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Introduction
In 2021, breast cancer became the most frequently diagnosed malignancy worldwide (1). This year in the 
United States, more than 270,000 cases of  invasive breast cancer will be newly diagnosed and nearly 40,000 
women currently living with a diagnosis of  breast cancer will succumb to their disease before the year’s 
end (2). The burden of  this disease, however, is not equally distributed in women of  European ancestry 
compared with African ancestry in the United States. Women of  West African ancestry suffer nearly a 40% 
higher mortality from breast cancer compared with those of  European heritage. Though portions of  this 
disparity are rooted in inequities associated with access to health care, aspects of  structural racism, and mul-
tiple other determinants of  health disparities, prevailing evidence suggests a significant role for biology (3–5). 

Women of African ancestry suffer higher rates of breast cancer mortality compared with all other 
groups in the United States. Though the precise reasons for these disparities remain unclear, many 
recent studies have implicated a role for differences in tumor biology. Using an epitope-validated 
antibody against the endoplasmic reticulum–associated E3 ligase, gp78, we show that elevated 
levels of gp78 in patient breast cancer cells predict poor survival. Moreover, high levels of gp78 
are associated with poor outcomes in both ER+ and ER– tumors, and breast cancers expressing 
elevated amounts of gp78 protein are enriched in gene expression pathways that influence cell 
cycle, metabolism, receptor-mediated signaling, and cell stress response pathways. In multivariate 
analysis adjusted for subtype and grade, gp78 protein is an independent predictor of poor 
outcomes in women of African ancestry. Furthermore, gene expression signatures, derived from 
patients stratified by gp78 protein expression, are strong predictors of recurrence and pathological 
complete response in retrospective clinical trial data and share many common features with gene 
sets previously identified to be overrepresented in breast cancers based on race. These findings 
implicate a prominent role for gp78 in tumor progression and offer insights into our understanding 
of racial differences in breast cancer outcomes.
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This includes aspects of  the immune response surrounding the tumor that constitute the tumor microenvi-
ronment, in addition to specific attributes of  intrinsic tumor biology (6–8). Recent studies have revealed that 
stratification of  outcome risk using available biomarkers, developed with breast cancer cohorts consisting 
primarily of  patients with breast cancer of  European ancestry, show significantly lower predictive accuracy 
in women of  African ancestry (6, 9–12). For these reasons, there remains an unmet need to identify, develop, 
and disseminate new functional biomarkers that will not only provide higher predictive accuracy, but will 
also reveal insight into breast cancer diagnosis, treatment, and prevention.

The protein gp78 is an endoplasmic reticulum (ER) resident E3 ligase that targets numerous proteins 
for degradation by ubiquitylation and, through its cytoplasmic E3 ligase domain, plays a major role in the 
unfolded protein response (UPR) and other adaptive cellular responses to ER stress (13–15). Because of  its 
E3 ligase activity and its residency in the ER, gp78 is believed to exert a major role in facilitating cellular 
homeostasis in response to the cellular stresses and environmental conditions commonly faced by rapidly 
growing tumors, including hypoxia, reactive oxygen species, nutrient deprivation, and protein mutation. All 
of  these exposures impact cellular homeostasis through ER stress, subsequent activation of  ER-associated 
degradation (ERAD), and amplification of  proteostatic responses (16–22). However, in addition to its partic-
ipation in ERAD by removing misfolded proteins, a substantial portion of  the role played by gp78 in cellular 
homeostasis can be understood by examining its substrate specificity. Known substrates targeted by the E3 
ligase activity of  gp78 include the CD3δ T cell receptor subunit (14); the KAI1 tumor suppressor protein 
(23, 24); apolipoprotein B100 (25); cytochrome P450 proteins CYP3A4, CYP3A5, CYP2A5, CYP2C, and 
CYP2E1 (26, 27); the homocysteine-induced ER protein (HERP) (28) that stabilizes TKB1 during anti-
viral responses (29); the viral DNA response adaptor protein, stimulator of  IFN genes (STING) (30); the 
mitofusin mitochondrial fusion regulators MFN1 and MFN2 (31); mutant α-1-antitrypsin (32); the sterol 
regulator insulin stimulated gene 1 (Insig-1) (33); HMG CoA reductase (34); the diacylglycerol acyltransfer-
ase (DGAT); the ER chaperone HSPA5 (BiP/GRP78) (35); the dual specificity phosphatase DUSP1 (36); 
mutant variants of  the cystic fibrosis transmembrane regulator CFTR (37); mutant variants of  the serine 
protease inhibitor neuroserpin (38); prion proteins (39); mutant variants of  superoxide dismutase and the 
deubiquitylation enzyme Ataxin-3 (40); the immune coinhibitory molecule B7-H4 (41); and gp78 itself  (13, 
14). This diverse substrate specificity shows that gp78 has broad influences on pathways driving metabolism, 
molecular signaling, proliferation, immune responses, and adaptation to cellular stress (16, 17, 28, 31, 42).

In addition to its role as an ER-associated E3 ligase, gp78 has also been linked, in past studies, to 
binding activity for the autocrine motility factor (AMF) (43). This association was based primarily on 
observations using the monoclonal antibody (3F3A), an antibody raised against lectin-isolated melanoma 
cell surface glycoproteins (44). Though the epitope bound by 3F3A remains unknown, this antibody was 
shown to stimulate melanoma cell migration in a manner similar to AMF (44, 45), and 3F3A immunoblot 
reactivity could be blocked by conditioned media containing AMF-like (AMFL) activity (44). Despite its 
undefined epitope, 3F3A immune cross-reactivity was later shown to colocalize to a smaller population of  
ER-associated gp78 in cells overexpressing recombinant gp78 (46, 47). Thus, it remains unclear whether 
3F3A recognizes gp78 or a smaller population of  AMF binding activity that associates with a discrete 
fraction of  gp78 (46, 47).

