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Abstract

Comparisons were made among four categories of protein flexibility: (1) low-B-factor ordered regions, (2)
high-B-factor ordered regions, (3) short disordered regions, and (4) long disordered regions. Amino acid
compositions of the four categories were found to be significantly different from each other, with high-B-
factor ordered and short disordered regions being the most similar pair. The high-B-factor (flexible) ordered
regions are characterized by a higher average flexibility index, higher average hydrophilicity, higher average
absolute net charge, and higher total charge than disordered regions. The low-B-factor regions are signifi-
cantly enriched in hydrophobic residues and depleted in the total number of charged residues compared to
the other three categories. We examined the predictability of the high-B-factor regions and developed a
predictor that discriminates between regions of low and high B-factors. This predictor achieved an accuracy
of 70% and a correlation of 0.43 with experimental data, outperforming the 64% accuracy and 0.32
correlation of predictors based solely on flexibility indices. To further clarify the differences between short
disordered regions and ordered regions, a predictor of short disordered regions was developed. Its relatively
high accuracy of 81% indicates considerable differences between ordered and disordered regions. The
distinctive amino acid biases of high-B-factor ordered regions, short disordered regions, and long disordered
regions indicate that the sequence determinants for these flexibility categories differ from one another,
whereas the significantly-greater-than-chance predictability of these categories from sequence suggest that
flexible ordered regions, short disorder, and long disorder are, to a significant degree, encoded at the primary
structure level.
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The B-factor of the �-carbon and the B-factor averaged over
the four backbone atoms have both been used as measures
of residue flexibility of folded proteins (Karplus and Schulz
1985; Vihinen et al. 1994; Kundu et al. 2002). In crystal

structures of macromolecules, the B-factor reflects the un-
certainty in atom positions in the model and often represents
the combined effects of thermal vibrations and static disor-
der (Rhodes 1993).

B-factors have been studied from a variety of viewpoints.
Karplus and Schulz (1985) determined normalized �-carbon
B-factors for each amino acid from which flexibility indices
were calculated and subsequently used in a sliding-window
prediction of the B-factor. Vihinen et al. (1994) and Smith
et al. (2003) further developed the method of Karplus and
Schulz (1985) and improved the correlation between pre-
dicted and experimentally determined B-factors. These flex-
ibility indices do not indicate inherent amino acid plasticity,
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but rather correlate with the tendency of the side chain to be
buried or exposed (Sheriff et al. 1985), which can explain,
among other behaviors, the midrange index value for gly-
cine and the high value for proline (Vihinen 1987). Indeed,
Halle (2002) showed that the B-factor is inversely propor-
tional to the atomic packing density and argued that little
information on polypeptide chains is contained in B-factors
apart from the atom coordinates. This theory was supported
by Kundu et al. (2002), who achieved significant improve-
ment in predicting experimental B-factors when atomic co-
ordinates were known. Other researchers studied statistical
properties of the B-factor (Altman et al. 1994; Wampler
1997) or aspects such as reliability of B-factors (Carugo and
Argos 1999), use of B-factors for predicting biologically
active sites (Ragone et al. 1989; Carugo and Argos 1998),
and use of B-factors for characterizing protein regions (Ca-
rugo 2001).

Intrinsically disordered proteins

In addition to regions with high B-factors, crystallized pro-
teins often contain disordered regions characterized by a
lack of associated electron density. Some missing density
may correspond to wobbly, ordered domains rather than to
intrinsically disordered ensembles. However, the amino
acid compositions of long regions of missing electron den-
sity are very similar to the amino acid compositions of
disordered ensembles characterized by NMR; furthermore,
predictors based on NMR-characterized disorder for the
most part predict disorder for the long regions of missing
electron density. Thus, as an explanation of long regions of
missing electron density, wobbly, ordered domains are
probably the exception rather than the rule (Garner et al.
1998).

Many other apparently noncrystallizable proteins are
mostly comprised of similar disordered regions, with some
of these proteins lacking persistent 3-D structure along their
entire lengths. Following the work of Ptitsyn and Uversky
(1994), we proposed that native proteins may exist in or-
dered (folded, structured) and/or disordered (unfolded, un-
structured) form, where the existence of disorder is deter-
mined by overall protein dynamics rather than by local sec-
ondary structure. Thus, �-helix, �-sheet, and coil, the three
types of secondary structure that are characteristic of or-
dered chains, may also occur in regions of intrinsic disorder.

