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ABSTRACT
Motivation: Computational approaches to protein function
prediction infer protein function by finding proteins with simi-
lar sequence, structure, surface clefts, chemical properties,
amino acid motifs, interaction partners or phylogenetic profiles.
We present a new approach that combines sequential, structu-
ral and chemical information into one graph model of proteins.
We predict functional class membership of enzymes and non-
enzymes using graph kernels and Support Vector Machine
classification on these protein graphs.
Results: Our graph model, derivable from protein sequence
and structure only, is competitive with vector models that
require additional protein information such as the size of sur-
face pockets. If we include this extra information into our graph
model, our classifier yields significantly higher accuracy levels
than the vector models. Hyperkernels allow us to select and
to optimally combine the most relevant node attributes in our
protein graphs. We have laid the foundation for a protein func-
tion prediction system that integrates protein information from
various sources efficiently and effectively.
Availability: More information available via
www.dbs.ifi.lmu.de/Mitarbeiter/borgwardt.html.
Contact: borgwardt@dbs.ifi.lmu.de

1 INTRODUCTION
Understanding the molecular mechanisms of life requires to
decode the functions of proteins in an organism. Tens of thou-
sands of proteins have been sequenced over recent years, and
the structures of thousands of proteins have been resolved so
far (Berman et al., 2000). Still, the experimental determination
of the function of a protein with known sequence and structure
remains a difficult, time- and cost-intensive task. Computa-
tional approaches to correct protein function prediction would
allow to determine the function of whole proteomes faster and
more cheaply.

Simulating the molecular and atomic mechanisms that
define the function of a protein is beyond the current know-
ledge of biochemistry and the capacity of available compu-
tational power. Similarity search among proteins with known

function is consequently the basis of current function predic-
tion (Whisstock and Lesk, 2003). A newly discovered protein
is predicted to exert the same function as the most similar pro-
teins in a database of known proteins. This similarity among
proteins can be defined in a multitude of ways: two proteins
can be regarded to be similar, if their sequences align well (e.g.
PSI-BLAST (Altschul et al., 1997)), if their structures match
well (e.g. DALI (Holm and Sander, 1996)), if both have com-
mon surface clefts or bindings sites (e.g. CASTp (Binkowski
et al., 2003)), similar chemical features, or common interac-
tion partners (e.g. DIP (Xenarios et al., 2002)), if both contain
certain motifs of amino acids (e.g. Evolutionary Trace (Yao
et al., 2003)), or if both appear in the same range of spe-
cies (e.g. Pellegrini et al. (1999)). An armada of protein
function prediction systems that measure protein similarity
by one of the conditions above has been developed. Each of
these conditions is based on a biological hypothesis; for exam-
ple, structural similarity implies that two proteins could share
a common ancestor and that they both could perform the same
function as this common ancestor (Bartlett et al., 2003).

These assumptions are not universally valid. Hegyi and Ger-
stein (1999) showed that proteins with similar function may
have dissimilar structures and proteins with similar structu-
res may exert distinct functions. Furthermore, a single amino
acid mutation can alter the function of a protein and make a
pair of structurally closely related proteins functionally dif-
ferent (Wilks et al., 1988). Exceptions are also numerous if
similarity is measured by means other than structure (Whis-
stock and Lesk, 2003). Due to these exceptions, none of the
existing function prediction systems can guarantee generally
good accuracy.

The remedy is to integrate different protein data sources,
i.e. to combine several similarity measures, based on several
different data types. If two proteins are similar on more than
one scale, then the prediction of their function will be more
reliable. In this article, we present how to reach this data inte-
gration via two routes: We design a graph model for proteins
that can represent several types of information and we define
and employ similarity measures for combining several sources
of protein data, namely graph kernels and hyperkernels.
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1.1 Kernel Methods and Support Vector Machines
Kernel methods are a popular method for machine lear-
ning (Schölkopf and Smola, 2002). This paper uses kernel
methods, specifically Support Vector Machines (SVMs), to
perform protein function prediction. We denote byX the space
of input data (the proteins) and by Y the space of labels (their
function). Denote by X := {x1, . . . , xm} the training data
and by Y := {y1, . . . , ym} a set of corresponding labels,
jointly drawn independently and identically from some pro-
bability distribution P(x, y) on X × Y . For a new example
x ∈ X , the problem is to predict the label y using our prior
knowledge of the problem and the training examples. Observe
that we do not know P(x, y), and hence the algorithm has to
perform predictions based on the information provided by the
training data.

