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Abstract

Proteins are the key elements on the path from genetic information to the devel-

opment of life. The roles played by the different proteins are difficult to uncover

experimentally as this process involves complex procedures such as genetic modifi-

cations, injection of fluorescent proteins, gene knock-out methods and others. The

knowledge learned from each protein is usually annotated in databases through

different methods such as the proposed by The Gene Ontology (GO) consortium.

Different methods have been proposed in order to predict GO terms from pri-

mary structure information, but very few are available for large-scale functional

annotation of plants, and reported success rates are much less than the reported

by other non-plant predictors.

The most common approach to perform this task is by using strategies based

on annotation transfer from homologues. The annotation process centers on the

search for similar sequences in databases of previously annotated proteins, by

using sequence alignment tools such as BLASTp. However, high similarity does

not necessarily implies homology, and there could be homologues with very low

similarity. As an alternative to alignment-based tools, more recent methods have

used machine learning techniques trained over feature spaces of physical-chemical,

statistical or locally-based attributes, in order to design tools that can be able of

achieving high prediction performance when classical tools would certainly fail.

The present work lies on the framework of machine learning applied to protein

function prediction, through the use of a modern paradigm called semi-supervised

learning. This paradigm is motivated on the fact that in many real-world prob-

lems, acquiring a large amount of labeled training data is expensive and time-

consuming. Because obtaining unlabeled data requires less human effort, it is of

great interest to include it in the learning process both in theory and in practice.
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List of Figures

A high number of semi-supervised methods have been recently proposed and have

demonstrated to improve the accuracy of classical supervised approaches in a vast

number of real-world applications.

Nevertheless, the successfulness of semi-supervised approaches greatly de-

pends on prior assumptions they have to make about the data. When such

assumptions does not hold, the inclusion of unlabeled data can be harmful to

the predictor. Here, the main approaches to perform semi-supervised learning

were analyzed on the problem of protein function prediction, and their underly-

ing assumptions were identified and combined in a multi-objective optimization

framework, in order to obtain a novel learning model that is less dependent on

the nature of the data.

All the experiments and analyses were focused on land plants (Embryophyta),

which constitutes an important part of the national biodiversity of Colombia,

including most agricultural products.

Keywords: Bioinformatics, Gene Ontology, Semi-supervised Learning, Multi-

objective optimization, Cuckoo search.
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Resumen

Las proteínas son los elementos clave en el camino desde la información genética

hasta el desarrollo de la vida. Las funciones desempeñadas por las diferentes

proteínas son difíciles de detectar experimentalmente ya que este proceso im-

plica procedimientos complejos, como las modificaciones genéticas, la inyección de

proteínas fluorescentes, métodos de knock-out de genes y otros. El conocimiento

aprendido de cada proteína es generalmente anotado en bases de datos a través

de diferentes métodos como el propuesto por la Ontología Genética (GO). Se han

propuesto diferentes métodos para predecir términos GO a partir de la informa-

ción contenida en la estructura primaria, pero muy pocos están disponibles para

la anotación funcional a gran escala de plantas, y las tasas de acierto reportadas

son mucho menores que los reportados por otros predictores sobre especies no

vegetales.

El enfoque más común para llevar a cabo esta tarea es mediante el uso de

estrategias basadas en la anotación basada en transferencia de homólogos . El

proceso de anotación se centra en la búsqueda de secuencias similares en bases

de datos de proteínas anotadas anteriormente, mediante el uso de herramientas

de alineación de secuencias como BLASTp. Sin embargo, una alta similitud

no implica necesariamente una homología, y podría haber homólogos con una

escasa similitud. Como alternativa a las herramientas de anotación basadas en

alineamientos, los métodos más recientes han utilizado técnicas de aprendizaje

de máquina entrenados sobre espacios de características físico-químicas o estadí-

sticas, a fin de diseñar herramientas que pueden ser capaces de lograr un alto

rendimiento de predicción cuando las herramientas clásicas sin duda fracasarían.

El presente trabajo se encuentra en el marco del aprendizaje de máquina apli-

cado a la predicción de funciones de proteínas, a través del uso de un paradigma
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moderno llamado aprendizaje sem-supervisado. Este paradigma está motivada en

el hecho de que en muchos problemas del mundo real, la adquisición de una gran

cantidad de muestras de entrenamiento etiquetadas es cara y consume mucho

tiempo. Debido a que la obtención de datos sin etiqueta requiere menos esfuerzo

humano, es de gran interés para incluirlo en el proceso de aprendizaje, tanto en la

teoría como en la práctica. Un gran número de métodos semi-supervisados se han

propuesto recientemente y han demostrado mejorar la precisión de los enfoques

clásicos supervisadas en un gran número de aplicaciones del mundo real.

Sin embargo, el éxito de los enfoques semi-supervisados depende en gran me-

dida de las suposiciones previas que se tienen que hacer sobre los datos. Cuando

estas suposiciones no se cumplen, la inclusión de datos sin etiqueta puede ser

perjudicial para el predictor. En este trabajo, se analizan los principales enfo-

ques para llevar a cabo el aprendizaje semi-supervisado sobre el problema de la

predicción de funcionesde proteínas, y sus suposiciones subyacentes se identifican

y se combinan en un marco de optimización multi-objetivo, con el fin de obtener

un nuevo modelo de aprendizaje que sea menos dependiente de las la naturaleza

de los datos .

Todos los experimentos y los análisis se centran en las plantas terrestres (Em-

bryophyta), que constituyen una parte importante de la biodiversidad nacional

de Colombia, incluyendo la mayoría de los productos agrícolas.

Palabras clave: Bioinformática, Ontología Genética, Aprendizaje Semi-supervisado,

Otimización multi-objetivo, Búsqueda Cucú.
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Introduction

This chapter presents the background, problem statement, hypothesis and ob-

jectives of this work. Many of the concepts introduced in this chapter will be

discussed in more detail in subsequent chapters, but they are presented here in

order to establish the motivation and the context for the rest of the document.

Background

Proteins are versatile macromolecules with a huge diversity of biological functions.

They are responsible for most of the biochemical functions of the organelles and,

consequently, they are directly involved in all chemical reactions occurring in

cells. However, in spite of the wide variety of functions they perform, all proteins

share a common basic configuration: a linear polypeptide chain composed by

different combinations and repetitions of the twenty amino acids encoded by

genes. Although there are almost 8 million sequences in non-redundant databases,

for most, we know just that amino acid sequence deduced from the DNA chain

(Levitt, 2009), and thus, the development of methods for determining protein

functions from its primary structure becomes an important priority for current

science. Since the experimental assessment of protein functions requires, in most

cases, to be focused on specific proteins or functions, besides requiring either

cloned DNA or protein samples from the genes of interest, some authors have

concluded that the only effective route towards the elucidation of the function of

some proteins may be by computational analysis (Baldi and Brunak, 2001).

Many computational resources have been developed in order to predict pro-

tein functions (full surveys are presented in (Friedberg, 2006; Pandey et al., 2006;

Zhao et al., 2008c)). Nevertheless, very few resources are available for large-scale
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functional annotation of non-model species (Conesa and Götz, 2008) and, in par-

ticular, just a handful of methods have been recently proposed for predicting

protein functions on vegetative species. This is a crucial issue for our country,

since the potential development of Colombia through the explotation of its bio-

diversity is one of the highest in the world (Cerón et al., 2009). The National

Policy for the Promotion of Research and Innovation points out the importance

of several research groups and centers that work on the improvement of key

agricultural products, highlighting that those are also part of biodiversity in its

interaction with human communities (COLCIENCIAS,1995). Most of that agri-

cultural products are land plants (Embryophyta), and thus, new methodologies

and algorithms able to accurately predict protein functions over such organisms

are strongly needed.