Using an epitope-defined antibody raised against a known peptide sequence in the C-terminus of  gp78 
(13, 14, 24), it was later found that gp78 specifically targets the tumor suppressor protein CD82 for deg-
radation in sarcoma cells, thus providing the first implication of  a role for gp78 in human cancers (24). 
Subsequently, Martin et al. demonstrated that gp78 protein expression was significantly higher in the breast 
cancers of  women of  African ancestry compared with women of  European ancestry (48). Notably, this 
activity was also associated with significant enrichment for an IFN-like immune gene expression signature, 
higher macrophage infiltration, and increased stromal microvascular density in patients of  African com-
pared with European ancestry (48).

In this current study, we assess the role of  gp78 in breast cancer by characterizing its protein expression 
in a large (>500 patients) cohort of  patients with breast cancer and defining its association with patient and 
tumor characteristics and features, including survival, grade, subtype, race/ethnicity (self-identified), and gene 
expression. The analysis confirms that gp78 is expressed at a higher level in the breast cancers of  women 
of  African descent, is associated with gene expression patterns that are predictive of  tumor recurrence and 
response to therapy, and demonstrates that gp78 independently predicts poor breast cancer survival in women 
of  African ancestry even after adjusting for age, stage, grade, and subtype.

https://doi.org/10.1172/jci.insight.157465
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Results
The E3 ligase gp78 is expressed at higher protein levels in breast cancers compared with normal breast and is associated 
with poor overall survival. To determine the predictive value of  gp78 expression in mammary malignancies, 
we analyzed a previously established racially diverse breast cancer cohort of  patients (n = 560) residing in a 
designated health disparities catchment area in Eastern North Carolina (median follow-up, 8.5 years) and 
arrayed in tissue microarray (TMA) format (6, 11, 49, 50) to define the association between gp78 protein 
levels and breast cancer patient tumor characteristics and survival. The expression of  gp78 was measured 
by IHC using a quantitative digital pathology platform in which pathologist-annotated regions of  tumor 
were scored in terms of  the IHC staining level assessed by an increasing pixel intensity stratification: 0, 
1+, 2+, or 3+ (6, 11, 49, 51). The percent of  cells with these intensities were then used to assign protein 
expression values based on a continuous metric referred to as the H-score (0–300 scale) using the following 
equation: (H-score = 3 [%3+] + 2 [%2+] + 1 [%1+]) (6, 11, 49). Using the Aperio platform, digital scoring 
for gp78 was strongly correlated with the manual score provided by a pathologist (adjusted Pearson’s R2 
= 0.93) (Supplemental Figure 1A; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.157465DS1). Compared with normal breast, gp78 protein is expressed at substan-
tially higher levels in breast cancer (Figure 1A). When compared by self-identified race, gp78 shows higher 
expression levels in women of  African ancestry in contrast to European ancestry (Figure 1B, left). Notably, 
gp78 is more expressed in the most aggressive forms of  breast cancer, characterized by rapid growth and 
metastatic spread, including triple-negative breast cancer (TNBC), luminal B, and the human epidermal 
growth factor receptor 2 (HER2) overexpressed subtypes (Figure 1B, right). Accordingly, as shown in Fig-
ure C, using gp78 H-score cutoffs determined by the methods of  maximally determined rank statistics (6, 
11, 52) (Figure 1C, top), Kaplan-Meier analysis revealed that high levels of  gp78 protein are significant-
ly associated with poor survival (Figure 1C, bottom). Furthermore, forest plot analysis using optimized 
gp78 H-score cutoff  values in total patients, African American (AA) patients, or European American (EA) 
patients revealed that gp78 H-score cutoffs were differentially predictive of  poor survival hazards based 
on race (Figure 1D). Specifically, cutoffs determined using the total patient cohort (total OptCutoff) were 
significantly predictive in the total patient cohort and African American patients, while cutoffs determined 
using the European American cohort (OptCut[EA]) were significantly predictive only in the total cohort 
and European American patients and not African Americans. Finally, cutoffs determined using the African 
American Cohort (OptCut[AA]) were significantly predictive of  survival in the total cohort and the African 
American patients and not in European American patients (Figure 1D).

In the multivariate setting, after adjusting for age, BMI, RACE, menopause, subtype, hormone receptor 
status, lymph node status, and grade, the gp78 H-score loses statistical significance (Table 1). However, when 
the total patient cohort is racially stratified into European American versus African American status, gp78 
protein emerges as an independent predictor of  survival only in African American patients, even after adjust-
ing for age, BMI, menopause status, and subtype (Table 1). The status of  gp78 as an independent predictor 
of  survival, based on race, remains even after additional adjustment for tumor grade (Supplemental Table 1).

