
VFB 1 —231.1 —=571.0 +340.0 +209.5 1 —231.1 0.20 2
MLC 23 —639.4 —475.9 —163.5 —147.6 8 —663.8 0.84 1
MEL 1 —804.6 —627.2 —-1774 —1474 1 —869.0 1.03 4
JHL 1 —835.9 —594.6 —241.2 —182.3 1 —842.7 1.08 2
FBI 1 —1,008.4 —647.5 —360.9 —308.7 1 —1,008.4 0.38 3
NCA 1 —974.7 —828.3 —146.4 —88.9 1 —-974.7 0.32 2
NMB 502 —-306.0 —363.1 +57.1 -04 421 —-3144 1.39 0
NSN 8 —565.6 —535.0 —30.6 -164 4 —603.1 1.11 4
IAI 15 —612.8 —-611.1 —-1.7 —-3.4 5 —655.3 1.39 2
DVF 5 —600.1 —553.5 —46.6 —-62.1 1 —830.5 1.42 2
KB5 55 —469.4 —496.1 +26.7 +8.4 1 —692.1 1.49 2
1GC 1 —623.2 —657.5 +34.3 +40.2 1 —623.2 0.34 1
"The first four columns of figures give the rank and energies calculated for each complex. The following column, E, is the

coul>

exact electrostatic interaction energy of the complex, calculated using Coulomb’s law. The next three columns give the rank,
energy, and RMS deviation of the top-scoring docking orientation found by the algorithm. The number of orientations found
within 3A of the complex and within the top-scoring 100 orientations (considered as “hits”) is given in the final column. All
energies, E, are in KJ/mol. Calculation times are around 45 minutes per complex.

represents a good estimate of the best orientation attain-
able within the rigid-body assumption. As these deviations
can be quite large, we relaxed the threshold for a “match”
(3A RMS) between the reference and predicted docking
orientations by an amount equal to this deviation.

Table V shows the rank obtained for the reference
orientation of each complex, along with the best-matching
orientations found by the algorithm in a search localized to
the receptor-binding site using B; = 45°, as in Table III.
Comparing the rank of the reference orientations with
those of the bound subunits in Table III shows that the
algorithm often detects a significant conformational change
between the bound and unbound protein structures. How-
ever, in most cases much higher ranking orientations are
found within 3A RMS of the reference orientation, indicat-
ing that small rigid-body motions can, to a certain extent,
compensate for poorly fitting starting orientations. In
order to assess how the electrostatic correlation contrib-
utes to the overall docking score, each docking calculation
was repeated using just the surface skin correlation. The
rank of the best solution found in these shape-only docking
calculations (indicated in parentheses in Table V) are seen

to be significantly worse in the majority of cases. This
shows that our simple in vacuo electrostatic correlation
model can play a useful role in helping to identify favorable
docking orientations.

It should be noted, however, that the above calculations
are biased toward finding good solutions because the
search space always includes the reference orientation.
Thus, in order to simulate genuinely blind docking predic-
tions, each calculation was repeated using a starting
orientation in which the ligand was shifted away from the
reference orientation (columns marked with an asterisk in
Table V). The shift was defined by a random step of +0.5A
in R and by a small rotation (B,, y,) using angular
coordinates taken from the midpoint of a randomly se-
lected edge near the “north pole” of the icosahedral tessela-
tion. Thus, the search space now systematically excludes
the sought solution and, therefore, the rank obtained from
these pseudo-random starting orientations corresponds to
the worst rank that might be expected following a large
number of random trials. The relatively large range ob-
served between the rank obtained from the shifted and
unshifted starting orientations in Table V indicates that
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TABLE 1IV. Protein Structures Used for the Predictive
Docking Calculations, Listed by PDB Code and

Crystallographic Resolution’
Receptor Ligand
Case PDB A Ref. PDB A Ref.
SNI 1SUP 1.6 93 2CI2 2.0 59
SIC 1SUP 1.6 93 3SSI 2.3 94
KAI 2PKA 2.05 95 1BPI 1.1 96
PTC 2PTN 1.55 97 4PTI 1.5 71
CGI 1CHG 2.5 98 1HPT 23 99
CHO 5CHA 1.67 100 20V0 15 101
BGS 1A2P 1.50 102 1A19 2.76 103
JEL 1JEL 2.8 79 1POH 20 104
BQL 1BQL 2.6 80 1DKJ 20 80
HFL 3HFL 2.65 81 1LZA 1.6 105
HFM SHFM 3.0 82 1LZA 1.6 105
VFB 1VFA 1.8 60 1LZA 16 105
MLC 1MLB 2.1 61 1LZA 1.6 105
MEL 1MEL 2.5 83 1LZA 1.6 105
JHL 1JHL 2.8 84 1GHL 21 106
FBI 1FBI 3.0 85 1HHL 1.9 106
TAI 1IAI 2.9 89 1AIF 29 62
1GC 1IGC 2.6 92 1IGD 1.1 92