Problem statement

Machine learning methods are widely applied to the extraction of biological knowl-

edge from proteins, in order to obtain models to both represent biological knowl-

edge and to predict their functionality. This field has traditionally been divided

into two sub-fields: unsupervised learning, in which the system observes an unla-

beled set of items represented by their features and has to discover its underlying

distribution in order to group them into clusters; and supervised learning, where

the system observes a labeled training set and the objective is to predict the label

y for any new input object. Among the unsupervised methods, the most com-

mon algorithm for protein function prediction is the Markov clustering algorithm,

which has been mainly used for detecting remote protein families (Chen et al.,

2007, 2006). However, as it is only a clustering tool, it is not actually predicting

the functions of proteins but merely grouping them into sets whose potential use-

fulness for protein function prediction has to be elucidated in a posterior stage.

Regarding supervised methods, the most prominent example are support vector

machines, which have achieved high success in computational biology in general

(Vert, 2005) and protein function prediction in particular (Bi et al., 2007; Cai,

2003; Jung et al., 2010). Nevertheless, it is a known fact that only a small number

of proteins have actually been annotated for certain functions. Therefore, it is
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difficult to obtain sufficient training data for the supervised learning algorithms

and, consequently, the tools for protein function prediction have very limited

scopes (Zhao et al., 2008c).

Under such circumstances, semi-supervised learning methods provide an al-

ternative approach to protein annotation (Zhao et al., 2008c). Semi-supervised

learning (SSL) is halfway between supervised and unsupervised learning: in addi-

tion to labeled data, the algorithm is provided with an amount of unlabeled data

that can be used to improve the estimations about the data. While labeled in-

stances (annotated proteins) are often difficult, expensive and time consuming to

obtain (as they require the efforts of experienced human annotators), unlabeled

data is relatively easy to collect in most protein databases.

In order to deal with labeled and unlabeled data, current semi-supervised

algorithms have to make strong assumptions about the underlying joint proba-

bility of the data. There are several different semi-supervised learning methods,

and each one makes different assumptions, but they can be summarized in the

following two:

Cluster assumption: If points are in the same cluster, they are likely to be

of the same class. Or equivalently: the decision boundary should lie in a

low-density region.

Manifold assumption: The (high-dimensional) data lie (roughly) on a low-

dimensional manifold. If the data happen to lie on a low-dimensional mani-

fold, however, then the learning algorithm can essentially operate in a space

of corresponding dimension, thus avoiding the curse of dimensionality.

There is, however, a strong drawback in semi-supervised algorithms. Since

semi-supervised learning is possible only due to the special form of the data

distribution that correlates the label of a data point with its location within the

distribution, a bad matching of problem structure with model assumption can

lead to degradation in classifier performance and, as a result, the inclusion of

unlabeled data will degrade prediction accuracy (Chapelle and Schölkopf, 2006;

Zhu, 2007).
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Hypothesis

Most semi-supervised strategies implement the assumptions about data by in-

troducing regularization terms in the solution of the optimization problem. It

is quite straightforward to notice that regularization can be viewed as a special

case of a multi-objective optimization problem, where several objective functions

are being linearly combined by the introduction of linear weights (regularization

constants).

Solving the regularized optimization problem for a unique combination of

weights yields a solution that focuses on the objective functions with the highest

weights. A more flexible solution can be obtained by directly applying a multi-

objective optimization algorithm that deals with all the objective functions at

the same time. In this setting, the optimization algorithm does not searches for

a unique solution, but for the set of all Pareto-optimal solutions with non-convex

trade-off surfaces. The use of Pareto optimization provides the means to avoid

the need for hard constraints and for a fixed weighting between unsupervised

and supervised objectives. Consequently, one would expect a multi-objective

approach to semi-supervised classification to perform more consistently across

different data sets, and to be less affected by model assumptions.

We propose the hypothesis that tackling the semi-supervised classification

problem within the framework of multi-objective optimization, will provide a

more flexible framework for the integration of both unsupervised and supervised

components and, consequently, it will provide an efficient method for automatic

protein function prediction, outperforming supervised methods by exploting the

labeled and unlabeled data that is currently present in protein databases.

Objectives

General objective

Develop a semi-supervised classification strategy based on multi-objective opti-

mization techniques oriented towards the protein function prediction problem.



Introduction 5

Specific objectives

1. Select two or more objective functions that adequately reflect the underlying

structure of the data for accomplishing semi-supervised assumptions.

2. Develop a multi-objective optimization methodology that finds a set of

Pareto-optimal solutions according to the defined objective functions.

3. Develop a strategy for selecting the most biologically feasible solutions

among the initial set of Pareto-optimal solutions.

4. Validate the proposed method on the particular case of protein function

prediction.

All simulations were implemented on the R environment for statistical com-

puting (R Core Team, 2012). Additional tools were mainly provided by Bio-

conductor (Gentleman et al., 2004), and the seqinR package (Charif and Lobry,

2007), all of them freely distributed under the GNU General Public License.





Chapter 1

Preliminary concepts

This chapter provides the fundamental concepts behind this work. First, an

introduction to protein functionality and structures is given in order to provide

1.1 Functionality of proteins and their structure

levels

Proteins are essential macromolecules in life. Their importance for living organ-

isms is straightforward, not only for representing the second largest component

in cells after water, but also, and more importantly, for the diversity of biochem-

ical functions they are responsible for. For instance, binding proteins are capable

of conforming a wide variety of structurally and chemically different surfaces,

allowing themselves for “recognizing” other highly specific molecules in order to

perform transport, reception and regulation functions; enzymes use binding plus

specific chemical reactivity for speeding up molecular reactions; structural pro-

teins constitute some of the main morphological components of living organisms,

being the building blocks of many resistant structures and sources of biomaterials.

And such examples just depicts the basis of protein functions universe, because

they are only considering their functionality at molecular level. Going further,

the scope of protein functions comprises not only the biochemical functions of

isolated molecules, but also cellular functions they perform in conjunction with

other molecules and even the phenotype they produce in the cell or organism
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(Petsko and Ringe, 2004). At cellular level, proteins perform most functions of

organelles. Among other tasks, structural proteins in the cytoskeleton are respon-

sible for maintaining the shape of the cell and keeping organelles in place; in the

endoplasmatic reticulum, binding proteins transport other molecules between and

within cells; in the lysosome, catalytic proteins break large molecules into small

ones for carrying out digestion (for a deeper description of subcellular locations of

proteins, see (Chou and Shen, 2007)). Phenotypical roles of proteins are harder

to determine, since phenotype is the result of many cellular function assemblies

and its integration with environmental stimuli. However, by the comparison of

genes descended from the same ancestor across many different organisms, or by

studying the effects of modifying individual genes in model organisms, several

thousands of gene products have been associated with phenotypes (Benfey and

Mitchell-Olds, 2008), and specifically, with affected processes like cell growth or

regulation of immune system processes, where proteins have fundamental roles.

Interestingly, a key fact about proteins is that no matter this enormous variety

of functions, they all share a common basic conformation: a linear polypeptide

chain known as the “primary structure” of the protein. Such a chain is composed

by different combinations and repetitions of the twenty amino acids encoded by

genes, which in turn determines how the protein folds into higher-level structures.

Figure 1.1 depicts the different levels of protein structures.

The secondary structure of the protein can take the form either of alpha helices

or of beta sheets, formed through regular hydrogen-bonding interactions between

molecules in the main amine and carboxyl groups of amino acids, that is, in the

invariant backbone of the chain. In the globular form of the protein, elements of

either alpha helix, or beta sheet, or both, as well as loops and links that have

no secondary structure, are folded into a tertiary structure. Many proteins are

formed by association of the folded chains of more than one polypeptide; this

constitutes the quaternary structure of a protein.