Kernel methods have been highly successful in solving
various problems in machine learning. The algorithms work
by implicitly mapping the inputs into a feature space and fin-
ding a suitable hypothesis in this new space. The feature map
φ(·) in question is defined by a kernel function k, which allows
us to compute dot products in feature space using only objects
in the input space, that is k(xi, xj) := 〈φ(xi), φ(xj)〉. The
kernel function must be positive definite for the SVM. Examp-
les of positive definite kernels are the Dirac, Gaussian and
Brownian bridge kernel (Schölkopf and Smola, 2002).

SVMs are based on finding a good linear hypothesis in this
feature space (Cortes and Vapnik, 1995). More specifically,
this solution is the hyperplane which maximizes the margin in
feature space, thereby aiming at separating different classes
of input data points in feature space. The margin is the maxi-
mal distance between a training example in feature space and
the separating hyperplane. The C-SVM we use in this paper
maximizes the “soft margin”, where instead of disallowing
training points from being misclassified, we penalize misclas-
sification using a linear cost. Figure 1 shows a toy example
where the soft margin SVM was used for classification. SVMs
are an example of a convex optimization problem (Boyd and
Vandenberghe, 2004). Efficient algorithms exist for solving
convex problems, which means that large scale problems can
be solved.

1.2 Support Vector Machines in Biology
Applications of SVM classification in molecular biology are
numerous and the importance of kernel methods for bio-
informatics is steadily growing (Schölkopf et al., 2004).
Classifying proteins into their functional class has emerged
as one major field of research in this context. Cai et al. (2004,
2003) use SVMs to classify protein sequences into enzyme
classes. Dobson and Doig (2003) employ SVMs to distin-
guish enzymes from non-enzymes among protein structures.
Both approaches represent proteins as vectors describing phy-
sical, chemical and structural features of protein sequence
and protein structure, respectively; Dobson and Doig (2003)
additionally include information about known interaction

Fig. 1. The C-SVM maximizes the margin between the training
examples and the hyperplane. The solid line denotes the separa-
ting hyperplane and the dashed line denotes the margin. Plus (+) and
circle (o) data points represent two distinct classes of input data.

molecules, surface properties and disulphide bonds into their
feature vectors. Both then perform SVM classification on
these feature vectors to predict protein function.

Despite the success of SVMs in biology, their application
is almost always connected with a transformation of structu-
red biological data into a simplified feature vector description.
As a result, even a complex protein structure is represented
by vector components that summarize detailed information
into one simplified total value. To avoid this loss of informa-
tion, GRATH (Harrison et al., 2002) and SSM (Krissinel and
Henrick, 2003) represent protein structures as graphs of secon-
dary structure elements and then perform graph-matching
algorithms to measure structural similarity. Our target was
therefore to design a kernel function for a graph model of
proteins that still allows us to perform SVM classification.

In short, in our project we aimed at the following goals: to
model proteins using graphs, which is the most adequate data
structure, to include sequence and chemical information into
the model, and to classify proteins -based on this model- into
their correct functional class.

2 APPROACH
In this section, we design a graph model for proteins, in which
nodes and edges of the graph contain information about the
secondary structure of the protein. We modify a graph kernel
to define a special random walk graph kernel for proteins.
In addition, we review the method of hyperkernels which we
will later apply to select relevant node attributes in our protein
graph model.

2.1 Protein Graph Model
A graph G consists of a set of nodes (or vertices) V and edges
E. An attributed graph is a graph with labels on nodes and/or
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edges; we refer to labels as attributes. In our case, attributes
will consist of pairs of the form (attribute-name, value).

The adjacency matrix A of G is defined as

[A]ij =
{

1 if (vi, vj) ∈ E,
0 otherwise ,

where vi and vj are nodes in G. A walk of length k − 1 in a
graph is a sequence of nodes v1, v2, · · · , vk where
(vi−1, vi) ∈ E for 1 < i ≤ k.

Graph Structure of Proteins We design our graph models to
contain information about structure, sequence and chemical
properties of a protein. For this purpose, we model proteins
as attributed and undirected graphs. Each graph represents
exactly one protein. Nodes in our graph represent secon-
dary structure elements (SSEs) within the protein structure,
i.e. helices, sheets and turns. Edges connect nodes if those
are neighbors along the amino acid sequence or if they are
neighbors in space within the protein structure. Every node is
connected to its three nearest spatial neighbors.