"The unbound structures of most of the antibodies have not been
determined, and so the conformation from the complex is used in these
cases (1JEL, 1BQL, 3HFL, 3HFM, 1MEL, 1JHL, 1FBI, 1IAI, 11GC).

10° angular search increments are too crude to give good
coverage of the search space.

Although the above calculations often yield good docking
orientations within the top few hundred solutions, even
when the reference orientation is excluded from the search,
it was felt that visual inspection (for example) of this
number of orientations would be impractical. Thus, we
investigated the effect of constraining the search to the
ligand epitope by restricting the allowed range of B,.
Because reducing the search space reduces execution
times proportionately, it is now feasible to use finer
angular search increments. Hence, we used icosahedral
tessellations with 720 faces to generate receptor (84, v;)
and ligand (B, v,) rotational steps of about 6.7° each (the
twist angle, a,, was held at 5°). As before, pseudo-random
shifts were applied to the ligand prior to each calculation.
The results of these high-resolution docking calculations
are summarized in Table VI. Inspection of this table shows
that many high-ranking docking orientations are found at
each level of constraint with just a few exceptional cases,
following a similar trend to Table V. However, despite the
much denser coverage of the search space than in Table V,
the absolute rankings are now often dramatically im-
proved. For example, even with fairly weak constraints
(B = 45°, By, = 45°), five of the 11 antibody complexes are
ranked within the top 30 and three of the seven enzyme—
inhibitor complexes are ranked within the top 40. With the
strongest constraint level (; = 30°, B, = 30°), the majority
of the complexes (seven out of 11 antibody complexes and
four of the seven enzyme—inhibitor complexes) are ranked
within the top 20 orientations. These results show that
despite sometimes significant conformational changes, our

algorithm can often find good docking orientations given
only a very loose specification of the binding epitopes.

DISCUSSION

The spherical polar Fourier docking method presented
here has been shown to provide a fast and accurate way to
find feasible protein—protein docking orientations. Al-
though this is conceptually similar to former grid-based
FFT docking methods, we began by constructing explicit
spherical polar series expansions of surface shape and
electrostatic representations of pairs of proteins. This
allowed expressions to be developed for the overlap of
appropriate pairs of functions to give a full six-dimen-
sional Fourier docking correlation. Because the steric and
electrostatic expansion coefficients need only be calculated
once for each protein, the remaining computational cost is
largely one of rotating and multiplying pairs of coefficient
vectors. In order to use the correlation most effectively, an
icosahedral tessellation of the sphere was used to sample
rotational space evenly and fairly. Despite the additional
programming effort required, this approach allows a 6D
docking search to be reduced to just four nested loops. The
innermost loop over the twist angle, a,, involves finding
the local minima of a one-dimensional real Fourier series,
and this can be performed very rapidly. However, to make
this approach tractable it is currently necessary to store
many megabytes of pre-calculated overlap integrals, but
this is not a significant overhead on modern workstations.
Nonetheless, having established that the general ap-
proach is viable, we are developing an improved method of
calculating the overlap/translation matrices using Fourier-
Bessel transform theory, which should help address this
drawback.

The results presented here, for a single processor work-
station, show that the performance of the spherical polar
correlation compares favorably with the Cartesian grid-
based FFT approaches, particularly for large protein dock-
ing problems such as antibody—antigen systems. This is
primarily because evaluation of the spherical polar correla-
tions is completely de-coupled from the choice of the
original sampling grid, and so a fast low-order scan (N =
16) could be used to eliminate rapidly many infeasible
orientations. Consequently we could use finer rotational
increments (10° or less) than is feasible in a global FFT
docking search,'® while still keeping execution times down
to a reasonable level (around 2 hours per global docking
search). Clearly the algorithm is highly vectorizable, and
significant performance improvements could be expected
on suitable hardware. Indeed, on multi-processor plat-
forms, which are becoming increasingly common, our
docking calculations can be distributed over the available
processors using standard Unix multi-tasking facilities.
This reduces execution times almost linearly with the
number of processors used.