The huge variety of functions that can be performed by proteins comes from

the large number of three dimensional folding patterns resulting from interactions

among the side chains of these amino acids. However, it is important to point out

that there are two constraints for a polypeptide to be a protein. First, it must be

able to form a stable tertiary structure (or fold) under physiological conditions.
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Figure 1.1: Levels of protein structure

Second, the folded pattern should have enough flexibility to interact with other

molecules in order to allow protein functionality. Presumably because of these

constraints, the number of folds adopted by proteins, though large, is limited

(Petsko and Ringe, 2004).

1.2 Gene ontology

With all this functionality associated to proteins, the same definition of protein

function turns into a fuzzy concept, leading different researchers to denote the

functions of proteins differently. As an effort to provide consistent descriptors

for key domains of molecular biology, the Gene Ontology (GO) project aims

to construct controlled and structured vocabularies known as ontologies, and

apply such vocabularies in the annotation of sequences, genes or gene products

in biological databases (The Gene Ontology Consortium, 2004). An ontology

is defined as a systematic arrangement of categories, together with the relations

among them; in the case of ontologies defined at GO, each category corresponds to

./Figuras/estructuras.eps
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a functional label or “GO term”, related with other terms through “is-a” or “part-

of” relationships. Structurally, these ontologies could be modeled hierarchically

as directed acyclic graphs, which means that every child node may have more

than one parent node.

There are three ontologies in GO, defined to describe three non-overlapping

domains of molecular biology: molecular function, cellular component and biolog-

ical process. Molecular function (MF) refers to biochemical activities at molecular

level, no matter what entities are in charge of accomplishing that function or the

context where it takes place; examples of molecular functions are “enzyme regula-

tor activity”, “binding activity” or “transport activity”. Cellular component (CC)

refers to the specific sub-cellular location where a gene product is active, describ-

ing different parts of the eukaryotic cell; cellular components include “ribosome”,

“cytoplasm” or “Golgi apparatus”. Biological process (BP) refers to a series of

events or molecular functions, with a defined beginning and end, to which the

gene or gene product contributes; examples are “reproduction”, “protein metabolic

process” or “cell death”.

Bind

MF

NaBind HydrolProtBind

RnaBind

Transf

Catal

NtBind

DnaBind

ChromBind

TranscFact

Motor Nase

SigTransd Receptor

RecBind

StructMol Transp

TranslFact

LipBind

Kinase

OxBind

EnzReg

ChBind

TranslReg

Figure 1.2: Molecular Function ontology from the plants GO-slim. The list of
acronyms can be found in table 2.1

Currently, as of February 2013 there are 38137 defined GO terms, distributed

over 9467 molecular functions, 3050 cellular components and 23928 biological

./Figuras/MF.eps
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processes. However, it is often useful to have a less detailed set of categories to

produce a high-level overview of functions distribution. For this reason, a number

of custom datasets, named GO slims, are also maintained by The Gene Ontol-

ogy Consortium. In those versions, more specific terms have been collapsed up

into more general parent terms, and they are particularly useful for analyzing

just a subsection of the GO in order to study a particular field or for a gen-

eral genome-wide analysis. In particular, species-specific slims are maintained

for plants (Berardini et al., 2004), Candida Albicans (Costanzo et al., 2006),

Schizosaccharomyces Pombe (Aslett and Wood, 2006) and Saccharomyces Cere-

visiae (Hirschman et al., 2006). As an example, figure 1.2 shows the GO-terms

in the Molecular Function ontology for the plants GO slim.

1.3 Paradigms in machine learning

Machine learning provides the tools for constructing models that represent biolog-

ical knowledge and use it to predict biological outcomes. In particular, this work

is focused on semi-supervised learning methods for predicting protein function-

ality. However, in order to understand the nature of semi-supervised learning, it

will be useful to first define classical supervised and unsupervised learning frame-

works. Then, semi-supervised and semi-unsupervised learning will be properly

defined.

1.3.1 Supervised and unsupervised learning

The field of machine learning has traditionally been divided into two sub-fields:

unsupervised learning and supervised learning. In unsupervised learning, the sys-

tem observes an unlabeled set of items represented by their D-dimensional feature

vectors {xi}
N
i=1, xi ∈ RD, drawn from a feature space X. The main objective is

to discover its underlying distribution in order to group them into K clusters. In

this setting, there is no “right” answer, since there is not a prior knowledge about

the correct membership of the samples (which is why this paradigm is termed as

unsupervised).
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Figure 1.3: Example of unsupervised learning
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Figure 1.3 depicts an example of the outcome of an unsupervised learner

for two (Figure 1.3(b)) and three clusters (Figure 1.3(c)). Since there is no

supervision, both clustering schemes could be valid solutions for different tasks.

On the other hand, supervised learning algorithms have access to a labeled

training set consisting of (feature, label) pairs, denoted by {(xi, yi)}
N
i=1. In this

setting, feature vectors are again represented by D-dimensional vectors xi ∈ RD,

while labels are the desired predictions for each instance. When labels are con-

tinuous variables, that is, y ∈ R, the constructed model is a regressor. In turn,

when the predictions are constrained to a finite set of discrete labels, y ∈ yj
C
j=1,

the trained model is a classifier. Then, such classifier is a mathematical function

f(x), that associates each feature vector with its corresponding true label:

f : X 7→ Y (1.1)

Figure 1.4 depicts an example of a two-class supervised classification problem.

In this setting, two approaches can be used for deriving the decision function

f(x): discriminative and generative. Discriminative classifiers focus on comput-

ing the decision frontier between the classes as in Figure 1.4(b), where a linear

discriminant classifier is used. Generative classifiers, on the other hand, focus on

modeling the data in order to obtain one model per class and provide membership

probabilities for new instances. Figure 1.4(c) depicts the contour levels of two

Gaussian probability distributions adjusted to the data.

1.3.2 Transductive, semi-unsupervised and semi-supervised

learning

The idea of using both labeled and unlabeled data for designing robust predictors

has been on the machine learning community since around the middle sixties with

several proposals on self-training (see, for example, Scudder III (1965) and Fralick

(1967)) and transductive inference (Vapnik and Chervonenkis, 1974). The main

motivation behind this kind of learning comes from the fact that in many real-

world problems, acquiring a large amount of labeled training data is expensive and

time-consuming. Because obtaining unlabeled data requires less human effort, it
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(b) Discriminant classifier
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(c) Generative classifier

Figure 1.4: Example of supervised learning
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is of great interest to include it in the learning process both in theory and in

practice.

There are several ways of combinig those two sources of data, given rise to

different paradigms in machine learning. Consider a system that can observe two

sources of data: the points XL = {xi}
L
i=1 for which labels {yi}Li=1 are provided,

and the points XU = {xi}
L+U
i=L+1 the labels of which are not known. “Transductive”

learning is only interested on predicting the labels of the unlabeled data in the

training dataset, that is, in learning a function of the form:

f : XU 7→ YU (1.2)

here, f is expected to be a good predictor on the unlabeled data and is defined

only on the given training sample, and is not required to make predictions outside.

On the other hand, “inductive semi-supervised” learning is interested on designing

a function able to predict the labels on future test data. That is:

f : X 7→ Y (1.3)

here, f is expected to be a good predictor over the whole feature space and,

implicitly, it is expected to be better than the supervised classifier trained on

the labeled data alone. Like in supervised learning, a common estimation of the

performance of the system with future data can be obtained by using a separate

test sample, which is not available during training. This setting is sometimes

simply called semi-supervised classification and constitutes the main subject of

the present work.

An interesting analogy presented in (Zhu and Goldberg, 2009), proposes that

semi-supervised learning is like an in-class exam, where the questions are not

known in advance, and a student needs to prepare for all possible questions; in

contrast, transductive learning is like a take-home exam, where the student knows

the exam questions and needs not prepare beyond those.