Nodes bear a type label, stating whether they represent a
helix, sheet or turn, and physical and chemical information,
namely the hydrophobicity, the van der Waals volume, the
polarity and polarizability of the SSE represented by this node.
One total normalized van der Waals value is determined for
each node individually. Additionally, each node is labeled
with the total number of its residues with low, medium or high
normalized van der Waals volume separately; we will refer to
this as the 3 bin distribution. Analogously, one total value and
the 3 bin distribution is added to every node for hydropho-
bicity, polarity and polarizability. The length of each SSE in
amino acids (AAs) and the distance between the Cα atom of
its first and last residue in Ångstroms (Å) constitute further
node attributes, called AA length and 3d length, respectively.

Every edge is labeled with its type, i.e. structural or sequen-
tial. Sequential edges are labeled with their length in AAs and
structural edges with their length in Å. The length of a struc-
tural edge between two SSEs is calculated to be the distance
between their centers, where the center of an SSE is the mid-
point of the line between the Cα atom of its first and the Cα

atom of its last residue.

Graph Generation We generate our protein graphs from pro-
tein files of the Protein Data Bank (PDB) (Berman et al., 2000)
(see Figure 2), except for the chemical and physical node attri-
butes. We assign these to SSEs using amino acid indices from
the Amino Acid Index Database (Kawashima et al., 1999), i.e.
tables with one value for each amino acid characterizing a che-
mical or physical feature of this AA. Normalized Amino Acid
indices for hydrophobicity (Cid et al., 1992), van der Waals
volume (Fauchere et al., 1988), polarity (Grantham, 1974),
and polarizability (Charton and Charton, 1982) are applied to
the sequence of each SSE node to derive one total value and
one 3 bin distribution each.

Fig. 2. Schematic illustration of graph generation from PDB protein
file (Berman et al., 2000) (circles = secondary structure elements,
thin dashed lines = sequential edges, thick solid lines = structural
edges).

2.2 Random Walk Graph Kernel
Using the attributed graphs model of proteins as defined in the
previous section, we define a kernel that measures the simi-
larity between two protein graphs. We tested several graph
kernels, of which a graph kernel based on random walks tur-
ned out to be most successful. For the sake of brevity, we
present this kernel and its best parameterization only; a tech-
nical report on the accompanying homepage describes two
other protein kernels.

Random walk kernels were proposed by Kondor and Laf-
ferty (2002), Cortes et al. (2003), Gärtner et al. (2003) and
Kashima et al. (2003). Given two labeled graphs G1 and G2,
a random walk kernel counts the number of matching labeled
random walks. The match between two nodes or two edges is
determined by comparing their attribute values. The measure
of similarity between two random walks is then the product
of the kernel values corresponding to the nodes and edges
encountered along the walk. The kernel value of two graphs
is then the sum over the kernel values of all pairs of walks
within these two graphs:

kgraph(G1, G2) =
∑

walk1∈G1

∑
walk2∈G2

kwalk(walk1, walk2).

An elegant approach by Gärtner et al. (2003) for calcula-
ting all random walks within two graphs uses direct product
graphs:

Definition 1 (Direct Product Graph). The direct product
graph of two graphs G1 = (V,E) and G2 = (W,F ) shall
be denoted by G1 × G2. The node and edge set of the direct
product graph are respectively defined as:

V×(G1 ×G2) = {(v1, w1) ∈ V ×W :
(label(v1) = label(w1))}

E×(G1 ×G2) = {((v1, w1), (v2, w2)) ∈ V 2(G1 ×G2) :
(v1, v2) ∈ E ∧ (w1, w2) ∈ F
∧(label(v1, v2) = label(w1, w2))}

Based on this direct product graph, the random walk kernel
is defined as
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Definition 2 (Random Walk Kernel). Let G1, G2 be two
graphs, let A× denote the adjacency matrix of their direct
product A× = A(G1 ×G2), and let V× denote the node set
of their direct product. With a weighting factor λ ≥ 0 the
random walk graph kernel is defined as

k×(G1, G2) =
V×∑

i,j=1

[
∞∑

n=0

λnAn
×]ij .

Nodes and edges in graph G1 × G2 have the same labels
as the corresponding nodes and edges in G1 and G2. Random
walks of length n are weighted by λn in the sum over all walks.
Hence λ must be chosen carefully for the sum to converge. In
this paper, to simplify the approach, we calculate the random
walk kernel for walks up to a predetermined length only.