Given the strong association of disorder with function
(Dunker et al. 2002a), disordered proteins are becoming the
subject of increased interest (Wright and Dyson 1999;
Dunker et al. 2002a; Dyson and Wright 2002; Uversky
2002b). The predictability of disordered regions from amino
acid sequence (Obradovic et al. 2003), the observed com-
positional biases of such regions (Romero et al. 2001), the
typically faster rates of evolution (Brown et al. 2002), and
the distinctive amino acid substitution patterns during evo-

lution (Radivojac et al. 2002) combine to strongly indicate
that intrinsic protein disorder is generally encoded by the
amino acid sequence (Dunker et al. 2002b).

Flexible ordered regions versus intrinsically
disordered regions

We and others previously found significant amino acid
compositional differences between regions of order and
long regions of intrinsic disorder. However, regions of in-
trinsic disorder and regions of high B-factors (Ringe and
Petsko 1986; Smith et al. 1986; Rhodes 1993) could both be
associated with large thermal vibrations of individual atoms
and with high intramolecular flexibility, so it is important to
examine whether high-B-factor regions more closely re-
semble disorder or low-B-factor regions. Here, we have
extended our studies to four flexibility categories: (1) low-
B-factor ordered regions, (2) high-B-factor ordered regions,
(3) short disordered regions, and (4) long disordered re-
gions. In addition to comparing the local amino acid com-
positions, we also developed predictors of high- versus low-
B-factor regions and short disordered versus ordered re-
gions. These two predictors were compared with a predictor
of long disordered regions (Vucetic et al. 2003). The results
of our study indicate that the high-B-factor regions are more
similar to disorder than to low-B-factor regions. Sequence
determinants for the high-B-factor regions and intrinsically
disordered regions are correlated, but significant differences
exist between them as well.

Results

Comparing ordered and intrinsically
disordered regions

In this study, an ordered residue is considered to have a high
B-factor if its normalized B-factor (Materials and Methods)
is 2.0 or higher; otherwise a residue is considered to have a
low B-factor. Residues of both low- and high-B-factor or-
dered sets were extracted from Dataset-O (Materials and
Methods). Short disordered residues, that is, the disordered
residues occurring in short stretches, were extracted from
Dataset-SD, and long disordered residues were extracted
from the previously collected Dataset-LD (Vucetic et al.
2003). The short disordered set was assembled to be similar
in its length distribution to the high-B-factor ordered set,
and the long disordered set was formed from unrelated pro-
teins having disordered regions of length � 30 residues.

The amino acid compositions of the low-B-factor or-
dered, the high-B-factor ordered, and the two intrinsically
disordered sets were compared to the compositions of a
reference ordered set, Globular-3D (Romero et al. 2001), in
order to gain insight into the differences among these data
sets (Fig. 1). Because the low- and high-B-factor sets con-
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tain about 91% and 9% of the ordered amino acids, low-B-
factor order has amino acid compositions very similar to
those of the reference ordered set. However, the differences
from the reference ordered set, although small, are not ran-
dom: Low-B-factor order is slightly enriched in almost all
of the more buried residues (Fig. 1, left) and slightly de-
pleted in three particular surface residues (Fig. 1, right),
serine, glutamic acid, and lysine.

The high B-factor, short disorder, and long disorder sets
exhibit similar depletions of the typically buried tryptophan,
phenylalanine, tyrosine, and isoleucine, and similar enrich-
ments in the typically exposed glutamine, glutamic acid,
and lysine. The long disorder set shows much less depletion
compared to the high-B-factor and short disorder sets for
cysteine, valine, and leucine. The high-B-factor order set is
especially enriched in asparagine and aspartic acid, the short
disorder set is slightly enriched in these two residues, and
the long disorder set is significantly depleted in asparagine,
but not in aspartic acid. The high-B-factor and short disor-
der sets are both enriched in glycine, whereas the long dis-
order set is not. Finally, the long disorder set is more en-
riched in proline compared to the high-B-factor order and
short disorder sets.

The four distributions can also be compared using a more
rigorous statistical approach. Because there is little higher-
order Markov dependence in proteins (Nevill-Manning and
Witten 1999), all segments from each group can be concat-

enated to form four distinct samples, Sk (k � 1. . .4). Each
sample Sk can be considered a realization of an independent
and identically distributed random process that emits sym-
bols from an alphabet of 20 amino-acid codes. To compare
the four amino-acid frequency distributions, we calculated
the Kullback-Leibler (KL) distance between each pair of
distributions p1 and p2 as

dKL�S1,S2� = �
i = 1

20

p1�i� � log2

p1�i�

p2�i�
,

where p1(i) and p2(i) represent relative frequencies of amino
acid i in samples S1 and S2. In all cases, the reference
distribution p2 was chosen to be the one with fewer obser-
vations. Table 1 presents the six non-zero KL-distances
among these four distributions.