Finally, other forms of partial supervision are also possible. Constrained clus-

tering is an extension to conventional unsupervised clustering which, in addition

to the unlabeled data, is fed with some supervised information about the clus-

ters. Such information is commonly provided in the form of “must-link” and
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“cannot link” constraints, imposing restrictions over pairs of instances that must

be or cannot be in the same cluster. Seeger (2006) defines this category of algo-

rithms as “semi-unsupervised learning”, since their main objective is to estimate

the probability distribution of the data as in unsupervised learning methods.

1.3.3 Remarks on the application of machine learning meth-

ods for protein function prediction

Following the notation of (King and Guda, 2008), let P be the protein space (the

set of all possible protein sequences). Labeled data will be noted as PL while

unlabeled data will be noted by PU . Then, we have:

P = PL ∪ PU (1.4)

First, let X be the feature space generated from a characterization function

ζ : P 7→ X. This function accepts as input a protein sequence and returns a

feature vector x ∈ RD, with D physical-chemical and/or statistical attributes of

the protein sequence (this will be explained in more detail in the next chapter).

In general terms, the function ζ is neither injective nor surjective, that means

that several elements in P can be mapped into the same element of X. Besides,

there may be some feature vectors in X for which no instance in P could possibly

exist in nature (King and Guda, 2008).

Let Y be the label set, with all the discrete labels that can be assigned to a

given protein. This set corresponds to all the functional annotations that can

be associated to proteins (the set of GO terms). It is necessary to have into

account that those labels are not mutually exclusive as in traditional supervised

classification, that is, one protein can be associated to more than one GO term

at the same time. Then, each labeled instance will be associated not only to a

single label y but to a set of Q labels that is a subset of the whole set of possible

labels y ⊆ Y.

This gives raise to a multi-label learning problem, a branch of machine learn-

ing where multiple target labels must be assigned to each instance. Multi-label

learning methods can be transformed into one or more single-label classification

problems by employing several topologies Tsoumakas and Katakis (2007). In this
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regard, a recent paper by Giraldo-Forero et al. (2013), empirically demonstrated

that the performance of the “binary relevance” topology, together with a technique

of class balance, remains above several recently proposed techniques for the prob-

lem of predicting protein functions. Binary relevance decomposes the multi-label

decision function f : X 7→ YQ, into Q binary classifiers f q : X 7→ {+1,−1}, where

each binary classifier decides whether or not a given instance should be associated

to the q−th class. This approach is also known as “one against all”, and will be

used for all the experiments in this work. Therefore, the labels will be assumed

to be binary throughout the rest of the document.

Having defined X and Y, it is now possible to apply any machine learning

algorithm (supervised or unsupervised) to the prediction of protein functions.

1.4 Single-objective and multi-objective optimiza-

tion for machine learning methods

The training of most machine learning method comprise of two steps: selecting

a candidate model (that in general terms is a parametric function) and then,

estimating the parameters of the model using an optimization algorithm and

available data. Therefore, all learning problems can be considered as optimization

problems (Jin and Sendhoff, 2008).

For the particular case of protein function prediction, let xi ∈ X be the feature

vector representing the protein pi ∈ P, and let yi ∈ Y be the label assigned to

that element. The predictor function f should satisfy f(xi) = yi, i = 1, 2, . . . , N .

In general terms, this function can belong to a family of parametric functions

with parameters θ:

f ∈ {fθ}θ∈T (1.5)

where T is the space of all the vectors of parameters. Learning the predictor

is achieved by the correct selection of the vector of parameters θ, and such ad-

justment can be understood as an optimization process depending on the labeled

data (for the supervised case) or both the labeled and unlabeled data (for the

semi-supervised case).
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Table 1.1: Examples of loss functions and the optimization methods used in
several supervised machine learning algorithms

Method Loss function
Optimization

algorithm

Least squares
classifier

(yi − fθ(xi))
2 Analytical solution

Multilayer
perceptron − (fθ(xi)yi)H (fθ(xi)yi)

†
Backpropagation
(gradient descent)

Support vector
machine

max(0, 1− yif(xi))
Quadratic

programming
† H() stands for the Heaviside step function.

In order to perform the estimation of parameters, it is first necessary to define

one or multiple optimization criteria. The most common criterion for supervised

and (inductive) semi-supervised learning is to define an objective function that

reflects the quality of the adjusted model, by minimizing the prediction error over

the training set:

oerr(θ) =

N∑

i=1

ℓ (fθ(xi), yi) (1.6)

where ℓ is some loss function that depends on the desired labels yi and the pre-

dicted labels fθ(xi) of the training set. Table 1.1 shows several examples of the

loss functions used in common machine learning algorithms. The optimization

process must find the optimal vector of parameters θ∗ such that:

θ∗ = argmin
θ∈T

oerr(θ) (1.7)

However, minimizing the training error is not the only objective to be con-

sidered, since this may result in over-fitting the training data and consequently

obtaining poor performance on unseen data. To avoid this problem, the complex-

ity of the model must be also controlled. This is usually expressed by defining
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another objective fuction in terms of the norm of fθ:

ocomp(θ) = ‖fθ‖ (1.8)

The most common approach for including this new objective in the training

process, is by aggregating the two objectives into a scalar objective function. This

process is known as “regularization”:

θ∗ = argmin
θ∈T

{oerr(θ) + λocomp(θ)} (1.9)

where λ is a positive scalar constant defined by the user, and the correct deter-

mination of this parameter is not a trivial task. The work by Marler and Arora

(2009) provides an analysis that reveals several fundamental deficiencies of the

scalarization of multi-objective optimization problems, showing that although the

weighted sum method is easy to use, it provides only a linear approximation of

the preference function.

In fact, almost every real-world problem involves simultaneous optimization of

several incommensurable and often competing objectives (Zitzler, 1999). A more

flexible approach to deal with this kind of problems comes from the Pareto-based

optimization strategies. In this setting, the objective function does not provide a

scalar output, but a vector with the evaluation of all the objectives considered:

o(θ) = [o1(θ), o2(θ), . . . , oM(θ)] (1.10)

where M is the number of objectives. It is rarely the case that there is a single

solution that optimizes all the objectives at the same time. Therefore, instead of

a single solution, a set of trade-off solutions must be returned by the optimization

algorithm. Here, it is necessary to modify the notion of optimality. The most

commonly adopted notion is the generalized by Pareto (1896), called “Pareto

optimality”. in a minimization multi-objective problem, a solution θ∗ is said to

be Pareto-optimal if there is no other feasible solution θ ∈ T which would decrease

one of the objective functions without causing a simultaneous increase in at least

one other objective function. A formal definition can be established by first
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defining the notion of Pareto-dominance (Zitzler, 1999) between two solutions θ

and φ:

θ � φ (θ weakly dominates φ) ⇐⇒ ∀i ∈ {1, 2, . . . ,M} : oi(θ) ≤ oi(φ) (1.11)

θ ≺ φ (θ dominates φ) ⇐⇒ θ � φ ∧ o(θ) 6= o(φ) (1.12)

then, a solution θ∗ is said to be Pareto-optimal if and only if:

∄θ ∈ T : θ ≺ θ∗ (1.13)

The whole set of Pareto-optimal solutions is called the “non-dominated set”,

and the set of objective vectors corresponding to the evaluations of the non-

dominated set is called the “Pareto front”. As an example, Figure 1.5 depicts

the Pareto front obtained when minimizing two competing objective functions

o1(θ) =
∑2

i=1 θ
2
i and o2(θ) =

∑2
i=1(θi − 0.5)2, defined over a two-dimensional

search space θ = [θ1, θ2] restricted to the intervals −1 ≤ θ1, θ2 ≤ 1.

While the minimum of o1 is obtained for θ = [0, 0], this solution causes o2

./Figuras/pareto.eps
./Figuras/pareto2.eps
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to produce an output of 0.5. In turn, the minimum value of o2 is reached for

θ = [0.5, 0.5], causing o1 to produce an output of 0.5. These two points correspond

to the ends of the Pareto font in Figure 1.5(a), while all the intermediate points

lying on the Pareto front are also good trade-off solutions for the multi-objective

problem: in the absence of preference information, none of the corresponding

trade-offs can be said to be better than the others. Figure 1.5(b), depicts the

location of the non-dominated solutions in the original search space.