2.3 Protein Graph Kernel
The graph kernel defined in the previous section is designed
for discrete attributes: Attributes of two nodes v1 and w1 are
considered similar if they are completely identical, i.e. they
are compared via a Dirac kernel. The nodes in our protein
graphs contain continuous attributes which are almost never
completely identical between two nodes. For that reason, we
replaced the Dirac kernel by more complex kernels which
reflect biological knowledge about protein structure. In the
following, we will define a modified random walk kernel that
measures similarity between protein graphs.

Definition 3 (Modified Random Walk Kernel). Let G1 =
(V,E) and G2 = (W,F ) be graphs as above. Consider two
walks, walk1 = (v1, v2, ..., vn−1, vn) in G1 and walk2 =
(w1, w2, ..., wn−1, wn) in G2 where vi ∈ V , wi ∈ W for
i ∈ {1, . . . , n} and (vi, vi+1) ∈ E, (wi, wi+1) ∈ F for
i ∈ {1, . . . , n− 1}. The walk kernel will now be defined as

kwalk(walk1, walk2) =
∏n−1

i=1 kstep((vi, vi+1), (wi, wi+1))

As above, the modified random walk graph kernel is then the
sum over all kernels on pairs of walks in two input graphs. It
can be computed as in Definition 2 if we modify the definition
of the adjacency matrix of the direct product graph such that

[A×]((vi,wi),(vj ,wj)) =

 kstep((vi, vj), (wi, wj))
if ((vi, vj), (wi, wj)) ∈ E×,

0 otherwise

with E× = E×(G1×G2) and (vi, vj) ∈ E and (wi, wj) ∈ F .

We define the kernel for each step in the random walk in
terms of the original node, the destination node, and the edge
between them.

Definition 4 (Step Kernel). For i ∈ {1, .., n − 1}, the step
kernel is defined as

kstep((vi, vi+1), (wi, wi+1)) =
knode(vi, wi) ∗ knode(vi+1, wi+1)
∗kedge((vi, vi+1), (wi, wi+1)),

where kedge is defined as

kedge((vi, vi+1), (wi, wi+1)) =
ktype((vi, vi+1), (wi, wi+1))
∗klength((vi, vi+1), (wi, wi+1))

and for i ∈ {1, .., n}, knode is defined as

knode(vi, wi) = ktype(vi, wi)
∗knode labels(vi, wi) ∗ klength(vi, wi).

The matching between nodes and edges is therefore defined
via three basic types of kernels: type kernels, length kernels
and node labels kernels, which we explain and define in the
following.

Type Kernel Identical motifs of SSEs both within protein
structure and along the amino acid chain are strong hints at
structural and functional relationship; most databases group
proteins into structural and functional families by secondary
structure content analysis (SCOP (Andreeva et al., 2004),
CATH (Orengo et al., 2003)). Hence we introduce a type ker-
nel that makes sure that a step in a random walk in two input
graphs can only be performed if both edges are of the same
type, i.e. both sequential or both structural, and both origin
nodes and both target nodes are of the same type, i.e. helix,
sheet or turn.

Definition 5 (Type Kernel). ktype is defined identically for
both nodes and edges x and x′:

ktype(x, x′) =
{

1 if type(x) = type(x′),
0 otherwise

Length Kernel Length kernels ensure that we do not count
SSEs or edges as being similar that differ a lot in size. Insertion
and deletion of amino acid residues might change the length
of SSEs or their distance towards each other, while the overall
fold and function of the protein remains unchanged. For this
reason, we employed the Brownian bridge kernel, that assigns
the highest kernel value to SSEs and edges that are identical
in length and assigns zero to all SSEs and edges that differ in
length more than by a constant c. This maximum difference
constant c was set to 2 AA for sequential edges, to 2 Å for
structural edges and to 3 Å for SSE nodes.

Definition 6 (Length Kernel). klength is defined identically
for both nodes and edges x and x′, except for the value of c:

klength(x, x′) = max(0, c− |length(x)− length(x′)|).

Node Labels Kernel We compare the physico-chemical fea-
tures of two secondary structure elements via a node labels
kernel. We chose this kernel to be Gaussian, since these have
shown the best performance in related studies (Cai et al.,
2004); σ was set to 13 by cross-validation.
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Definition 7 (Node Labels Kernel). The node labels kernel
knode labels is a Gaussian kernel over two vectors representing
the values of all labels of node x and node x′:

knode labels(x, x′) = exp
(
−‖labels(x)− labels(x′)‖2

2σ2

)
.

It is essential to show that this modified graph kernel is still
a valid positive definite kernel.

Lemma 8. The modified random walk graph kernel is
positive definite.