It is well known that African American women suffer a nearly 2-fold higher frequency of  TNBC 
(3, 4, 7, 10, 53–56). Also, as demonstrated in Figure 1B, gp78 is more highly expressed in this subtype. 
Therefore, to rule out the possibility that the race-selective performance of  gp78 is not simply explained 
by the disproportionate distribution of  TNBC in African Americans, we introduced an interaction term 
to the regression model to analyze the influence of  self-reported race on either the relationship between 
Subtype and gp78 H-score (Figure 2A) or the relationship between survival months and gp78 H-score 
(Figure 2B). In each case, gp78 H-score is used as the dependent variable (Figure 2 and Supplemental 
Figure 1, B and C). As shown by the nonintersecting regression curves (almost parallel) in Figure 2A, the 
relationship between subtype and gp78 protein abundance was not influenced by race. In contrast, the 
intersection of  the regression lines shown in Figure 2B indicates that the association between survival 
and gp78 was modified by race. Though these trends do not rise to statistical significance (P value race 
versus subtype = 0.46; and P value of  gp78 versus race = 0.23; Table 2), the trends reflect a difference in 
the influence of  race on the relationship between subtype and gp78 abundance (Figure 2A) compared 
with influence of  race on the relationship between survival and gp78 levels (Figure 2B and Supplemental 
Figure 1). Thus, in addition to having higher gp78 protein levels, the impact of  gp78 on survival is higher 
in patients of  African ancestry compared with European ancestry. In other words, patients of  African 
ancestry tend to show a greater survival hazard (shorter survival) than women of  European ancestry for 
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each unit increase in tumor gp78 protein expression (Figure 2B). In contrast, stratification of  patients 
by high versus low mRNA expression does not predict breast cancer survival and is not correlated with 
protein expression (Supplemental Figure 2).

Patients stratified by gp78 protein expression show enrichment for multiple pathways associated with stress, immune 
responses, metabolism, cell proliferation, and intracellular signaling. To define the functional state of  breast cancer 
cells expressing high levels of  gp78 protein, we leveraged the availability of  RNA-Seq gene expression data 
for a portion of  the breast cancer cohort (n = 147). Analysis by gene set enrichment profiling, based on 
the differential gene expression pattern of  patients stratified by gp78 H-score using the optimal cutoff  of  
all samples, shows enrichment for multiple gene sets representing pathways important in cellular immune 
responses, stress responses, metabolism, cell cycle, and cellular signaling (Figure 3A, Supplemental Fig-
ure 3, and Supplemental Table 2). Notably, several of  the gene sets enriched by the stratification of  gene 
expression according to gp78 H-score were also enriched in a recent study of  TCGA data that examine 

Figure 1. Gp78 protein is expressed at higher levels in the breast cancers of women of African ancestry and differentially predicts survival base on 
race. (A) Quantitative IHC staining of tissue microarray cores of normal versus different breast cancers. Differences in staining intensity are indicated 
by H-score (see text). Scale bar: 200 μm (top); 33 μm (bottom). (B) Left, violin plot quantitative comparison of protein expression of gp78 in the breast 
cancer of African American compared with European American patients. Right, violin plot comparison of relative expression of gp78 protein in different 
breast cancer subtypes. (C) Top, histogram of maximally ranked statistics analysis (6, 11) to determine optimal gp78 cutpoint. Bottom, Kaplan-Meier 
plot survival analysis showing the relationship between high versus low gp78 expression and survival. Middle row shows H-score versus log rank statis-
tic. (D) Forest plot analysis indicating the hazard ratio, P value, and 95% CI for different gp78 protein cutoffs in the total cohort or the cohort separated 
by race using optimized or median cutoffs as indicated. Optcut(AA):(AA) represents the optimal cutoff generated only using the AA population and 
then applied to AA samples for survival analysis. Optcut(AA):(EA) represents the AA optimal cutoff applied to only EA samples for survival analysis. 
Optcut(ALL) is when the cutoff is determined from the total cohort. Red lines indicate values the showed significant survival difference.
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gene set enrichment profiles based on the gene expression ranking of  patients with breast cancer stratified 
by race (Figure 3B) (57). Specifically, 14 of  20 gene sets determined to be differentially enriched in breast 
cancer based on race were also differentially enriched in our breast cancer cohort stratified by gp78 protein 
expression (Figure 3B and Supplemental Figure 4). Interestingly, a partitioned comparison of  the gp78-
based gene set enrichment analysis (GSEA) of  African American (non-Hispanic Black [NHB]) compared 
with European American (non-Hispanic White [NHW]) patients reveals an overlap of  9 of  12 gene sets 
enriched by GSEA (Figure 3C and Supplemental Table 3). Gene sets unique (FDR < 0.05) to the NHB 
GSEA (indicated in red in Figure 3, A and C, and Supplemental Table 3), and those unique (FDR < 0.05) 
to the NHW GSEA (indicated in blue in Figure 3, A and C), demonstrate that the UPR, cholesterol metab-
olism, and reactive oxygen species are more significantly enriched in African American patients (Figure 3, 
A and C, and Supplemental Table 3). In contrast, gene sets that are differentially overrepresented in Euro-
pean American patients include IFN-α and IFN-γ responses and heme metabolism (Figure 3, A and C, 
and Supplemental Table 3). Interestingly, a similar GSEA of  the cohort stratified by gp78 mRNA (RNF45) 
demonstrates a comparable overlap with the TCGA breast cancer GSEA stratified by race (Supplemental 
Figure 5, compared with Figure 3B). However, the correlation between the race-based TCGA breast cancer 
GSEA and the gp78 protein-based GSEA (Pearson’s r = 0.5567), is higher compared with the gp78 mRNA-
based GSEA (Pearson’s r = –0.1195) (Supplemental Figures 4 and 5). This is consistent with the lack of  
correlation between gp78 protein and gp78 mRNA (excluding the extremes of  expression) in the patient 
samples (Supplemental Figure 2A). Finally, an inspection of  the differential gene expression of  patients 

Table 1. Multivariate analysis of H-score, survival, tumor, and patient features

Multivariate analysis HR (All) HR Lower limit: 95% CI Upper limit: 95% CI P value
AGE 1.0264 1.0043 1.049 0.0192
BMI 0.9927 0.9684 1.018 0.5641
RACE 1.0533 0.7206 1.539 0.7887
Menopause_Status 1.0184 0.5358 1.935 0.9557
Subtype.bin_ LumB 1.3584 0.7982 2.312 0.2589
Subtype.bin_HER2+ 2.296 0.9125 5.777 0.0775
Subtype.bin_ TNBC 2.772 1.1891 6.462 0.0182
ER_subtype_2 0.9989 0.447 2.233 0.9979
Grade_2 1.1443 0.7067 1.853 0.5836
Grade_3 1.462 0.7929 2.696 0.2237
Node_Status_Yes 2.1785 1.4824 3.201 7.37 × 10–5