Chapter 2

Supervised Gene Ontology

prediction for Embryophyta

organisms

Currently, there are almost 8 million sequences in non-redundant databases, in-

cluding the complete genomes of ≈ 1, 800 different species. However, for most of

them, we know just their primary structure: the linear amino acid sequence de-

duced from the DNA chain (Levitt, 2009). Assessment of protein functions needs

in most cases of experimental approaches carried out in the lab. Such approaches

require either cloned DNA or protein samples from the genes of interest. Ex-

perimental procedures for probing protein function includes DNA micro-arrays

for providing expression patterns of genes; two dimensional gel electrophoresis

which can separate complex protein mixtures into their components for being

identified by mass spectrometry; gene knockout experiments for studying phe-

notypical effects of inactivating determined gene products and experiments with

green fluorescent protein for determining gene products locations.

Unfortunately, this procedures must be usually focused on specific proteins or

functions, and the current dimensions of data bases makes of manual annotation

a difficult and almost intractable problem. Additionally, experimental determi-

nation of the function of many proteins is very likely to be hard, because the

function may be related specifically to the native environment in which a par-
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ticular organism lives. Such perspective has lead some authors to conclude that

the only effective route toward the elucidation of the function of some proteins

may be computational analysis and prediction from amino acid sequences, obtain-

ing a first hint toward functionality that later can be subjected to experimental

verification (Baldi and Brunak, 2001, chapter 1).

2.1 Gene Ontology predictors

Many approaches have been developed in this matter (for full surveys, see (Fried-

berg, 2006; Pandey et al., 2006; Zhao et al., 2008c)). One of the earliest appli-

cations, yet still one of the more popular bioinformatics tools is the Basic Local

Alignment Search Tool for proteins (BLASTP) (Altschul et al., 1997) which has

been applied for obtaining annotation transfers based on sequence alignments.

Also, a high number of methods (GOblet (Groth et al., 2004), OntoBlast (Ze-

hetner, 2003), GOFigure (Khan, 2003) and GOtcha (Martin et al., 2004)) are

based on the idea of refining and improving initial results from classic align-

ment tools such as BLASTp, by performing mappings and weightings of GO

terms associated to BLASTP predictions. However, in such methods, the fail-

ure of conventional alignment tools to adequately identify homologous proteins

at significant E-values is not considered (Hawkins et al., 2009). The same ap-

plies for some more recent methods that have improved specific points of this

methodology such as speeding up the procedure through decision rules ((Jones

et al., 2008)), including additional functionality for visualization and data mining

((Conesa and Götz, 2008)) or also including some statistics of GO terms to refine

selection ((Vinayagam et al., 2006)). In order to avoid the dependency to BLAST

alignments in the cases where the alignment-based annotation transfer approach

is not so effective, more recent methods have used machine learning techniques

trained over feature spaces of physical-chemical, statistical or locally-based at-

tributes. Those methods employ techniques such as neural networks (ProtFun

(Jensen et al., 2003)), Bayesian multi-label classifiers ((Jung and Thon, 2008))

and support vector machines (SVM-Prot (Cai, 2003), GOKey (Bi et al., 2007),

PoGO (Jung et al., 2010)), obtaining high performance results in their own re-
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spective databases, mostly composed by model organisms such as bacteria and a

few high order species.

There are, however, several aspects that must be discussed about current

performance in prediction of GO terms, when applied to non-model organisms

such as land plants (Embryophyta). First, from the previously described methods,

only Blast2GO (Conesa and Götz, 2008) was specialized for predicting GO terms

in plant proteins. In fact, as it is pointed out by the authors of Blast2GO, very few

resources are available for large-scale functional annotation of non-model species.

Some methods specialized on vegetative species have been proposed recently, but

they are only intended for performing cellular component predictions (Predotar

(Small et al., 2004), TargetP (Emanuelsson et al., 2000), Plant-mPloc (Chou

and Shen, 2010)). Moreover, Predotar and TargetP can discriminate among only

three or four cellular location sites. Plant-mPloc, in turn, covers twelve different

location sites and it was rigorously tested over a set of proteins with less than

25% of identity among them, where homologue-based tools like BLASTP would

certainly fail. For such dataset, they obtained an overall success rate of 63.7%,

much less than reported by other cellular location predictors tested over non-plant

datasets. Second, none of the existing methods can be used to deal with plant

proteins that can simultaneously exist or move between two or more different

location sites (Chou and Shen, 2010), or belong to multiple functional classes at

the same time (Briesemeister et al., 2010).

In order to improve the performance of current GO term predictors for land

plants, it would be useful to have a better understanding of the underlying rela-

tionships between primary structure information and protein functionality. How-

ever, the structure of the machine learning models behind high-accuracy predic-

tors often makes difficult to understand why a particular prediction was made

(Briesemeister et al., 2010). In this sense, a recent method called Yloc (Briese-

meister et al., 2010) was proposed for analyzing what specific features are respon-

sible for given predictions. This method, nevertheless, is not intended to predict

GO terms, but instead, it uses annotation information from PROSITE (Sigrist

et al., 2010) and GO as inputs to the predictor. Additionally, their study is only

focused on predicting protein locations in the cell.
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Since most of the current GO prediction methods are limited to a few arbi-

trary functional classes and single ontologies, they cannot provide any information

about relationships on the predictability at the various levels of protein function-

ality (molecular, cellular, biological), which could be another key element for

determining how the information of the primary structure is related to protein

function.

2.2 Proposed methodology: prediction of GO terms

in Embryophyta organisms with pattern recog-

nition techniques

This section presents an analysis on the predictability of GO terms over the

Embryophyta group of organisms, which is composed by the most familiar group

of plants including trees, flowers, ferns, mosses, and various other green land

plants. The analysis provides the following key elements: predictions are made

by using features extracted solely from primary structure information; analysis

comprises most of the available organisms belonging to the Embryophyta group;

biases due to protein families are avoided by considering only proteins with low

similarity among them and a strong evidence of existence; predictions and analysis

are made over a set of categories belonging to the three ontologies; proteins are

allowed to be associated to several GO terms simultaneously.

Results from this chapter answer whether it is possible to predict most GO-

slim terms from primary structure information, what categories are more suscep-

tible to be predicted, which ontology is most related to the information contained

in the primary structure and what relationships among ontologies could be influ-

encing the predictability at different levels of protein functionality in land plants.

The implemented methodology for assessing predictability of GO terms in

Embryophyta proteins comprises the following parts: (i) selection of the pro-

tein sequences conforming the database in order to cover the highest number of

available plant proteins, while ensuring high confidence annotations and avoiding

possible biases; (ii) categories describing positive and negative samples associated

to each GO term are determined in order to minimize the impact of hierarchical
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relationships; (ii) protein sequences are mapped into feature vectors that encode

a number of attributes of varied nature; (iii) computed features are clustered into

groups of similar information content; (iv) one binary classifier is learned for each

GO term and each feature cluster in order to evaluate the prediction power of

individual clusters, and finally (v) one binary classifier is learned for each GO

term using the whole set of features in conjunction with an automatic feature se-

lection strategy in order to determine the global predictability of each GO term.

The following subsections describe the methods employed for each part of the

methodology.

2.2.1 Database

The database comprises all the available Embryophyta proteins at UniProtKB/Swiss-

Prot database (Jain et al., 2009, file version: 10/01/2013), with at least one an-

notation in the Gene Ontology Annotation (GOA) project (Barrell et al., 2008,

file version: 7/01/2013). The resulting set comprises proteins from 189 different

land plants.