KL-distance was also used as a test statistic to evaluate
the significance of the differences between the pairs of un-
derlying sample distributions. Using bootstrapping, we
tested the null hypothesis that each pair of samples was
generated from the same distribution (also given in Table 1).
For the pair with the smallest KL-distance, that is, high-B-
factor regions and short disordered regions, we rejected the
null hypothesis with a P-value of 0.0053; the P-values for
rejection of the null hypothesis for all other pairs of distri-
butions were significantly lower. Consequently, the esti-
mated probability distributions from Figure 1 between all

Figure 1. Amino acid compositions of various data sets. The composition of each amino acid of a reference data set of ordered
proteins, Globular-3D, is subtracted from the composition of the four sets described herein; thus, negative peaks indicate depletions
compared to the ordered reference set, and positive peaks represent enrichments. The order of the amino acids along the x-axis is from
the most buried (left) to the most exposed (right) in typical globular proteins. Error bars indicate one standard deviation. Methionine
at the N terminus and His-tags were not included in calculations.
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four data sets are different with high confidence. Further-
more, the distances suggest that the two most similar sets
are high-B-factor order and short disorder, but that these
two, together with long disorder, are all closer to one an-
other than any is to the low-B-factor order set.

To further understand the distinctions among the sets,
five averages were determined: segment length, flexibility
index value, hydropathy, net charge, and total charge (Table
2). Flexibility indices were compared because these are the
focus of the present study, whereas average hydropathy and
charge were compared because these two properties have
been shown to be an indicator of natively unfolded proteins
(Williams 1979; Uversky 2002b). The results in Table 2
indicate, surprisingly, that high-B-factor ordered regions
have a higher average flexibility index, a higher average
hydrophilicity, a higher average absolute net charge, and a
higher total charge than do either short or long disordered
regions. The low-B-factor ordered regions are significantly
enriched in hydrophobic residues and depleted in the total
number of charged residues compared to the other three
classes. Finally, long disordered regions differ noticeably
from both short disordered and high-B-factor ordered re-
gions as their total charge is relatively high, but their (ab-
solute) net charge is low with high variance. This indicates
an overall balance of positively and negatively charged resi-
dues in the set of long disordered segments. Further analy-
sis, however, indicates that individual segments often have
significant net positive or negative charge, which contrib-

utes to the large variance in the bootstrapping experiment,
with a slightly greater occurrence of negatively charged
regions.

Correlation between B-factor values

We investigated the correlation of B-factors between
aligned pairs (without gaps) of highly similar protein se-
quences from Dataset-EO (Materials and Methods). In each
iteration of our bootstrap resampling strategy, we randomly
selected a set of 195 clusters of homologous sequences and
drew no more than three protein pairs from each cluster.
Correlation coefficients between the B-factor data for each
selected pair were calculated and then averaged over all
pairs classified into three ranges of sequence identity. The
final estimate of correlation was obtained as the average
overall bootstrap iterations within each range (Table 3). The
correlation between B-factor values at aligned residues
clearly decreases as sequence identity decreases, which is
expected. Table 3 also illustrates the extent to which ex-
perimental conditions and crystal packing may influence
B-factor values. Homologous pairs crystallized within the
same space group have more highly correlated B-values
than homologous pairs crystallized in different space
groups.

In the next experiment, we studied the effect of normal-
ization on discrimination between low- and high-B-factor
residues and approximated the upper limit on predictability

Table 1. Kullback-Leibler distance (P-value) between estimated probability
distributions of four data sets

High-B-factor order Short disorder Long disorder

Low-B-factor order 0.181 (P < 10−4) 0.142 (P < 10−4) 0.102 (P < 10−4)
High-B-factor order 0.012 (P � 0.0053) 0.051 (P < 10−4)
Short disorder 0.033 (P < 10−4)

Estimates of P-values were calculated using 50,000 bootstrap iterations. As a reference,
KL-distances between the four distributions and the uniform distribution are: 0.16 for low-
B-factor order, 0.42 for high-B-factor order, 0.40 for short disorder, and 0.32 for long disorder.