Proof. The type kernel is a Dirac kernel, the length ker-
nel a Brownian bridge kernel and the node labels kernel
a Gaussian kernel; these kernels are known to be positive
definite (Schölkopf and Smola, 2002). Since pointwise mul-
tiplication preserves positive definiteness, node kernel, edge
kernel and step kernel are consequently positive definite.

We can now define a positive definite kernel on walks,
k̄

(j)
walk, which is identical to our walk kernel kwalk for pairs

of walks of length j and zero otherwise (Kashima et al.,
2003). k̄

(j)
walk is a tensor product of step kernels (Schölkopf

and Smola, 2002) for walks of length j which is zero-extended
to the whole set of pairs of walks; hence it is positive defi-
nite (Haussler, 1999). kwalk as the sum over all k̄

(j)
walk is

therefore a valid kernel.
The positive definiteness of the modified random walk ker-

nel follows directly from its definition as a convolution kernel,
proven to be positive definite by Haussler (1999). �

Computing a kernel matrix entry for our protein graph ker-
nel may seem expensive, as kernel functions on all nodes and
edges have to be evaluated. The high selectiveness of length
and type kernel, however, which set many step kernel values to
zero, can be exploited to reduce computational costs, thereby
enhancing speed and scalability. Computation of the graph
kernel matrix scales linearly with the number of its entries.
For efficient and scalable SVM training, one can use low rank
representations (Fine and Scheinberg, 2001).

2.4 Hyperkernels for Choice of Best Kernel
Our protein random walk graph kernel consists of a combina-
tion of a multitude of kernels on a multitude of graph attributes.
We are interested in how to optimally combine these kernels
on graph attributes as choosing a suitable graph kernel func-
tion is imperative to the success of our classifier and function
prediction system. Lanckriet et al. (2004) showed that kernel
learning can be used to combine different data sources for
protein function prediction in yeast to yield a joint kernel that
performs better than any kernel on a single type of data. One
systematic technique which can assist in learning kernels are
hyperkernels (Ong et al., 2003; Ong and Smola, 2003), which
use the idea of defining a kernel on the space of kernels itself.
We ‘learn’ this kernel by defining a quantity analogous to the
risk functional, called the quality functional, which measures

the ‘badness’ of the kernel function. The purpose of this func-
tional is to indicate the quality of a given kernel for explaining
the training data at hand. Given a set of input data and their
associated labels, and a class of kernels K, we would like to
select the best kernel k ∈ K for the problem. However, if
provided with a sufficiently rich class of kernels K, it is in
general possible to find a kernel that overfits the data. The-
refore, we would like to control the complexity of the kernel
function. We achieve this by using the kernel trick again on
the space of kernels. This so called hyperkernel k defines an
associated hyper Reproducing Kernel Hilbert Space (hyper-
RKHS) H. This allows for simple optimization algorithms
which consider kernels k in the hyper-RKHS H, which are in
the convex cone of k. Analogous to the regularized risk func-
tional, Rreg(f,X, Y ) = 1

m

∑m
i=1 l(xi, yi, f(xi)) + λ

2 ‖f‖
2,

we regularize the empirical quality functional Qemp(k, X, Y ).

Definition 9 (Regularized Quality Functional).

Qreg(k, X, Y ) := Qemp(k, X, Y ) +
λQ

2
‖k‖2

H (1)

where λQ > 0 is a regularization constant and ‖k‖2
H denotes

the RKHS norm in H.

Minimization of Qreg is less prone to overfitting than
minimizing Qemp, since the regularizer λQ

2 ‖k‖2
H effectively

controls the complexity of the class of kernels under conside-
ration. The minimizer of Equation (1) satisfies the representer
theorem:

Theorem 10 (Representer Theorem). Denote by X a set,
and by Q an arbitrary quality functional. Then each minimi-
zer k ∈ H of the regularized quality functional 1, admits a
representation of the form

k(x, x′) =
m∑

i,j=1

βi,jk((xi, xj), (x, x′)). (2)

This shows that even though we are optimizing over a whole
Hilbert space of kernels, we still are able to find the optimal
solution by choosing among a finite number, which is the span
of the kernel on the data.

We use Semidefinite Programming (SDP) formulations of
the optimization problems arising from the minimization of
the regularized quality functional (Ong and Smola, 2003).
Semidefinite programming is the optimization of a linear
objective function subject to constraints which are linear
matrix inequalities and affine equalities.