In order to avoid the presence of protein families that could bias the results,

the dataset was filtered at several levels of sequence identity using the Cd-Hit

software (Li and Godzik, 2006). The main results are reported for the lowest

identity cutoff (30%). However, additional analyses at 40%, 50%, 60%, 70% and

80% were also performed in order to provide further information on the robustness

of the method. It is important to mention that, according to (Petsko and Ringe,

2004)[chapter 4], function can be inferred from homology based transfer methods

in cases where a protein has more than about 40% sequence identity to another

protein whose biochemical function is known, and if the functionally important

residues are conserved between the two sequences. Identities under 40% do not

allow to make function prediction with high confidence when using the classical

methods.

The main set comprises a total of 3368 protein sequences, from which 1973

sequences are annotated with molecular functions, 2210 with cellular compo-

nents and 2798 with biological processes. Finally, it is also important to clar-

ify that, although computational and indirectly derived annotations increase
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coverage significantly, they probably contain a higher portion of false positives

(Rhee et al., 2008). Consequently, annotations associated to evidence codes from

automatically-assigned annotations were not included in the analyses.

2.2.2 Definition of classes

Although, in principle, the method can be trained to predict any GO term for

which there are enough training sequences, all tests were performed over the

set of categories defined by the plants GO slim developed by The Arabidopsis

Information Resource - TAIR (Berardini et al., 2004, file version: 14/03/2012).

This choice was made because GO includes a large number of categories that

do not occur in plants, due to its broad size. In turn, slims are smaller, more-

manageable sub-sets of GO, that focus on terms relevant to a specific problem

or data set (Davis et al., 2010), thus allowing to generate higher-level annotation

more robust to tests of statistical significance (Rhee et al., 2008).

Positive and negative samples associated to each GO term are selected by

considering the propagation principle of GO in order to avoid hierarchical rela-

tionships. Otherwise, as members of child categories are also included on parent

categories, classes would be totally overlapped and no standard classification tool

could be successful. If a protein is predicted to be associated to any given GO

term, it must be automatically associated to all the ancestors of that category

and thus, it is enough to predict only the lowest level entries. Consequently, for

each GO term, positive samples are all those proteins that have been annotated

with this term or any of its descendants, excepting those descendants that are also

included as categories. All the remaining samples in the database are selected

as negative samples for that GO term. It is very important to keep in mind the

interpretability implications of this procedure, in order to correctly understand

posterior results. As said before, GO slims are reduced versions of GO, where

more specific terms have been collapsed up into parent terms. For instance, the

term “nucleic acid binding” has five children in the original GO molecular func-

tion ontology, while it only has three children in the plants GO slim, what means

that the remaining two children were merged up into the parent. After removing
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redundant entries, sequences remaining in “nucleic acid binding” category are pre-

cisely the ones associated to that two merged categories, as well as to every other

function not explicitly listed in GO. For that reason, a correct interpretation of

this category should be now “other members of nucleic acid binding”, clarifying

the disruption with the three explicit children. For avoiding possible confusions,

redefined classes are marked with an asterisk throughout the document.

After defining the membership of the sequences, categories with less than 30

proteins were discarded because they did not have enough samples to train a

statistically reliable classifier. The final set is thus comprised by 14 GO terms in

the molecular function ontology, 20 GO terms in the cellular component ontology

and 41 GO terms in the biological process ontology. Table 2.1 shows the final list

of categories, as well as the acronyms used to cite them throughout this paper

and the number of samples in each one for the 30% identity cutoff.

2.2.3 Characterization of protein sequences

Protein sequences were mapped into feature vectors by extracting three types of

attributes: physical-chemical features, primary structure composition statistics

and secondary structure composition statistics (see Table 2.2).

The first group is intended to provide information directly related with bio-

chemistry of the molecule and is constituted by six properties related to basic

physical-chemical attributes of amino acids. Weight of the sequence is influenced

by the size of the constituent amino acids; polarity of amino acid side chains

determines the percentage of positively and negatively charged residues in the

sequence; acidic or basic nature of amino acids determines the isoelectric point

of the sequence and grand average of hydropaticity index (GRAVY) measures

whether the protein is hydrophobic (positive GRAVY) or hydrophilic (negative

GRAVY).

The second group of features is based on the increasing use of document classi-

fication techniques for protein sequence classification (Cheng et al., 2005; Ganap-

athiraju et al., 2005), where characterization is done by counting the occurrences

of all possible subsequences of a fixed length n, called n-grams or n-mers, over

the primary structure of the protein. In this work, only features corresponding
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Table 2.1: Definition and size of the classes. The list of GO terms covered by
this analysis is intended to provide a complete landscape of GO predictability at
the three levels of protein functionality in Embryophyta plants. For classification
purposes, classes marked with an asterisk (*) were redefined. The number of
samples in those categories corresponds to the sequences associated to that class
and none of its also listed descendants.

Class Acronym Size Class Acronym Size

Molecular Function Biological Process

Nucleotide binding Ntbind 47 Reproduction* Reprod* 337

Molecular function* MF* 268 Carbohydrate metabolic process ChMet 315

DNA binding DnaBind 107 Generation of precursor metabolites
MetEn 150

Transcription factor activity TranscFact 307 and energy
RNA binding RnaBind 43 Nucleobase, nucleoside, nucleotide,

NaMet* 712
Catalytic activity* Catal* 334 nucleic acid metabolic process*
Receptor binding RecBind 38 DNA metabolic process DnaMet 191

Transporter activity Transp 125 Translation Transl 82

Binding* Bind* 173 Protein modification process ProtMod 391

Protein binding* ProtBind* 630 Lipid metabolic process LipMet 324

Kinase activity Kinase 68 Transport Transport 531

Transferase activity* Transf* 173 Response to stress StressResp 790

Hydrolase activity Hydrol 190 Cell cycle CellCycle 234

Enzyme regulator activity EnzReg 41 Cell communication* CellComm* 66

Signal transduction SigTransd 305

Cell-cell signaling Cell-cell 53

Cellular Component Multicellular organismal development* MultDev* 490

Cellular component* CC* 234 Biological process* BP* 879

Extracellular region ExtcellReg 109 Metabolic process* Met* 279

Cell wall CellWall 77 Cell death CellDeath 95

Intracellular* Intracell* 167 Catabolic process Catabolic 479

Nucleus* Nucleus* 421 Biosynthetic process* Biosint* 1125

Nucleoplasm NuclPlasm 51 Response to external stimulus* ExtResp* 65

Nucleolus Nucleolus 84 Tropism Tropism 36

Cytoplasm* CitPlasm* 168 Response to biotic stimulus BioResp 275

Mitochondrion Mitochond 244 Response to abiotic stimulus AbioResp 642

Endosome Endosome 58 Anatomical structure morphogenesis StrMorph 366

Vacuole Vacuole 171 Response to endogenous stimulus EndoResp 332

Peroxisome Peroxisome 32 Embryonic development EmbDev 139

Endoplasmatic reticulum EndRet 109 Post-embryonic development* PostDev* 375

Golgi apparatus GolgiApp 100 Pollination Poll 43

Cytosol Cytosol 389 Flower development FlowerDev 228

Ribosome Ribosome 98 Cellular process* CP* 1486

Plasma membrane PlasmMb 353 Response to extracellular stimulus ExtcellResp 59

Plastid Plastid 696 Photosyntesis Photosyn 102

Thylakoid Thylk 147 Cellular component organization CellOrg 757

Membrane* Mb* 472 Cell growth CellGrowth 133

Protein metabolic process* ProtMet* 187

Cellular homeostasis CellHom 53

Secondary metabolic process SecMet 164

Cell differentiation CellDiff 267

Growth* Growth* 64

Regulation of gene expression,
RGE 103

epigenetic
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Table 2.2: Initial set of features extracted from amino acid sequences. Fea-
tures are divided into three broad categories: physical-chemical features, primary
structure composition statistics and secondary structure composition statistics.