GP78_Cyto 0.9968 0.9935 1 0.0613

Multivariate analysis HR (EA) HR Lower limit: 95% CI Upper limit: 95% CI P value
AGE 1.0227 0.9958 1.05 0.0991
BMI 0.9818 0.9487 1.016 0.2958
Menopause_Status 0.9548 0.3973 2.295 0.9177
Subtype.bin_LumB 0.9571 0.4469 2.05 0.9101
Subtype.bin_HER2+ 2.3411 1.0187 5.38 0.0451
Subtype.bin_TNBC 3.9597 2.1732 7.215 6.94 × 10–6

GP78_Cyto_bin_High 1.3309 0.6802 2.604 0.4039

Multivariate analysis HR (AA) HR Lower limit: 95% CI Upper limit: 95% CI P value
AGE 1.0082 0.9799 1.037 0.5738
BMI 0.9908 0.9614 1.021 0.5452
Menopause_Status 1.3897 0.6046 3.194 0.4384
Subtype.bin_LumB 1.1653 0.6004 2.262 0.6512
Subtype.bin_HER2+ 1.8605 0.8062 4.294 0.1457
Subtype.bin_TNBC 0.9595 0.473 1.947 0.9089
GP78_Cyto_bin_High 1.9961 1.1278 3.533 0.0177

Referent for subtype is LumA; reference for menopause is negative; referent for grade is grade 1; and referent for race (self-identified) is NHB (non-Hispanic 
Black [NHB]). AA, African American (NHB); EA, European American (non-Hispanic White).
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stratified by gp78 protein and displayed as a volcano plot shows stratified expression of  classic estrogen 
receptor–positive versus estrogen receptor–negative markers (Figure 3C).

Gp78 protein expression is highly correlated with features common to more aggressive breast cancers. To define 
both patient and tumor parameters that are associated with increased expression of  gp78, we profiled 
tumor and patient characteristics comparing biomarkers commonly associated with more aggressive forms 
of  breast cancer by unsupervised hierarchical clustering (Figure 4A). This analysis highlights the asso-
ciation of  gp78 protein expression with TNBC and other markers commonly associated with TNBC or 
more aggressive cancers, including cytoplasmic Kaiso (cKaiso) (11), epithelial growth factor receptor 1 
(EGFR1), Ki-67, and LC3A/B (11), but also demonstrates non-TNBC clusters composed of  a mixture 
of  HER2, luminal A (LumA), and LumB subtypes that express high levels of  gp78 (Figure 4A). Notably 
many non-TNBC tumors also showing high gp78 protein are overrepresented in patients of  African (NHB) 
ancestry (Figure 4A, highlighted by the dotted line). These associations are further summarized by the 
correlation coefficient plot in Figure 4B.

Gene modules derived from patients stratified by gp78 protein expression predict recurrent disease and response 
to therapy. Using the concept of  coexpression modules or lists of  genes with highly correlated expression 
(58–60), we leveraged the available RNA-Seq data on this cohort (6, 11, 49) to construct gene modules 
(58) composed of  genes that are strongly correlated in patient samples expressing high levels of  gp78 
protein (Figure 5). These gene modules were then used to perform a comparative analysis using breast 
cancer gene expression, treatment, and outcome data from publicly available clinical trial databases 
(58, 59, 61–65). Compared with the PAM50 risk-of-recurrence (ROR) score (ROR/Prosigna) (66), the 
gp78 gene modules derived from the differential gene expression pattern of  patients with breast can-
cer, stratified using the median cutoff  for gp78 expression in the total cohort (labeled as Medcut_All), 
shows significantly higher scoring in patients with recurrent disease. As expected, in the neoadjuvant 
setting, those patients with pathological complete response (pCR) show dramatically lower recurrent 
disease (Figure 5A, right). Notably, the gp78 gene module score stratifies or predicts those patients with 
nonrecurrence versus recurrence of  breast cancer using a variety of  gp78 H-score cutoffs (Figure 5B). 
Furthermore, receiver operating curve (ROC) analysis for the gp78 gene module yields AUC values 
predicting disease recurrence comparable with those signatures currently in clinical use, including the 
Prosigna PAM50 ROR score (66), the Oncotype GENE21 score (67), and the GENE70 MammaPrint 
score (68) (Figure 5, B and C, and Supplemental Figures 6–8).

Figure 2. Regression profiling reveals that the relationship between gp78 protein levels and survival is influenced 
by race. (A) Interaction regression analysis showing the relationship between subtype as the independent variable 
(1, LumA; 2, LumB; 3, HER2+; and 4, TNBC) and gp78 H-score as the dependent variable in patients of African Amer-
ican ancestry (solid line) and patients of European American ancestry (dotted line). (B) Regression profiling using 
survival months as the independent variable and gp78 protein levels as the dependent variable in patients of African 
American ancestry (solid line) compared with patients of European American ancestry.
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Hierarchical clustering analysis, comparing patient gp78 gene module scores with other previously 
described gene signatures (58–60), demonstrates that gp78 scores are more closely correlated with the gene 
expression scores generated by the Gene70 (MammaPrint) (68), the CIN70 (chromosomal instability) (69), 
genomic grade index (GGI) (70), and PTEN (71) gene tests (Figure 6A and Supplemental Figures 7 and 8). 
Notably, patient scores highly correlated within the gp78-derived module clusters show higher frequencies 
of  pCR. Moreover, the ability of  the gp78 modules to predict that pCR is comparable both in magnitude 
and significance to the 3 gene panels (Prosigna, OncotypeDX, and MammaPrint) currently in clinical use 
(Figure 6, B and C, and Supplemental Figure 8) (66, 67, 72).