Table 2. Properties of proteins from four data sets

Segment length
(s.d.) Flexibilitya,b Hydropathyc Net charge Total charged

Low B-factor order 34.2 (35.4) 0.996 ± 0.001 −0.125 ± 0.041 −0.008 ± 0.006 0.207 ± 0.007
High B-factor order 4.3 (3.5) 1.027 ± 0.002 −1.310 ± 0.084 −0.059 ± 0.018 0.326 ± 0.016
Short disorder 4.6 (2.2) 1.024 ± 0.002 −1.175 ± 0.106 −0.038 ± 0.023 0.310 ± 0.019
Long disorder 127.8 (231.7) 1.015 ± 0.002 −0.853 ± 0.091 −0.005 ± 0.024 0.294 ± 0.017

a The per segment means and 95% confidence intervals for flexibility, hydropathy, and charge were calcu-
lated using bootstrapping. All regions of length 1, methionine at the N terminus, and His-tags were excluded
from each data set.
b Vihinen et al. (1994).
c Kyte and Doolittle (1982).
d Calculated as the fraction of charged residues in each segment.
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of the high B-values. Raw data and data normalized using a
method by Smith et al. (2003) were dichotomized into class
‘high,’ if the B-values were at least 32 Å2 (2.0), and class
‘low.’ These thresholds provided equal class ratios in both
cases. For all pairs of identical sequences selected from
Dataset-EO, we then compared the proportion of superim-
posed residues with the same class and confirmed that the
normalization process significantly improves agreement be-
tween the residues (data not shown). Because experimental
reproducibility limits our ability to predict B-factors, we
believe that the average of the agreement between class
‘high’ (65.2%) and class ‘low’ (96.8%) sets the upper limit
on predictability of the B-factor only from amino acid se-
quence to approximately 81%.

Predicting B-factor values

Despite the problems that arise from differences in crystal
environments, B-factors show correlation with amino acid
sequence, which suggests that they should be predictable
from amino acid sequence. To test this hypothesis, three
logistic regression models based on different attribute sets
were trained to discriminate between high and low B-fac-
tors. The models were systematically evaluated for various
window sizes, win and wout, and the best results were in all
cases obtained for win � 1 for structural attributes, win � 5
for nonstructural attributes, and wout � 5. The three models
are called the ‘NS predictor,’ which uses no structural in-
formation, the ‘KS predictor,’ which uses known secondary
structure, and the ‘PS predictor,’ which uses predicted sec-
ondary structure.

The NS predictor reached 64.5% accuracy
(sn � 62.8 ± 0.9, sp � 66.1 ± 0.3), the PS predictor
reached 67.0% accuracy (sn � 66.8 ± 0.9,
sp � 67.2 ± 0.4), and the KS predictor reached 67.8% ac-
curacy (sn � 65.3 ± 0.8, sp � 70.3 ± 0.3). The disparity in
confidence intervals is due to the difference in sizes be-
tween the two classes. Construction of nonlinear models
only marginally improved prediction accuracy (64.5% for
the NS, 67.2% for the PS, and 68.3% for the KS predictor).
Although the models were trained only to discriminate be-
tween high- and low-B-factor regions, we found that the

approximated probability that the residue has a high B-
factor is well correlated with the experimental B-values.
The observed correlation coefficients for the experimental
data versus the raw outputs of the NS, PS, and KS predictors
reached 0.34 ± 0.02, 0.38 ± 0.02, and 0.41 ± 0.02, respec-
tively.

The prediction accuracies and correlation coefficients of
our B-factor predictors were compared with a predictor
based only on flexibility indices by Vihinen et al. (1994),
which was previously found to outperform other similar
methods. The method of Vihinen et al. achieved 63.8%
accuracy, and the correlation coefficient with the experi-
mental data was 0.32 ± 0.02. Thus, our PS single-sequence
predictor attained an improvement of 3.4 percentage points
(5.3%) in prediction accuracy and 0.06 (19%) in correlation
coefficient compared to the values obtained by Vihinen
et al.