Nature Description Number

Physical-chemical

Sequence length 1
Molecular weight 1
Positively charged residues (%) 1
Negatively charged residues (%) 1
Isoelectric point 1
GRAVY 1

Primary structure statistics
Amino acid frequencies 20
Amino acid dimer frequencies 400

Secondary structure statistics
Structure frequencies 3
Structural dimer frequencies 9

Total 438

to n = {1, 2} are employed, provided that the size of the feature space grows

exponentially with n. Simple countings were converted to relative frequencies

(summing to one) in order to obtain information relative to the sequence compo-

sition more than simple presence statistics.

The third group is analog to the second one, but applying the n-gram charac-

terization to the predicted secondary structure of the protein. Predictions were

calculated by employing the Predator 2.1 software (Frishman and Argos, 1997),

whose output is a linear sequence with three structural domains: alpha helices,

beta sheets and coils. It is worthy to note that even though this group of features

were computed over secondary structure information, they must be still consid-

ered as derived from primary structure because there is no full certainty about

correctness of the secondary structure prediction.

It is important to point out that in the case of ambiguity characters in the se-

quence, that is, characters used to denote lack of information at certain positions

(B for asparagine or aspartic acid, J for isoleucine or leucine, Z for glutamine or

glutamic acid, X for any amino acid), each feature was computed as its statistical

expected value with natural abundance percentages of amino acids as their prior

probabilities (Buxbaum, 2007, chapter 1). Additionally, since different groups of

features are very heterogeneously scaled (for instance, sequence length is ranged
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Table 2.3: Description of the clusters of features with similar information con-
tent

Group Main feature Size Group Main feature Size

1 Protein length 34 9 Proline 14
2 Negative charge / Acidic 8 10 Glutamine 35
3 Positive charge / Basic 30 11 Arginine 26
4 Alanine 10 12 Tryptophan 38
5 Cysteine 38 13 Tyrosine 35
6 Hidrophobic 46 14 Alpha helices 6
7 Histidine 29 15 Beta sheets 4
8 Asparagine / Methionine 85

from 7 to 5138, while n-grams are just in the interval from 0 to 1), z-score normal-

ization was performed so that each feature has a zero mean and unitary standard

deviation.

2.2.4 Feature clusters

As a first step to perform an analysis of discriminant features for each GO term,

features were hierarchically clustered into groups of similar information content.

For this purpose, the Ward clustering algorithm was used, with absolute Pearson

correlation distance as metric. This procedure yielded 15 clusters that are sum-

marized in Table 2.3 and are used for assessing the influence of specific feature

groups on the predictability of each category.

2.2.5 Feature selection strategy

The feature selection procedure was carried out before trying to induce any de-

cision rule (classifier), because, having a limited number of training examples,

excessive features (irrelevant or redundant) would possibly overfit the training

data. For this purpose, an analysis of relevance and redundancy was applied.

Let φi, i = 1, 2, . . . , N , be the initial set of features, y be the vector of labels,

cij = cor(φi,φj) be the linear correlation computed between any pair φi and

φj and ciy = cor(φi,y) be the linear correlation between φi and y. Defining

this, relevance of features can be quantified by computing ciy for all features

and then, redundant ones can be identified by analyzing the N × N feature
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correlation matrix. In order to speed up the calculus, an algorithm based on the

Fast Correlation-Based Filter of (Yu and Liu, 2004) was used.

First, an initial feature subset is selected based on a predefined threshold on

ciy. Then, the concept of approximate Markov blanket is used to select predomi-

nant features from this relevant set. As defined by (Yu and Liu, 2004), the feature

φi forms an approximate Markov blanket for φj, (i 6= j) if and only if ciy ≥ cjy

and cij ≥ cjy. This principle states that if the information shared between any

pair of features is less or equal than information shared between one of them and

the class labels, the one with lesser information could be discarded. Since the

feature with highest correlation with the class labels does not have any approxi-

mate Markov blanket, it must be one of the predominant features and is taken as

reference. The algorithm proceeds to compute correlation between the reference

and all the remaining features by decreasing order of relevance; if the reference

happens to form an approximate Markov blanket for some feature φi, the last is

removed from the relevant features set. After one round of filtering features based

on the first relevant one, the algorithm will take the remaining feature right next

to it as the new reference to repeat the filtering process. The algorithm stops

when no more predominant features can be selected.

2.2.6 Decision making

Support vector machines (SVM) were chosen as base classifiers for running all

the supervised tests. SVMs are powerful tools for solving classification problems,

designed over a strong theoretical background based on the idea of minimizing

the structural risk (Vapnik, 1998). For a linear SVM, the objective is to find a

classification function of the form:

f(w,b)(x) = 〈w,x〉+ b (2.1)

where 〈·, ·〉 represents the dot product. Following the notation in section 1.4, a

vector of parameters can be defined as θ = [w, b], and the optimization problem
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can be stated as follows:

θ∗ = argmin
θ∈T

{
1

2
||θ||2 + C

L∑

i=1

ℓ (fθ(xi)yi)

}
(2.2)

where ℓ(t) = max(0, 1−t) is the hinge loss function and C is a trade-off parameter

regulating the complexity of the model. For the non-linear case, the data are first

mapped in a high dimensional Hilbert space H through a mapping Φ : X 7→ H,

and then a linear decision boundary is constructed in that space. The mapping Φ

can be explicitly computed or only implicitly through the use of a kernel function

K such that K(x1,x2) = 〈Φ(x1),Φ(x2)〉. The Representer Theorem can be used

to show that the solution function has the form:

fθ∗(x) =
L∑

i=1

αiK(x,xi) (2.3)

where the coefficients αi can be found with a conventional quadratic optimiza-

tion algorithm. The Gaussian kernel is the most commonly used because of its

attractive features such as structure preservation (Liu et al., 2012). This kernel

is computed by:

K(x1,x2) = e−
‖x1−x2‖

2σ

2

(2.4)

where σ is the dispersion parameter that must be properly chosen by the user. In

this work, the SVM is trained with the ’kernlab’ package, available in R-CRAN

(Karatzoglou et al., 2004). Dispersion of the kernel and trade-off penalization

parameter of the SVM are tuned for each test with a particle swarm optimization

meta-heuristic, a bio-inspired optimization method that has been used in multiple

applications in the past years (Kennedy and Eberhart, 1995).

In order to allow samples to be associated to multiple categories, decision

making was implemented following the one-against-all strategy. The method

produced a strong class imbalance since it trains a number of binary classifiers,

each one intended to recognize samples from one class out of the whole training

set. In other words, since all the proteins outside of the target GO term are

seen as negative samples and there are only a relatively small number of proteins
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annotated with the function, the number of negative samples may be hundreds

and even thousands times the one of positive samples. Therefore, the classifier

may be degraded by the false negative samples or imbalanced data (Zhao et al.,

2008d). To overcome the problems that imbalanced classes commonly produce in

pattern recognition techniques, the Synthetic Minority Over-sampling Technique

(SMOTE) was employed (Chawla et al., 2002).

In order to estimate the performance of the predictive model, a 5-fold cross-

validation strategy is implemented. In such strategy, the test procedure is re-

peated five times, and each time an 80% of the data is used for adjusting the

SVM parameters and training the model, while the remaining 20% is used as

testing samples. This strategy also allows providing an estimation of the relia-

bility of the model by computing the variability of the results through the five

repetitions.

2.3 Results and Discussion

2.3.1 Analysis of predictability with individual feature clus-

ters

Classification results with individual feature clusters, for an identity cutoff of 30%,

are condensed in Figure 2.1. The square root of the product between sensitivity

and specificity (geometric mean), is depicted as global performance measure and

the color scale has been adjusted to highlight the highest (green) and the lowest

(blue) performance. Note that the rows and columns have been ordered to ex-

plicitly locate best predicted GO terms on top and most discriminant groups to

the left.

Figure 2.1(a) shows the analysis for the molecular function ontology. For

all feature groups, Receptor binding achieved the highest classification scores.