Elevated levels of  tumor gp78 are correlated with specific immune spatial, morphological, and gene expression 
attributes in the tumor microenvironment. Previous studies have shown that breast cancers, arising in women 
of  African ancestry, are associated with specific stromal and immune responsive features in the tumor 
microenvironment (7, 48, 73–75). African American women tend to have higher levels of  protumorigenic 
M2 macrophages, Tregs, microvasculature, and circulating proinflammatory cytokines (7, 48, 73–75). To 
evaluate the association between gp78 and multiple features within the tumor microenvironment, we used 
a multiomic approach that combined: (a) immune features of  the tumor microenvironment inferred from 
available RNA-Seq data to estimate the relative abundance of  different immune cell types using CIBER-
SORT as previously described (7, 76); (b) quantitative morphological assessment of  the stromal and epi-
thelial nuclear and cytoplasmic features (77, 78); and (c) IHC-based protein biomarker profiling (6, 11, 49, 
50) (Figure 7). Integration of  these values followed by normalization and unsupervised hierarchical clus-
tering (Figure 7A) and correlation analysis (Figure 7B) reveals associations linking gp78 with LC3A/B, a 
naive B cell gene signature, a CD8 T cell gene signature, M1 macrophages, EGFR protein abundance, and 
a higher stromal infiltration with cells containing a high nuclear/cytoplasmic ratio and nuclear circularity 
consistent with lymphoid infiltration. This observation is consistent with Figure 4 and the recently pub-
lished observation that LC3A/B is highly associated with estrogen receptor–negative tumors and TNBC 
(11). Moreover, high LC3A/B expression has been associated with features of  an immunosuppressed 
tumor microenvironment characterized by increased frequencies of  PD-L1+ CD8 T cells and CD68 mac-
rophages in close spatial proximity with tumor, although there was nonsignificant proximity of  CD8 and 
CD68 cells with PD-L1+ tumor (11). Interestingly, a similar proximity-based analysis of  these linkages 
(Figure 8) shows that high gp78 is associated with both increased proximity of  PD-L1+ CD8 and CD68 
cells to tumor, as well as increased proximity of  CD8 and CD68 cells near PD-L1+ tumor, suggesting an 
increased likelihood of  immune suppression (Figure 8B). In summary, gp78 expression is associated with 
activation of  both innate and adaptive immunity pathways in the breast cancer microenvironment but also 
demonstrates significant features suggesting immune suppression.

Discussion
This study is the first to our knowledge to show a statistically significant correlation between breast 
cancer gp78 protein expression and patient survival using an epitope-defined antibody against the E3 
ligase, gp78. We begin by providing evidence that gp78 was significantly upregulated in breast cancers, 
compared with normal breast; we then revealed that gp78 expression was also significantly more ele-
vated in the tumors of  African American women as opposed to those of  European ancestry. We then 
demonstrated that gp78 expression was higher in more aggressive breast cancer subtypes and predicted 

Table 2. Coefficients and significance of the interaction between subtype versus race and gp78 versus race

Interaction (2A) Estimate SEM t value Pr(>|t|)
Subtype 12.214 7.084 1.724 0.0853

Race 5.42 11.359 0.477 0.6335
Subtyp:Race 3.309 4.518 0.733 0.4642

Interaction (2B) Estimate SEM t value Pr(>|t|)
gp78 H-score 0.05 0.1 0.51 0.61

Race 5.79 11.57 0.5 0.62
gp78:Race -0.08 0.07 -1.2 0.23

t value, t test value (size of the difference relative to the variation in sample data); Pr(>|t|), P value for the t test.
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Figure 3. Patients with breast cancer expressing high levels of gp78 are enriched in the pathways that drive the immune, stress, metabolic, cell cycle, 
and cell signaling pathways. (A) GSEA using RNA-Seq differential expression data of patients stratified by high versus low gp78 expression (based on 
the median). (B) Overlap between gene sets enriched (FDR < 0.05) in patients stratified by gp78 expression and gene sets enriched in (FDR < 0.25) African 
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poor breast cancer survival (Figure 1). Notably, in the multivariate setting, after adjusting for age, grade, 
and subtype, we demonstrated that gp78 was an independent predictor of  poor survival specifically in 
women of  African ancestry (Table 1). GSEA using the RNA-Seq data of  patients with breast cancer 
stratified by high versus low gp78 protein demonstrates that tumors expressing high levels of  gp78 
protein showed much greater activation of  immunorelated, metabolic, cell-cycle, and other cell-stress 
adaptive pathways including the UPR and cholesterol homeostasis (Figure 3 and Supplemental Figure 
3). These pathways are consistent with both the substrate specificity of  gp78 and the genome-wide asso-
ciation studies–defined (GWAS-defined) linkages between gp78 and single nucleotide polymorphisms 
(SNPs) — rs150646468, rs2432539, rs112233856, rs2587865, and rs111283203 — associated with 
IFN-γ measurements, breast carcinoma, apolipoprotein A1 levels, triacylglycerol levels, and type II dia-
betes mellitus, respectively (see GWAS catalog https://www.ebi.ac.uk). Furthermore, greater than 70% 
of  the gene sets, enriched by gp78 protein expression, are also enriched in patients with breast cancer, 
stratified by race, described in a previous study using TCGA data (57) (see Figure 3 and Supplemental 
Figures 4 and 5). The correlation between gp78 expression and other predictive protein biomarkers, by 
unsupervised hierarchical clustering, reveals a strong association with characteristics linked to TNBC, 
including, EGFR, Ki-67, and the more recently described extracellular vesicle targeting and loading 
protein LC3A/B (11, 79) (Figure 4). Gp78 gene modules assembled from the correlated gene expres-
sion patterns of  patients stratified by gp78 protein are highly predictive of  recurrence and response to 
standard-of-care therapy (pCR) at a level that is comparable with established gene signatures such as 
Prosigna, OncotypeDx, and MammaPrint (Figures 5 and 6). Finally, examination of  the tumor micro-
environment shows a high correlation with activation of  innate immune responses revealed by the 
increased lymphoid and macrophage (M1) infiltration seen in the tumors of  patients with high levels of  
gp78 protein (Figure 7A and Figure 8B).