B-factor predictor with evolutionary modeling

It is well known that adding evolutionary information in the
form of sequence alignments leads to improved secondary
structure prediction (Benner et al. 1992; Levin et al. 1993;
Rost 2001). In recent examples of this principle, Jones
(1999) and Przybylski and Rost (2002) improved single-
sequence prediction accuracy by 2–4 percentage points. Us-
ing a similar reasoning for B-factor prediction, we con-
structed protein families using PSI-BLAST and enhanced
the performance of our models (Materials and Methods).
The average improvement of the prediction results was 2.0
percentage points for the NS predictor and 2.5 percentage
points for the PS predictor. Thus, the overall prediction
accuracy reached 69.7%. We note that the higher the num-
ber of available homologs, the higher the prediction accu-
racy. For example, in the case in which 30 or more nonre-
dundant homologs can be found, the average prediction ac-
curacy reaches 70.8%. In terms of average correlation
coefficients, PSI-BLAST-enhanced NS and PS predictors
reached 0.36 ± 0.02 and 0.43 ± 0.02, respectively. Thus, the
overall improvement over the predictor based only on flex-
ibility indices by Vihinen et al. reached 5.9 percentage
points (9.2%) in prediction accuracy and 0.11 (34.4%) in

Table 3. Relationship between B-factors of highly similar sequences as a function
of sequence identity and space groups

Sequence identity (si)

Correlation coefficientsa

All pairs Same space group Different space group

si ∈ [70, 90] % 0.59 ± 0.07; 0.56; 23 0.63 ± 0.09; 0.65; 10 0.59 ± 0.06; 0.56; 21
si ∈ [90, 100] % 0.76 ± 0.04; 0.81; 122 0.82 ± 0.03; 0.88; 93 0.61 ± 0.04; 0.61; 66
si � 100% 0.79 ± 0.02; 0.86; 290 0.81 ± 0.02; 0.86; 286 0.63 ± 0.05; 0.66; 50

a Average correlation coefficient ± 95% confidence intervals; median; average number of pairs.

Protein flexibility and intrinsic disorder

www.proteinscience.org 75



correlation coefficient. The quality of our predictions can be
verified from the figure presented in the Supplemental Ma-
terial.

Predictor-based analysis of the ordered
and disordered data

To further explore the relationship between the ordered and
disordered data sets that was suggested by the amino-acid
frequency data, we used two predictors of intrinsic disorder:
(1) a previously constructed predictor of long disordered
regions, VL2 (Vucetic et al. 2003) and (2) a logistic-regres-
sion-based predictor developed here to discriminate be-
tween short disordered regions and ordered regions. The
short disorder predictor, named XS1 according to our con-
ventions (Obradovic et al. 2003), was developed from
Dataset-SD and used the same set of attributes as our PS
high-B-factor predictor. The maximum performance of
80.6% was obtained using win � 9 and wout � 7; the struc-
tural attributes were averaged in a window of 5.

The high-B-factor predictor, short disorder predictor, and
long disorder predictor were all applied to three data sets
(Dataset-O, Dataset-SD, and Dataset-LD) and the prediction
results are shown in Table 4. This experiment confirmed
that high-B-factors and short disorder are the most similar
phenomena among the three data sets. On the other hand,
VL2 performance on both B-factor and short disorder data
sets was weak, in part caused by longer averaging
(win � wout � 41). Correlation coefficients between pre-
dictor outputs were: 0.26 ± 0.02 between VL2 and the high-
B-factor predictor, 0.31 ± 0.02 between VL2 and the short
disorder predictor, and 0.88 ± 0.02 between high-B-factor
and the short disorder predictor.

Discussion

Properties of flexibility data

Comparing the B-factor values from highly similar pairs of
crystallized chains provides evidence that flexibility is en-

coded at the amino-acid sequence level to a significant de-
gree and therefore should be predictable, at some level,
from the amino acid sequence (Table 3). However, because
of variations that result from experimental conditions, crys-
tal contacts, or refinement procedures, the B-factor data are
noisy.

Crystal packing effects can be viewed as a special case of
nonlocal interactions. Given the dependence of the B-factor
on packing density (Halle 2002) and hence on nonlocal
interactions, crystal packing would be expected to exert
large effects on B-factor values. In agreement with this,
previous comparisons indicated that different crystal forms
of myohemerythrin (Sheriff et al. 1985) and myoglobin
(Phillips Jr. 1990) exhibited rather low correlations in their
B-values, with further confirmation on additional protein
pairs (Kundu et al. 2002). Our comparisons of many similar
and identical proteins in the same and different space groups
show that crystal packing effects generally perturb B-factor
values, and the effects can be very significant (Table 3).
Overall, the B-factor perturbations arising from crystal
packing effects are probably the largest source of noise in
the B-factor data.

Prediction accuracy

Prediction of B-factors cannot exceed the accuracy with
which B-factors can be experimentally reproduced; thus, the
noise in the B-factor data sets an upper limit to prediction of
flexibility. To estimate this upper limit, we collected pairs
of B-factor sets from identical proteins and subjected the
data to the same analysis used to compare the predicted and
observed B-factor values. The results suggest that the upper
limit on prediction accuracy is approximately 81%. In terms
of the agreement between raw predictions and experimental
values, the upper limit on the correlation coefficient is about
0.8 (Table 3). From this perspective, our achievement of
about 70% accuracy and a correlation coefficient of 0.43
seems quite reasonable.