However, the reported performance improvement has
not been at the expense of reduced accuracy. In a global
search, the spherical polar correlation correctly identifies
the orientation of the complex in 18 out of 30 cases, and 24
out of 30 are ranked within the top ten out of 5 X 108 trial
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TABLE V. Docking Unbound Subunits Using Correlations to N = 25 With the Search Constrained to the

Receptor Binding Site Using B, < 45°

Case Rank® RMSP Top® (Top)* A® RMSf Top* (Top)* A* RMS*
SNI — 0.46 — (=) = — — =) = —
SIC 380 0.64 240 (125) - 1.03 — (=) = —
KAI 261 0.54 136 (843) + 3.08 334 (1,928) + 294
PTC 133 1.10 130 (192) + 1.26 587 (865) + 1.34
CGI 5,150 1.78 48 12) - 2.19 215 (71) - 2.29
CHO 4,402 1.16 6 13) + 1.88 5 (19) + 2.06
BGS — 0.51 394 (1,665) + 2.29 593 (236) - 1.90
JEL 5,083 1.38 87 (87) = 3.74 149 (544) + 3.68
BQL 3,643 0.84 144 (191) + 0.99 60 (75) + 1.69
HFL 575 0.53 203 (316) + 1.16 486 (399) - 2.40
HFM — 0.58 1,636 (1,402) - 2.24 — (1,579) - —
VFB 2,327 1.07 158 (185) + 3.07 211 (231) + 2.18
MLC — 0.63 — (1,696) - 2.82 904 (262) - 2.94
MEL 3 0.67 1 @ = 1.39 1 (1) = 1.37
JHL 63 0.51 48 (466) + 1.23 456 (1,408) + 2.54
FBI — 0.68 2,079 (=) + — — (=) = —
TAI 2,182 1.10 778 (291) - 1.78 — (=) = —
1GC 2,235 1.05 691 (79) — 2.69 636 (84) 1.55

"Shape-only calculations are given in parentheses. Columns marked with an asterisk are for calculations starting with
randomized ligand orientations (see main text for details). A dash indicates no solution found within the top 10,000 orientations.

Calculation times are from 8 to 12 minutes per complex.

2The rank of the reference structure, calculated using unbound subunits fitted to the main-chain conformation of the complex.
PResidual C, RMS deviation of the reference structure. Calculated docking orientations will always have RMS errors that exceed

this value.

“The rank of the top-scoring solution found within 3A RMS of the bound complex (allowing for the residual RMS deviation) using

the combined steric and electrostatic correlation.

9The rank of the best solution found using only the steric correlation.
°The effect of the electrostatic correlation on the result: +, improves; —, worsens; =, no change.
fRMS deviation of the top-scoring orientation found using the combined steric and electrostatic correlation.

orientations (Table II). Such figures are comparable to the
excellent results obtained by Meyer et al.?® using an FFT
correlation in conjunction with hydrogen bond filters and
an accurate angular search algorithm. However, the major-
ity of the complexes investigated here are large antibody—
antigen systems compared to only three such complexes in
the former study. Similarly, our results compare favorably
to those of the geometric hashing method (Table 2 of
Fischer et al.’®) and also to the combined steric/electro-
static FFT correlation method of Gabb et al.*® (their Table
4), despite our steric penalty term (@ = 12) being “softer”
than the equivalent quantity in the FFT method (assign-
ing interior grid cells a value of —15). Unfortunately,
Meyer et al. do not report results for docking unbound
subunits, and so it is uncertain how robust the hydrogen
bond approach would be when the starting conformations
are poorly fitting. Nonetheless, it is clear that docking
bound subunits of protein complexes presents few difficul-
ties to current algorithms. Tables II and III show that our
approach easily achieves this high standard.

When the algorithm is used predictively, to dock un-
bound structures, the quality of the results depends largely
on the degree of conformational change induced by bind-
ing. Of the examples studied here, probably the most
dramatic conformational changes are to be found in the
main-chain and side-chains (particularly MET:59) of the
CI-2 inhibitory loop when binding to subtilisin BPN'5°
(tabulated as SNI). This presumably accounts for the