In this section, we define the following notation. For
p, q, r ∈ Rn, n ∈ N let r = p ◦ q be defined as element
by element multiplication, ri = pi × qi. The pseudo-inverse
(or Moore-Penrose inverse) of a matrix K is denoted by
K†. Define the hyperkernel Gram matrix K by Kijpq =
k((xi, xj), (xp, xq)), the kernel matrix K = reshape(Kβ)
(reshaping an m2 by 1 vector, Kβ, to an m × m matrix),
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Y = diag(y) (a matrix with y on the diagonal and zero other-
wise), G(β) = Y KY (the dependence on β is made explicit),
and 1 a vector of ones.

The number of training examples is assumed to be m. Where
appropriate, γ is a Lagrange multiplier, while η and ξ are
vectors of Lagrange multipliers from the derivation of the
Wolfe dual for the SDP, β are the hyperkernel coefficients, t1
and t2 are the auxiliary variables.

Example 1 (Linear SVM (C-style)). A commonly used
support vector classifier, the C-SVM uses an `1 soft mar-
gin, where l(xi, yi, f(xi)) = max(0, 1 − yif(xi)), which
allows errors on the training set. The parameter C is given
by the user. Setting the quality functional Qemp(k, X, Y ) =
minf∈H

1
m

∑m
i=1 l(xi, yi, f(xi)) + 1

2C ‖w‖
2
H, the resulting

SDP is
min

β,γ,η,ξ

1
2 t1 + C

mξ>1 + CλQ

2 t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2[

G(β) z
z> t1

]
� 0,

(3)

where z = γy + 1 + η − ξ.
The value of α which optimizes the corresponding Lagrange

function is G(β)†z, and the classification function, f =
sign(K(α ◦ y)− boffset), is given by f = sign(KG(β)†(y ◦
z)− γ).

We apply hyperkernels in Section 3.2 in two ways: first to
combine the various attribute kernels in an optimal fashion
and second to investigate the weights of the various attribu-
tes. From the representer theorem 10, the kernels on various
attributes are weighted in the final optimal kernel, and hence
the weights reflect the importance of that particular attribute
for protein function prediction. The higher the weight of the
kernel of an attribute in the final linear combination, the more
important it is for good prediction accuracy. Similar to Ong
and Smola (2003), we use a low rank approximation for our
optimization problem, hence resulting in a scalable imple-
mentation. The computational cost is a constant factor larger
than a standard SVM, where the constant is determined by the
precision of the low rank approximation.

3 RESULTS
To assess the protein function prediction quality of our graph
kernels, we tested them on two function prediction problems:
classifying enzymes versus non-enzymes, and predicting the
enzyme class.

Experimental setting
For the following experiments, we implemented our graph
model and kernel in MATLAB® R13, and employed the
SVM package SVLAB. We ran our tests on Debian Linux
workstations with Intel Pentium 4® CPU at 3.00 GHz.

Kernel type Accuracy St. dev.
Vector kernel 76.86 1.23
Optimized vector kernel 80.17 1.24
Graph kernel 77.30 1.20
Graph kernel without structure 72.33 5.32
Graph kernel with global info 84.04 3.33
DALI classifier 75.07 4.58

Table 1. Accuracy of prediction of functional class of enzymes and non-
enzymes in 10-fold cross-validation with C-SVM. The first two results are
the results obtained by Dobson and Doig (2003). ”Graph kernel” is our protein
kernel defined as in Section 2.3, ”Graph kernel without structure” is the same
kernel but on protein models without structural edges, ”Graph kernel with
global info” is our protein graph kernel plus additional global node labels.
”DALI classifier” is a Nearest Neighbor Classifier on DALI Z-scores.

3.1 Enzymes vs. Non-Enzymes
In our first test, we classified enzymes versus non-enzymes.
Our dataset comprised proteins from the dataset of enzymes
(59%) and non-enzymes (41%) created by Dobson and Doig
(2003). Protein function prediction on this set of proteins is
particularly difficult, as Dobson and Doig chose proteins such
that no chain in any protein aligns to any other chain in the
dataset with a Z-score of 3.5 or above outside of its parent
structure.

Dobson and Doig model proteins as feature vectors which
indicate for each amino acid its fraction among all residues,
its fraction of the surface area, the existence of ligands, the
size of the largest surface pocket and the number of disulphide
bonds.

On the complete dataset, Dobson and Doig had reached
76.86% accuracy in 10-fold cross-validation, on an optimi-
zed subset of their attributes, they improved their accuracy to
80.17% in 10-fold cross-validation.