Our predictor of high B-factors joins many other machine
learning tools that attempt to predict protein features from

Table 4. Prediction accuracies ±95% confidence intervals for the PS B-factor predictor, PS predictor of short disorder, and VL2
long disorder predictor on three data sets

Prediction accuracy [%]

Data set-O Data set-SD Data set-LD

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

B-factor predictor 65.1 ± 2.3 68.7 ± 1.0 66.9 67.4 ± 2.2 85.2 ± 0.7 76.3 59.6 ± 3.4 64.9 ± 1.0 62.3
Short disorder predictor 41.6 ± 2.4 83.8 ± 0.9 62.7 78.1 ± 2.8 83.0 ± 0.6 80.6 51.5 ± 4.0 80.3 ± 1.1 65.9
Long disorder predictor 17.7 ± 3.0 87.2 ± 2.2 52.6 33.6 ± 3.8 82.2 ± 1.8 57.9 76.2 ± 5.0 83.8 ± 2.4 80.0

All accuracies were estimated on a per protein basis; i.e., sensitivity and specificity were calculated for all proteins and then averaged. Prediction accuracy
was obtained as an average of estimated sensitivity and specificity.
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amino acid sequence (Lund et al. 1997; Blom et al. 1999;
Jones 1999; Pollastri et al. 2002; Obradovic et al. 2003). Its
prediction accuracy is comparable to the 64%–77% accu-
racies for coordination number, two-class interresidue dis-
tances, or relative solvent accessibility, and lower than the
75%–80% prediction accuracy of secondary structure or
long regions of intrinsic disorder. Because flexible ordered
and short disordered protein regions are frequently involved
in important biological functions and they were not previ-
ously predictable from the sequence using our old predic-
tors, we expect this B-factor predictor to be an advanced
practical tool to aid in the automated discovery of short
molecular recognition regions and possibly even the active
sites. Moreover, the raw outputs of this predictor can be
utilized in semi-automated detection of flexible ordered re-
gions (see Supplemental Material). The correlation of the
high-B-factor regions with short disordered regions may
prove important in high-throughput genomewide character-
ization of novel proteins with unknown structure and func-
tion.

The improvement in B-factor prediction from adding ei-
ther known (KS predictor) or predicted (PS predictor) sec-
ondary structure is small but significant. This improvement
is related to the differences in average flexibility observed
over the three structural categories (data not shown). Addi-
tion of evolutionary information obtained by PSI-BLAST
alignments improves prediction of B-factors, for both the
NS and PS predictors. The improvement of about three
percentage points matches the increase in secondary struc-
ture prediction (Przybylski and Rost 2002). The fact that the
evolutionary information improved prediction results and
that the PSI-BLAST-enhanced PS predictor outperformed
the KS predictor is further support for the predictability of
B-factor values from amino acid sequence.

In terms of correlation coefficients, results achieved in
this study exceed those obtained with other methods from
the literature. Predictors by Karplus and Schulz (1985), Vi-
hinen et al. (1994), and Smith et al. (2003) reach correlation
coefficients between 0.30 and 0.33, and some earlier meth-
ods (Bhaskaran and Ponnuswamy 1988; Ragone et al. 1989)
cannot surpass 0.3. On the other hand, our PS predictor
reached 0.38 without the presence of evolutionary informa-
tion, and, on average, homologous sequences boost the cor-
relation coefficient to 0.43. However, the gap of 0.23 be-
tween sequence-based methods and the 0.66 found using the
methods of Kundu et al. (2002), which includes known
atom coordinates, is still significant.

The gap between sequence-based approaches and ap-
proaches based on atomic coordinates is likely to be further
decreased in the future. An immediate route is noise reduc-
tion, which can be effectively achieved by determining resi-
dues that are involved in crystal contacts and excluding
them from model training. We believe that the improvement
similar to that in methods based on atomic coordinates can

result (Kundu et al. 2002). Additionally, due to the imbal-
ance between sizes of low- versus high-B-factor classes, our
model was constructed using balanced data that, in turn,
lead to a significant overprediction of the high B-factors. In
our future research, we will study ways to detect locally
flexible regions based on their local and nonlocal neighbor-
hoods and thus reduce the number of false positives output-
ted by our model.