It is notable that features of  immune suppression, characterized by increased proximities of  CD8 and 
CD68 cells to PD-L1–expressing tumor and the increased infiltration of  PD-L1+ macrophages and CD8 
cells, are observed in patients expressing high levels of  gp78 (Figure 8B). These findings suggest gp78 
may exert immune suppressive influence on the tumor microenvironment. Such observations are consis-
tent with the association between gp78 and LC3A/B levels, whose expression has recently been shown 
to be associated with an immunosuppressed tumor microenvironment characterized by increased PD-L1 
tumor expression and infiltration with PD-L1+ CD8 cells (11, 80), as well as the recent observation that 
gp78 is linked to increased tumor PD-L1 expression through its degradation of  B7-H4 (41). Although 
B7-H4 has been suggested to be an immune checkpoint protein, several studies have shown an inverse 
relationship between B7-H4 expression and PD-L1 (81–83). This explains the paradoxical relationship 
between gp78-dependent degradation of  B7-H4 and the tumor microenvironment, and it is consistent 
with observations that decreased levels of  tumor B7-H4 are associated with increased stromal lympho-
cyte infiltration (41, 81–83). Thus, gp78-expressing tumors are not classically immunologically “cold” 
but instead represent a combination of  features of  immunologically “hot” tumors with those of  immune 
suppression — an attribute often associated with tumors with a high mutational burden (80). This trend 
is demonstrated by the lack of  a typical immune-exhausted phenotype characterized by increased PD-1+ 
memory T cells, in close proximity to tumor, seen in patients expressing high levels of  gp78 (Supplemen-
tal Figure 9). The higher tumor mutational burden often seen in TNBC would be expected to increase ER 
stress, the resulting UPR, and levels of  tumor-infiltrating lymphocytes (9). Given these correlations and 
the known role played by gp78 in activation of  the STING response (30), it is likely that gp78 tumor will 
show a high correlation with other signatures linking the DNA damage response to immune reactivity — 
e.g., the DNA damage immune response (DDIR) (84–86). This presumed association is consistent with 
the high correlation between the gp78 modules and gene expression signature/modules linked to DNA 
damage including CIN70 (chromosomal instability) (69) and GGI (70) (Figure 6 and Supplemental Fig-
ure 9). Finally, the substrate specificity of  gp78 for CYP3A4 may also have broad ramifications since the 
cytochrome P450 is the dominant enzyme responsible for the metabolism of  over 50% of  clinically rele-
vant drugs (87). This property is likely to influence treatment response in a variety of  therapeutic settings.

American compared with European American patients with breast cancer. (C) Left, overlap between GSEA enrichment analysis (FDR < 0.05) based on gp78 
protein stratification in African American (NHB) compared with European American (NHW) patients with breast cancer. Right, volcano plot of differential 
gene expression in patients median stratified by high versus low gp78 protein.
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The process through which gp78 protein levels are regulated is complex. Gp78 is autoubiquitinated 
and a substrate for other E3 ligases associated with ERAD (13, 14, 88), and its stability is induced by ER 
stress (89). Recently, gp78 has also been shown to be stabilized by the ubiquitin peptidase USP34 (89). The 
observation that USP34 is induced under conditions of  DNA damage, where it associates with and stabi-
lizes RNF168 (90), provides a plausible link whereby gp78 levels may also be induced in response to DNA 
damage. This regulatory linkage would serve to increase gp78 levels in anticipation of  the upregulated ER 
stress and UPR that would be induced by gene mutation. Such a connection is consistent with the asso-
ciation between gp78, TNBC, and gene signatures for chromosome instability and GGI described above.

Although gp78 has been previously associated with AMF binding activity (the gp78 Human Genome 
Organization Gene Nomenclature Committee–approved [HNGC-approved] gene name is AMF receptor 
[AMFR]), this conclusion is based on an antibody (3F3A) that recognizes an unknown epitope (44). Direct 
comparison of  3F3A reactivity with antibodies raised against known gp78 epitopes, by both IHC and 
Western blotting, shows little correlation with the antibody used in this current study, those that have been 
previously published (13, 14, 24, 48), and other gp78 epitope–defined antibodies that are commercially 
available (Supplemental Figures 10–12). It will be important that future studies examining the role of  gp78 
in human malignancies rely on data generated from similar epitope-define antibodies (91).