We created protein graphs for all proteins from their dataset
for which the secondary structure is given in the corresponding
PDB file. This meant that we could use 1128 out of 1178 prote-
ins for our tests (the fraction of enzymes remained at 59%). On
these protein graphs, we calculated our protein random walk
graph kernel. We performed 10-fold cross-validation using C-
Support Vector Machine (C-SVM (Cortes and Vapnik, 1995))
classification and report the results in Table 1. As a compari-
son, we implemented and ran a Nearest Neighbor Classifier
based on DALI Z-scores (Holm and Sander, 1996) on the same
dataset.

Our results show that our graph kernel is competitive with
the existing vector kernel approach, although it relies on less
information than the vector approach. Our graph model can be
generated from sequence and structure, while the vector model
requires additional information about ligands, surface clefts
and bonds of the proteins in question. Furthermore, our graph
kernel gives also better results than the DALI classifier, which
is based on state-of-the-art structure comparison results.
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These results suggest two further experiments: First, to
check whether we can reach similarly good results if we do not
include structural edges into our protein model. This kind of
graph model could be generated without knowing the structure
of a protein, relying solely on the sequence and on a secondary
structure prediction system. We tested our kernel on graphs
without structural edges and found a significant deterioration
to 72.33% prediction accuracy (see Table 1).

Second, we tested whether our protein classifier could be
improved by incorporating Dobson and Doig’s extra informa-
tion. We extended our protein graphs to include additional
information as node labels. These global node attributes are
the same for all nodes in one graph; they represent the exi-
stence of ligands, the number of disulphide bonds, the size
of the largest surface pocket (Binkowski et al., 2003) and the
fraction of each amino acid type on the protein surface (Tsodi-
kov et al. , 2002), analogous to (Dobson and Doig, 2003). On
this protein graph model with global information, we impro-
ved our classification accuracy to 84.04% (see Table 1). This is
highly significantly better (with Yates’ corrected χ2 = 18.56
and p = 0.00002) than the standard vector kernel which has
an accuracy of 76.86%. This is also significantly better (with
Yates’ corrected χ2 = 5.71 and p = 0.0169) than the vec-
tor kernel on an optimized subset of attributes which has an
accuracy of 80.17%.

3.2 Enzyme Class Prediction
After showing that our graph classifier reaches at least state-
of-the-art prediction accuracy, we examined which of our ten
local node attributes contribute most to successful classifica-
tion. The standard approach to this problem is to define kernels
on individual node attributes and to then test the performance
of these kernels on a test set. Attributes whose kernels show
best classification accuracy in these tests are then deemed to
be most important for good prediction accuracy.

We propose to employ hyperkernels for selecting relevant
node attributes. The hyperkernel finds a linear combination
of kernels defined on single node attributes that maximizes
prediction accuracy. Node attributes receiving highest weight
in the hyperkernel optimal combination can then be regarded
as most valuable for correct classification.

For that purpose, we created protein graph models with only
one of our ten node attributes each for a dataset of 600 enzy-
mes from the BRENDA database (Schomburg et al., 2004).
This dataset included 100 proteins from each of the 6 Enzyme
Commission top level enzyme classes (EC classes) and the
goal was to correctly predict enzyme class membership for
these proteins. We computed protein graph kernel matrices
(defined as in section 2.3) on these single attribute models, nor-
malized them and employed a hyperkernel to find an optimal
linear combination of these ten normalized kernel matrices.
As a comparison, we also ran our default protein graph kernel
with all node attributes on the same dataset.

Fig. 3. Prediction accuracy using kernel matrices on individual attri-
butes, one kernel on all attributes and the hyperkernel (see Example 1)
in 6-fold cross-validation on 600 enzymes from 6 EC top level clas-
ses (AA = amino acid, Waals = van der Waals volume, Hydro. =
Hydrophobicity, Polariz. = Polarizability).

For each EC class, we conducted 1-vs.-rest SVM classi-
fication for all our kernels and the hyperkernel, in 6-fold
cross-validation on all 600 proteins. As the number of non-
members of an EC class is five times that of the members
in both training and test set, a naive classifier predicting all
enzymes to be non-EC-class-members would always yield
83.33% accuracy. We report classification results in Figure 3
and hyperkernel weights in the optimal linear combination in
Table 2.

Our results show that with each of the kernels employed,
we are able to correctly predict enzyme class membership and
non-membership with a high accuracy level of at least 90.83%
on average. The hyperkernel performs on average best of all
kernels. Across all EC classes, the hyperkernel reaches at least
the accuracy of the best individual kernel, i.e. the hyperkernel
technique succeeds in finding an optimal linear combination
of input kernels. The hyperkernel performs even slightly better
than our original kernel with all attributes.