Comparing compositions of high-B-factor ordered
and intrinsically disordered proteins

Our original hypothesis was that amino acid composition
determines whether a protein folds into specific 3-D struc-
ture or not. Although early indications of this idea were
developed from structural studies on protein sequences
(Williams 1978), we missed this original work and devel-
oped our version of this hypothesis from prior studies of
lattice models of protein structure by Shakhnovich and Gu-
tin (1993). In those lattice studies, the determination
whether a lattice-model protein folds or not depended on the
polar/nonpolar ratio, which corresponds to the amino acid
composition in real proteins. Given a folding polar/nonpolar
ratio (composition), the detailed arrangement of the amino
acids indicated which fold was stabilized. Here we suggest
that, not only foldability, but also flexibility is determined,
to a significant degree, by the amino acid composition.

Comparison of the amino acid compositions of experi-
mentally characterized regions of protein disorder with re-
gions of order (Romero et al. 2001) showed that disordered
proteins generally have more of the flexible amino acids as
defined by the scale of Vihinen et al. (1994), suggesting that
disordered regions and high-B-factor regions might be quite
similar to each other. Furthermore, Romero et al. (1997)
also indicated that disordered regions of different lengths
might have different amino acid compositions, but the origi-
nal data sets were quite small. Here, comparisons of the
amino acid compositions of low- and high-B-factor regions
and short and long disordered regions indicate that all four
categories are distinct (Fig. 1; Tables 1,2). Although the
compositional distinctions among the high-B-factor order,
short disorder, and long disorder sets might change as more
data are added, we expect the overall trends indicated in
Tables 1 and 2 to be maintained. This expectation is based
on the observation that the current data sets are large enough
already to show statistically significant distinctions.

Just as amino acid compositions vary for different types
of secondary structure (Nakashima et al. 1986; Liu and
Chou 1999; Cai et al. 2002), compositional differences
might distinguish different types of intrinsic disorder or dif-
ferent types of flexible regions. For example, regions of
extended disorder might be expected to be more hydrophilic
than either regions of collapsed disorder or regions corre-
sponding to the premolten-globule, if indeed this form is
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distinctive (Uversky 2002a). Also, there could be composi-
tional biases in subsets of intrinsically disordered proteins
that correlate with function such as enrichments in lysine
and arginine for nucleic acid binding regions. Indeed, re-
cently published work provides some support for this con-
jecture (Vucetic et al. 2003).

Previously we found significant amino-acid composi-
tional differences between ordered protein and long regions
of intrinsic disorder. If structure–sequence relationships ex-
isted on a continuum, then one would expect to observe
monotonic increases or decreases in the various amino acid
compositions as the set of interest is changed from low-B-
factor regions, to high-B-factor regions, to short disordered
regions and to long disordered regions. However, almost
none of the amino acids exhibit monotonic changes in the
order indicated. Even the global averages of Table 2 do not
exhibit monotonic changes across the different flexibility/
disorder classes in the order indicated. Thus, the amino acid
compositions that specify flexibility and intrinsic disorder
are evidently distinct and not merely quantitative differ-
ences on a continuum.

Materials and methods

Data sets

The first set of protein chains, Dataset-O, consists of 290 nonre-
dundant sequences from the PDB (Berman et al. 2000) selected in
the study of Smith et al. (2003). All crystallized chains, consisting
of at least 80 amino acids, were required to have a resolution of
� 2 Å, and an R-factor � 20%. Sequence identity within the set
was limited to 25%, and only chains without nonstandard residues
and missing backbone or side chain atoms were chosen, making a
database of 67,552 residues in total.

The second set of protein chains, Dataset-EO, contains 1287
sequences from the PDB divided into 195 disjoint clusters of simi-
lar sequences. For each chain in a cluster there is at least one other
chain with � 50% sequence identity. Minimum and maximum
cluster sizes are 2 and 205, and the total number of residues is
238,133. All proteins in the data set were required to have at least
50 residues and a resolution of � 2 Å.

The third data set, Dataset-SD, was extracted from the PDB and
contains nonredundant chains with stretches of missing coordi-
nates no longer than 10 consecutive residues. The length limitation
of 10 residues was chosen in order to make the average segment
length and standard deviation comparable to the high-B-factor re-
gions from Dataset-O. All chains from Dataset-SD were required
to be at least 80 residues in length, and the maximum sequence
identity between any two chains was limited to 25%. Dataset-SD
contains 511 sequences with 3216 disordered residues in short
stretches out of 174,301 total residues.