relatively poor rank obtained when attempting to dock this
complex. Nonetheless, despite the induced-fitting nature
of enzyme—inhibitor interfaces, our constrained docking
calculation (B; = 30°, B, = 30°) was able to find a good
docking orientation that ranked within the top 20 solu-
tions for four of the seven enzyme—inhibitor complexes.
The two antibody-lysozyme complexes D1.3 and D44.1
(tabulated as VFB and MLC, respectively) are also of
interest, being the only antibody—antigen complexes for
which both unbound subunits were available. On binding,
both antibodies exhibit conformational changes in the
hypervariable loops, and both complexes have several
buried interfacial waters.6%-°* Hence, it is somewhat sur-
prising that the best solution found for VFB is ranked so
highly, particularly since the electrostatic component is
strongly unfavorable. Considering the relatively weak
nature of the search constraints used here, it is noteworthy
how well our correlation performs with the remaining
antibody complexes, with good docking predictions being
placed within the top 20 solutions in seven out of 11 cases
and with many more “hits” falling within the top 100
orientations. Even the large idiotype—anti-idiotype com-
plex (IAI) was predicted relatively well despite H3 loop
and VH/VL domain motions in the anti-idiotype.®? Thus,
our spherical polar docking correlation is seen to be
remarkably robust with respect to conformational changes
induced by binding.

Like other docking methods, knowledge of at least one of
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TABLE VI. High-Resolution Predictive Docking With Angular Search Constraints’

By =45 B =30 B, =30°
RMS By = 45° By = 45° By =30°°
Case Ref. struct.? Docked struct.*® Top* Hits* Top* Hits* Top* Hits*
SNI 0.46 1.30 1,257 0 401 0 143 0
SIC 0.64 2.24 32 1 30 1 16 2
KAI 0.54 3.17 68 1 62 1 31 2
PTC 1.10 3.80 108 0 9 3 3 5
CGI 1.78 2.08 20 2 20 2 13 6
CHO 1.16 2.26 1 14 1 14 1 17
BGS 0.51 2.06 162 0 139 0 73 1
JEL 1.38 3.98 4 3 4 3 3 3
BQL 0.84 1.32 6 3 7 4 2 6
HFL 0.53 1.30 45 4 42 4 27 5
HFM 0.58 3.04 147 0 72 1 50 1
VFB 1.07 2.81 54 1 46 1 19 2
MLC 0.63 2.84 467 0 308 0 91 1
MEL 0.67 164 1 3 1 6 1 5
JHL 0.51 1.77 4 3 4 3 3 4
FBI 0.78 3.69 28 1 25 3 19 4
TAI 1.10 3.64 508 0 384 0 173 0
IGC 1.05 1.97 54 1 15 2 6 3

"Listed are the rank and RMS deviation of the best orientation (“top”) obtained using the search constraints given in the column
headings, along with the number of good orientations found within the top 100 solutions (“hits”). Here, 720 icosahedral increments
of about 6.7° are used to generate receptor (B;, y;) and ligand (B,, ,) rotations, subject to the given constraints on B; and B,. All

calculations used randomized ligand starting orientations (“*”).
22.7 X 107 trial orientations: about 20 minutes docking time.
1.3 X 107 trial orientations: about 11 minutes docking time.
6.0 X 10° trial orientations: about 8 minutes docking time.

9Residual C, RMS deviation of the reference structure, carried over from Table V.
°*RMS deviation of the first orientation found within 3A RMS of the complex, allowing for the residual deviation of the reference
structure. With pseudo-random starting orientations, each calculation finds the same top-ranking orientation; hence these

deviations are listed only once.

the binding sites is necessary to reduce the number of
false-positive solutions found. For example, when the
ligand is constrained (rather loosely) to tumble over the
receptor binding site (Table V), the correct solution is often
ranked within the top few hundred orientations. This
compares favorably to the results of similar docking calcu-
lations using the geometric hashing algorithm (in particu-
lar, cf. CHO, PTC, and HFL with Table 4.C of Fischer et
al.'®). However, direct comparison with the predictive FFT
calculations of Gabb et al.'® is difficult because even their
“loose” filtering constraint (which calls for specific residue
or hypervariable loop contacts) reduces the solution set to
just a few hundred candidate orientations. In comparison,
our most tightly constrained calculations involve evaluat-
ing several million possible docking orientations. Hence,
despite using a sampling strategy which systematically
avoided the sought solution, it is most encouraging to see
that the spherical polar approach still generates so many
high-ranking solutions.