The hyperkernel assigns on average the highest weight to
the node attribute amino acid length. Results differ signifi-
cantly between EC classes. While in EC classes 1, 3 and 4
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Attribute EC1 EC2 EC3 EC4 EC5 EC 6
AA length 1.00 0.31 1.00 1.00 0.73 0.00
3 bin Waals 0.00 0.00 0.00 0.00 0.00 0.00
3 bin Hydro. 0.00 0.00 0.00 0.00 0.00 0.00
3 bin Polarity 0.00 0.01 0.00 0.00 0.00 1.00
3 bin Polariz. 0.00 0.00 0.00 0.00 0.12 0.00
3d length 0.00 0.40 0.00 0.00 0.00 0.00
Total Waals 0.00 0.00 0.00 0.00 0.00 0.00
Total Hydro. 0.00 0.13 0.00 0.00 0.01 0.00
Total Polarity 0.00 0.14 0.00 0.00 0.01 0.00
Total Polariz. 0.00 0.01 0.00 0.00 0.13 0.00

Table 2. Hyperkernel weights for individual node attributes (AA = amino
acid, Waals = van der Waals volume, Hydro. = Hydrophobicity, Polariz. =
Polarizability).

attribute AA length receives the maximum weight of 1.00, 3
bin polarity receives maximum weight for EC class 6. This
is consistent with the observation that the 3 bin polarity ker-
nel reaches the maximum prediction accuracy for EC class 6
among all attribute kernels. In EC class 2 and EC class 5, the
hyperkernel detects a combination of several attribute kernels
yielding the maximum accuracy.

4 DISCUSSION
In this paper, we presented a graph model for proteins and defi-
ned a protein graph kernel that measures similarity between
these graphs. Based on this protein graph model and kernel, we
implemented a Support Vector Machine classifier for protein
function prediction. We successfully tested the performance
of this classifier on two function prediction tasks.

Our graph model includes information about sequence,
structure and chemical properties, with nodes that represent
secondary structure elements and edges that represent sequen-
tial or spatial neighborship between these elements. Graph
models based on smaller subunits of proteins, amino acid
residues or atoms, might give a more detailed description
of the chemical properties of a protein, yet they would lead
to graphs with at least ten times or one hundred times more
nodes, respectively. As the number of node comparisons for
a pair of proteins grows quadratically with the number of
nodes, enormous computational costs would be the results of
more detailed models. For this reason, we developed a protein
model based on secondary structure elements.

Our graph kernel measures structural, sequential and chemi-
cal similarities between two proteins. We designed the graph
kernel to first detect structural and sequential similarities bet-
ween proteins and if these are found, to then measure the
degree of similarity by comparing physico-chemical proper-
ties of their secondary structure elements. Combining these
three types of similarity measures into one graph kernel allows
us to distinguish enzymes and non-enzymes on the same

accuracy level as a vector kernel method requiring additio-
nal information and a DALI classifier based on Z-scores; our
kernel outperforms both if we use a protein graph model inclu-
ding all extra information used by the vector kernel approach.
We conclude that our model is able to capture essential cha-
racteristics of proteins that define their function. Furthermore,
we showed that structure information is beneficial for our clas-
sifier, as removing structural edges from our graphs decreases
prediction accuracy significantly.

We successfully applied the hyperkernel technique to the
question of how to choose relevant node attributes in our
protein graphs and of how to combine these optimally. Conse-
quently, hyperkernels are a useful tool to further optimize our
graph model by weighing the importance of individual node
attributes for correct classification.

The hyperkernel assigns on average highest weight to the
node attribute amino acid length. Functional similarity bet-
ween proteins seems to be closely linked to the question
whether the secondary structure elements of these proteins
are equally long. This finding is consistent with the observa-
tion that the structure of a protein - which includes the length
of its secondary structure elements - is the biggest hint at its
function (Bartlett et al., 2003). The fact that the node attribute
”polarity” is most important for classifying enzymes from
EC class 6 illustrates that approximate chemical properties of
proteins can also help to identify protein function. In addi-
tion, hyperkernels will allow us to combine our protein graph
information with other proteomic information to improve our
classifier.

Future work will aim at refining our protein graph model
by adding more node and edge labels and at integrating more
protein information into our classifier to make function pre-
dictions more accurate. Attributed graphs, our protein graph
kernels and hyperkernels will be essential for this process of
data fusion.
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