Finally, the difference in the predictive value of  gp78 based on race is compelling, and there remains 
a possibility that gp78 protein scores or gene modules derived from gp78 may be differentially predictive 
of  recurrence and response to therapy based on race. Testing this hypothesis will require further valida-
tion of  this observation in other breast cancer cohorts with treatment, survival, and therapeutic response 
data provided by clinical trials with more diverse patient enrollment and access to tissue. Future efforts to 
examine the association between gp78 expression and metabolic features of  the tumor and tumor micro-
environment using recent advances in metabolomics analysis will be a priority. The observation that gp78 
protein remains the sole independent predictor of  survival in women of  African ancestry even after nor-
malizing for TNBC subtype and grade (Table 1 and Supplemental Table 1) suggests that gp78hi tumors may 
have arisen in early ancestral African populations as a feature with universally associated aggressive breast 
cancers regardless of  subtype prior to the evolution of  TNBC, where gp78hi tumors may have been a more 
predominant subtype prior to the out-of-African events believed to occur in the late Pleistocene epoch (92, 
93). This is consistent with the lost significance of  the TNBC subtype as an independent predictor in wom-
en of  African ancestry after normalizing for gp78 protein expression (Table 1). Similarly, correlation plots 
in which percent African, Asian, European, South Asian, and admixed Native American genetic ancestry 
is quantitatively correlated with gp78 protein levels, and self-identified race provide support for this idea 
(Supplemental Figure 13). Future investigative GWAS aimed at defining how ancestry-dependent genetic 
loci, SNPs, and expression quantitative trait loci related to different cellular and molecular properties that 
promote elevations in gp78 protein will shed more light on this hypothesis.

Methods
Study population, tissue microarray construction, and analysis. Following IRB approval from East Carolina 
University and the NIH Intramural Research Program, deidentified formalin-fixed and paraffin-embedded 
(FFPE) tissue samples and deidentified clinical information abstracted from the medical records were req-
uisitioned and initially procured for patients with breast cancer who underwent surgery for Stage 0 to Stage 
IV breast cancer between 2001 and 2010 at Pitt County Memorial Hospital (now Vidant Medical Center) in 
Greenville, North Carolina, USA. Race, ethnicity, or ancestry was self-reported at the initial visit and cap-
tured in the medical record. Survival was recorded retrospectively from the medical records and the cancer 
registry. The median follow-up was 8.5 years. Tissue microarrays were constructed using 1 mm cores as 
previously described (94, 95), with a complete representation of  555 patients.

Methods for IHC. Breast tumor tissue microarrays were stained, using monoclonal primary antibodies, 
ERα at 1:35, low pH (catalog MA5- 13191, DAKO); EGFR at 1:500, high pH (catalog M7298, DAKO); 
E-Cadherin at 1:50, high pH (catalog M361201-2, DAKO); Ki-67 ready to use, at low pH (MIB-1, Dako); 

Figure 4. Gp78 protein is associated with multiple features commonly enriched in triple-negative breast cancer. (A) Heatmap of unsupervised hierar-
chical clustering based on breast cancer biomarker H-scores (top) with patient tumor and clinicopathological features (bottom). The H-score distribution 
for each biomarker is shown to the right of the heatmap with density distributions and histogram plots. (B) Correlation coefficient plot of patient features 
and tumor biomarkers arranged by hierarchical clustering.

https://doi.org/10.1172/jci.insight.157465
https://insight.jci.org/articles/view/157465#sd
https://insight.jci.org/articles/view/157465#sd
https://insight.jci.org/articles/view/157465#sd


1 2

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(13):e157465  https://doi.org/10.1172/jci.insight.157465

and GATA3 at 1:50, high pH (catalog sc-268, Santa Cruz Biotechnology Inc.). Also, polyclonal primary 
antibodies were used, FOXA1 at 1:10,000, high pH (catalog ab23738, Abcam) and the ready-to-use anti-
body c-erbB–oncoprotein at a high pH (catalog A0485, DAKO). The gp78 antibodies were generated and 
affinity-purified from rabbits injected with a peptide containing aa 574–597 derived from the C-terminus of  
gp78, used at a final concentration of  0.4 μg/mL, high pH; LC3A/B antibodies (cross-reacting with both 
LC3 A and B isoforms) used at a final dilution of  1:3000, high pH (catalog 12741s, Cell Signaling Technol-
ogy); antibodies to androgen receptor (Atlas, HPA034966) used at 1:1000, high pH; and Kaiso antibodies 
used at 1:1000 dilution, high pH, as previously described (11).

Methods for clinical variables. Median follow-up and median survival for patients were 8.5 and 6.67 years, 
respectively. Clinical subtypes 2 or 3 were categorized as HER2+ when available information in the patient 
medical record showed a score greater than 2 by in situ hybridization or 3+ by IHC. ER+ patients were 
classified from the medical record and confirmed by IHC; missing data were replaced by TMA

All digital scoring was performed using the nuclear and membrane algorithms provided by the Lei-
ca Biosystems Aperio software. Areas of  interest were outlined by the pathologist and then scored inde-
pendently by the pathologist and the respective algorithms.

Figure 5. Gene modules derived from stratification by gp78 protein expression are predictive of recurrent disease. 
(A) Box plot comparing patient scores based on PAM50 (left) compared with gene modules derived from patients 
stratified by gp78 protein using median cutoff (center) and the pathological complete response (pCR) status of 
patients in patients with recurrent and nonrecurrent breast cancer. (B) Volcano plots of scores of patients with 
nonrecurrent versus a patient with recurrent (log2 fold change) disease with P values using patients scored by gp78 
modules and known gene signatures. (C) Receiver operating curve analysis shows AUCs from logistic regression 
analysis using gp78 median cutoff modules, compared with Gene21, Gene70, and ROR (OncotypeDx, MammaPrint, 
and Prosigna) gene signatures to predict recurrence.
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Multispectral fluorescence imaging and nearest-neighbor analysis. We use the Ultivue UltiMapper I/O 
PD-L1 assay and the PD-1 assay to collect the qmIF data. This PD-L1 kit uses the following antigens: 
CD8, CD68, PD-L1, pan-cytokeratin (panCK), and DAPI (DNA marker). The PD-1 immune exhaus-
tion kit uses a 4-plex panel for CD3, CD45RO, PD-1, panCK, and DAPI. The raw image data were 
collected at 20×. The fluorescent dye intensities are normalized to 0–255. Image analysis was performed 
using a commercial software package (HALO, Indica Labs) at full magnification. Point cloud generation 
and nearest-neighbor analysis were conducted as previously described (11).