Given the practical necessity of constraining predictive
docking calculations to known (or hypothesized) binding
sites, it is clear that a spherical polar formulation provides
a convenient way to apply the constraints before, rather
than after, the correlation is evaluated. This can reduce
docking calculation times to a matter of minutes, even
when using fine angular search steps (e.g., 6.7° or less).
Using the interactive graphics features of our program,

Hex, it is straightforward to place a ligand near the
antigen-binding site of an antibody, for example, and to
perform constrained docking calculations which search
around the given starting orientation. We believe that
constrained docking calculations of this type could help
experimentalists gain useful insights when considering
possible binding modes of pairs of proteins. We find that
even the 30° constraints are quite generous for large
antibody—antigen systems, although B, must be allowed to
vary freely for small peptide ligands. Clearly, we could
have used tighter filtering constraints to further improve
the rankings presented here, but forcing the desired
solution in this manner is a rather unsatisfactory way to
deal with the problem of macromolecular conformational
flexibility.

One reason for the relative success of the spherical polar
correlation approach is that the basis functions are “tuned”
to the dimensions of typical protein domains (or domain
dimers such as antibody F, fragments), whereas the
distance scale in the FFT method is much larger because
the FFT grid must be big enough to accommodate transla-
tions of one molecule about the other. However, the price to
be paid for this “tuning” is that very large macromolecules,
e.g., the large trimeric hemagglutinin—antibody complex
presented in the CASP2 docking challenge,'? would be
represented very poorly because of the exponential decay
of the radial basis functions beyond about R = 30A.
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Nonetheless, docking an antibody to hemagglutinin also
poses problems for the FFT approach: In this case, Vasker
obtained the best single docking prediction by splitting the
hemagglutinin moiety into smaller fragments prior to
performing low-resolution FFT correlations on each frag-
ment and by using symmetry to eliminate those parts of its
surface which are buried in the trimer and therefore
presumed to be non-antigenic.®® To dock macromolecular
complexes of this size, we expect similar measures would
also be required with the spherical polar approach. For
such cases, we plan to investigate using several local
coordinate origins within the larger molecule so that each
part of its surface is represented accurately at least once;
hence, accurate localized searches could be performed over
each surface patch. On the other hand, with a suitable
choice of scale factor, one would expect that the surface
shape and electrostatic properties of small organic mol-
ecules should be captured quite well using relatively
low-order spherical polar expansions, and this could pro-
vide an efficient way of searching small-molecule data-
bases for lead drug molecules that are similar to a given
template.

Certainly, in the protein docking case, we have shown
that spherical polar representations can encode atom-
scale protein surface properties relatively compactly while
still being sufficiently soft to absorb the effect of moderate
conformational change when docking unbound subunits.
Furthermore, we believe that the spherical polar approach
could be extended to model limited side chain flexibility in
a tractable way. For example, since each atom contributes
to the charge density coefficients additively (equation 35),
one could model the electrostatic effect of side chain
motion by subtracting the contributions from the old atom
positions and by adding similar contributions for some
new conformation (the cost of re-solving Poisson’s equation
for the potential coefficients is almost negligible). Updat-
ing the surface shape coefficients in a similar manner is
more problematic, because our surface skins are defined by
Richards’ rolling probe construction,*® which is a global
operation. However, an alternative and extremely promis-
ing avenue we are currently investigating is to model
shape complementarity using Gaussian expansions of
Lennard-Jones potentials.®* Because our shape-scaled ra-
dial basis functions (equation 2) are effectively modified
Gaussian functions, calculating the expansion coefficients
of Lennard-Jones potentials should be no more expensive
than the present electrostatic calculations.

CONCLUSIONS

We have described a new protein docking algorithm
based on spherical polar correlations of protein surface
shape and electrostatic representations. We have shown
that these correlations provide a fast and accurate way to
find feasible docking orientations of protein complexes and
that this approach is highly competitive compared to
former grid-based FFT docking methods. Starting from
unbound subunits, we can often get close to the desired
conformation of the complex. However, knowledge of one
or both binding sites is still necessary to reduce the

D.W. RITCHIE AND G.J.L. KEMP

number of false-positive solutions. In the spherical polar
approach, this information is given as a simple constraint
in just one or two of the angular degrees of freedom.
Execution times can be reduced to a matter of minutes by
applying these constraints before, rather than after, the
correlation is evaluated. Hence our interactive docking
program, Hex, could provide a useful and practical tool for
experimentalists. However, we argue that constraining
the search to known binding sites is currently a necessary,
but unsatisfactory, way to deal with conformational flexibil-
ity. We have discussed some of the ways in which spherical
polar Fourier correlations might help address this prob-
lem, which will be vital if we are ever to throw off the
shackles of the rigid-body assumption.
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ADDENDUM

The program described (Hex 2.0) is available on the
Internet at “http:/www.biochem.abdn.ac.uk/hex/”.
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