All data sets are publicly available at our Web site: http://www.
ist.temple.edu.

Data representation and types of predictors

To construct a predictor, a machine-learning example (data point)
was constructed for each residue where the corresponding C-�

atom B-factor was quantized into classes high and low, according
to a threshold, and included as a binary target designation. To
compensate for the large variability of averages over proteins, C-�
B-factors were normalized using the method of Smith et al. (2003)
prior to quantization.

An attribute vector for each position in a protein was con-
structed considering neighboring amino acids within a symmetric
input window of size win. The window was centered at a given
position except near the N and C termini, where the window was
allowed to expand and collapse, respectively, and where the win-
dow was no longer centered as described in more detail previously
(Vucetic et al. 2003). The first 21 attributes were the 20 relative
frequencies of each amino acid within win and K2 entropy, a mea-
sure of sequence complexity (Wootton and Federhen 1996). The
last set of attributes used in the present study exploits secondary
structure information. Because each residue may belong to struc-
ture forms �-helix, �-sheet, and coil, we included three structural
attributes, constructed in the same way as compositional attributes.
The NMR- or X-ray-determined structures of a query sequence
were used for the KS predictor (known structure), the first of the
three models built in this work. For proteins whose structure was
unknown, the raw PHD secondary structure predictions (Rost et al.
1997) on the query amino acid sequence were used. We refer to the
predictor using PHD scores as the PS predictor (predicted struc-
ture). Finally, the NS predictor (no structure), which does not
exploit secondary structure information, was used for comparison
purposes. It is possible to optimize the size of the input window for
each attribute; however, due to the high computational require-
ments, the window size for the structural attributes was optimized
separately from the remaining attributes.

After predictions were made for each residue in a protein, the
raw outputs were smoothed using a moving average postfiltering.
The size of the smoothing (output) window wout was also subject
to optimization.

Model choice, training, and evaluation criteria

We use logistic regression for linear modeling and bagged neural
networks (Breiman 1996) for nonlinear modeling. To train a pre-
dictor we applied the following procedure: The original set of 290
proteins was first randomly split into training and testing sets in the
ratio 75% : 25%. From the set of training proteins we constructed
examples for all available residues and then fed them to the model,
which learned from a class-balanced data set. After the model was
trained, we evaluated its performance on all examples from the test
set. The whole process of splitting, training, and testing was re-
peated 30 times in all experiments.

To evaluate the performance of the predictors, we measured
sensitivity (sn) and specificity (sp) for a given set of parameters.
Sensitivity is defined as the percentage of high B-factors correctly
predicted, and specificity is the percentage of low B-factors cor-
rectly predicted (Hastie et al. 2001). This type of model evaluation
is commonly used in cases of class imbalance (Kubat et al. 1998).
Assuming the class sizes are equal, the accuracy of prediction
(acc) is expressed as the arithmetic mean of sensitivity and speci-
ficity. Therefore, random predictors or models that always output
only one class will have an accuracy of 50%. Together with sen-
sitivity and specificity, we also report their 95% confidence inter-
vals calculated as ±2 � s/ √ n, where s is the standard deviation of the
estimate (sn or sp) and n is the number of experimental repetitions.

Prediction averaging over evolutionary data

Families of homologous proteins were built using PSI-BLAST
queries of GenBank (Benson et al. 1999). The conditions for the
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PSI-BLAST queries included using the blosum62 scoring matrix
(Henikoff and Henikoff 1992) with 11/1 gap penalties and E-
values of 0.0002 to include a sequence in a profile and of 0.01 to
accept it as a family member. The maximum number of iterations
was limited to three in order to constrain the influence of potential
false positives. Construction of profiles usually incorporates some
form of weight assignment in order to avoid the influence of very
similar hits, but also sequences from the “twilight zone.” As noted
in the study of Altschul et al. (1997), several intuitive weighting
schemes usually yield similar results. Based on these previous
studies, the following simple scheme was devised: All sequences
with sequence identity above 70% or below 30% in the region of
the local alignment to the query sequence were discarded from the
family. Additionally, no pair of homologs within a family was
allowed to exceed the 70% sequence identity threshold. Pairwise
sequence alignments were performed using the Smith-Waterman
algorithm (Smith and Waterman 1981) with the blosum62 scoring
matrix and 11/1 gap penalties. The remaining sequences in each
family were all assigned equal weights, and prediction of the B-
factor for the query sequence at position i was formed as an av-
erage over all proteins in a family that do not have a gap at that
position.
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