Figure 6. Gp78-derived gene modules predict pCR and cluster closely with established predictive gene signa-
tures. (A) Hierarchical clustering of patient scores based on gp78 modules and other predictive modules. (B) Vol-
cano plot of patient gp78 gene modules scores and other gene signature scores in patients with residual versus 
pCR (log2 residual disease/pCR). (C) Receiver operating curve comparison of regression analysis prediction of pCR 
using ROR (Prosigna) versus gp78 modules (MedcutW). See also Supplemental Figure 8.

https://doi.org/10.1172/jci.insight.157465


1 4

R E S E A R C H  A R T I C L E

JCI Insight 2022;7(13):e157465  https://doi.org/10.1172/jci.insight.157465

Biostatistical methods. Patient baseline characteristics and disease factors were summarized using descrip-
tive statistics. Categorical variables were compared using the 2-sided Pearson χ2 test. Comparison of  IHC 
scoring was performed by a 2-tailed t test and plotted as previously described (96). Univariate and multivar-
iate Cox proportional-hazards model was used to test the independent and combined prognostic values of  
proteins of  interest with/without the presence of  selected clinical variables. Spearman’s rank correlations 
were used to assess the relationship between protein H-score and gene expression (reads per kilobase of  
transcript, per million mapped reads [RPKM]) values (97). The significance of  individual hazard ratios was 
estimated by Wald’s test. Optimal cutoff  points for H-score were determined as previously described (6, 
52). The solid lines and histogram present data for samples with higher (red) or lower (blue) H-scores; the 
dashed lines present data for samples divided into 2 groups based on the “optimal cutoff ” algorithm (52). 
Unsupervised hierarchical clustering of  IHC protein score from all breast cancer samples was performed 
using complete linkage and distance correlations with the number of  bootstrap replications (n = 1000) 
using the pvclust R package (98). The estimated clustering stability was measured by AU (approximately 
unbiased) P value and BP (bootstrap probability) value for each cluster in a dendrogram (98).

RNA-Seq data and analysis, nearest-neighbor analysis, genetic admixture, and GSEA. RNA-Seq data and anal-
ysis were conducted as previously described (6, 11, 49), genetic admixture analysis (11), and GSEA were 
conducted as previously described (11). Briefly, for GSEA the median cutoff  of  protein data was used to 
classify patients into 2 groups based on H-scores (e.g., low versus high gp78) with defined gp78 cutoffs 
for H-score or mRNA abundance (RNA-Seq). A 2-tailed t test was performed, and all available genes 
were ranked according to p value (lowest to highest). The P value–ranked gene list was used for functional 
correlation using preranked GSEA software (http://software.broadinstitute.org/gsea/index.jsp). Genet-
ic admixture analysis was conduct as previously described (11). Sequences were submitted to BioProject 
Dbase under BioProject ID PRJNA486351 and submission ID SUB4408142 for public availability.

Statistics. A Spearman’s rank correlation test was performed to test the relation between its protein 
H-score and gene expression (RPKM) values (97). A completely unsupervised hierarchical clustering 
approach was performed on the 486 patient sample H-scores containing complete clinical information. 
Complete linkage and distance correlations were used for clustering protein data with bootstrap resam-
pling techniques. The stability of  the clustering was estimated with the pvclust R package (98) available on 

Figure 7. Elevated levels of tumor gp78 are correlated with specific morphological and gene expression attributes in the tumor microenvironment. (A) 
Hierarchical clustering of correlation of biomarker values, tumor, and stromal morphological features, as well as deconvolved immune expression (CIBERSORT) 
signatures and gp78 protein scores. (B) Correlation of the top 25 immune signatures, morphological features, and antigen scores with gp78.
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CRAN (https://cran.r-project.org/web/packages/pvclust/pvclust.pdf). A 2-tailed t test was employed to 
test the null hypothesis (H0) assumption of  equality of  the protein values in 2 defined groups of  data and is 
demonstrated by violin plots using R software and ggplot2 package (96).

To classify the patients into low- versus high-risk categories using selected protein H-scores, the optimal 
cutoff  approach (52) has been used to compute optimal cutoff  points for diagnostic markers with continuous 
values for the entire population. The same cutoff  points were applied to subclasses of  data — i.e., the NHB 
and NHW populations. In addition, we performed a prognostic value comparative analysis using optimum 
cutoff  point based on a specific population, as well as the median of  the entire population. The prognostic 
value of proteins or genes was calculated by univariate Cox regression. A multivariate Cox proportional-hazards 
model (99) was used to test the independent and combined prognostic values of  proteins of  interest with/
without the presence of  selected clinical variables. Cox models were stratified by race to account for the 

Figure 8. Spatial analysis of the association of gp78 protein expression with proximities of PD-L1–positive CD8, 
CD68, and tumor cells within the TME. (A) Multiplex immunofluorescent image of patient tumors stained for CD8, 
CD68, Pan-cytokeratin, and PD-L1. (B) Distance distribution profiles of proximity frequencies between CD8, CD68, and 
tumor cells based on their PD-L1 expression. Distances are represented as pixels (11). Scale bar: 50 μm.
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possible heterogeneity in patient selection or other potential confounders. The “survival” R package was 
used, which is available on CRAN (https://cran.r-project.org/web/packages/survival/survival.pdf). The 
significance of  individual hazard ratios was estimated by Wald’s test.
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ral Research Program of the NIH, East Carolina University, and Columbia University Irving Medical Center.
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