This category is intended to comprise proteins that interact selectively and non-

covalently with one or more specific sites on a receptor molecule. About 63%

of the proteins associated to this category in the database are proteins involved

with binding of serine/threonine kinase receptors, which turned out to be easily

predicted from most of the defined features.
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Figure 2.1: Prediction performance with different feature clusters. Rows repre-
sent classes in Table 2.1 while columns represent feature groups in Table 2.3. For
each ontology, best predicted categories are ordered from top to bottom while
most discriminant feature groups are ordered from left to right.
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Transcription factor activity achieved was easily predicted from the feature

groups 1, 3, 6, 8 and 14. Not so surprising is the fact that DNA binding also

presents a similar behavior since most transcription factors must interact with

DNA molecules and consequently they are also included in this category. However

it is worthy to note that several other proteins also perform DNA cleavage, such

as polymerases, nucleases and histones, and they were also well predicted from the

same feature groups. The conclusion from these results becomes more evident

by observing the results of the DNA metabolic process in Figure 2.1(c), which

confirm the high predictability of all proteins involved with transcription when

using the mentioned features groups. A similar behavior is also observed for

nucleus* in Figure 2.1(b), supported by the fact that the transcription process is

mostly carried out in that sub-cellular location.

Transporter activity refers to proteins that enable the directed movement of

substances into, out of, within or between cells. Most of them are integral trans-

membrane proteins, that are distinguished by their high content of hydrophobic

residues (Whitford, 2005). In fact, some of the highest performance of transporter

activity were reached with the groups 3 and 6, which include GRAVY index as

well as monomer and dimer frequencies of three out of the four most hydropho-

bic residues: leucine, isoleucine and phenylalanine. Additionally, predictability

of this molecular function is reflected, while in a minor degree, on the transport

biological process, which reaches its highest values for the same feature groups

(see Figure 2.1(c)). The main difference between those GO terms lies in that

transport is a broader category, including external agents such as oxygen carriers

and lipoproteins that perform transport within multicellular organisms.

On the other hand, the root node of the molecular function ontology was

GO terms with the lowest average prediction performance. Remember that the

root node contains the proteins that do not belong to any of its descendant

categories, so it keeps a small set of sequences of a sparse nature, which explains

the impossibility to model and predict them as a group. It is interesting to note

that the same behavior is observer for the other two ontologies (figures 2.1(b)

and 2.1(c)).

Concerning the cellular component ontology, it can be observed in Figure

2.1(b) that ribosome category has reached the highest classification accuracies,
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specially with groups 1, 2, 3 and 11. Such groups mainly consist of the four

charged residues: lysine, arginine, glutamic acid and aspartic acid. This can

be explained since ribosomal proteins must interact with the negatively charged

phosphodiester bonds in the RNA backbone, so they are expected to have a

high percentage of positively charged residues to neutralize such charge repulsion.

In agreement with this, (Whitford, 2005) describes the composition of isolated

ribosomal proteins as showing a high percentage of lysine and arginine residues

and a low aromatic content. Hence, there is enough evidence to establish that

ribosomal proteins are another highly predictable category from primary structure

information.

As explained before, nucleus* becomes easily predicted from the same fea-

ture groups that have shown high discriminant capabilities for transcription re-

lated proteins. A similar behavior is also observed for proteins belonging to the

nucleolus component, which encompasses proteins including RNA polymerases,

transcription factors, processing enzymes and ribosomal proteins among others,

which must interact with nucleic acids and have shown low isoelectric points in

comparison to the remaining proteins in the database.

Thylakoid proteins also presented high prediction performance with several

feature groups. Further studies would be required to explain this results.

Broad categories such as membrane* showed poor performance with most

feature groups, presumably due to its high diversity. However, some rather well-

defined categories such as mitochondrion and perixosome were also ranked in the

lowest places in figure 2.1(b), simply proving to be poorly predictable from the

extracted feature groups.

Concerning figure 2.1(c), the biological process that was better predicted for

most group features is regulation of gene expression, epigenetic. This GO term

encloses proteins involved in modulating the frequency, rate or extent of gene

expression and is highly composed by histones. In fact, since histones are highly

alkaline proteins, it is consistent to observe that this category became particularly

well predicted from groups 3, 6 and 7, which are mainly conformed by frequencies

of phenylalanine, leucine, isoleucine, lysine and histidine residues. Also, cysteine

related frequencies were highly discriminant for regulation of gene expression,

epigenetic (group 5 which can be explained by the fact that altering the redox
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state of cysteines serves for modulating protein activity, and several transcription

factors become activated by the oxidation of cysteines that form disulfide bonds

(Arrigo, 1999).

Tropism and Cell Cycle also appeared near the top of figure 2.1(c), just before

DNA metabolic process which was already discussed.

2.3.2 Analysis of predictability with the full set of features

Analyses in the previous section were done after discarding sequences with iden-

tities superior to 30%. Otherwise, the predictability of certain terms could be

enhanced from the fact that many proteins in training and testing sets are copies

(or close relatives) from another, rather than from predictive value of certain

sequence-derived features. However, in order to provide further information on

the robustness of the proposed methodology when the identity cutoff changes,

Figure 2.2 presents an analysis of predictability with the full feature set (al-

though applying the feature selection procedure described in the methods sec-

tion), while varying the identity cutoff. For comparison purposes, results achieved

by BLASTP are depicted in blue, while results of the proposed methodology are

depicted in green. The first thing that can be noted from Figure 2.2 is the fact

that alignment-based predictions are more sensitive to the variation of the identity

percentage than the proposed methodology. It can be clearly seen that BLASTP

suffers a strong performance degradation as the identity filter is more stringent,

while the performance of the proposed methodology remains more stable. More-

over, although in Figure 2.2(a) it can be seen that, when predicting molecular

functions, BLASTP is superior than the proposed methodology for high iden-

tity cutoffs, the difference at 30% is not statistically significant. Conversely, the

proposed methodology clearly outperforms BLASTP for low identity percentages

when predicting cellular components and biological processes (figures 2.2(b) and

2.2(c)).

Figure 2.3 depicts detailed results of predicting each class with the full feature

set for an identity cutoff of 30%. Left plots show sensitivity, specificity and geo-

metric mean (green line) achieved with the five-fold cross-validation procedure, as

well as the performance of the BLASTP algorithm for comparison purposes (blue
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Figure 2.2: Performance variation in function of the identity cutoff. Green and
blue plots show the variation of the general prediction performance for SVM and
BLASTP, respectively, according to the identity percentage cutoff used in the
dataset. Boxplots show the dispersion throughout the 75 GO terms.
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line). Right plots depicts the corresponding p-values obtained from a paired t-test

between the BLASTP method and the SVM. The dashed black line is located

at 0.95 and the colored bars indicate which values are statistically significant at

a 95% significance level. Green bars show the cases when the SVM method is

significantly better than BLASTP, while blue bars show otherwise.

Note that GO terms were ordered again from top to bottom according to

their predictability, but this order is not strictly the same as in Figure 2.1. Some

interesting results in figure 2.3(b) are provided by categories such as plastid, which

was not easily predicted with any feature set independently, but reached medium

to high classification results when the complete set was used. Such behavior

is a clear example of the multivariate associations that could be missed when

analyzing only individual feature sets.

Other results were consistent with the insights provided by the previous anal-

yses, showing that some of the best predicted GO terms were transporter activity,

transcription factor activity, and DNA binding in molecular functions; ribosome,

nucleus*, nucleolus and thylakoid in cellular components; regulation of gene ex-

pression, epigenetic, Cell cycle, Photosyntesis and DNA metabolic process in bi-

ological processes.

A reduced number of categories had performance under 50%, most of them

from the biological process ontology and a few form the molecular function ontol-

ogy. It is important to note that the majority of those categories achieved very

high specificities and low sensitivities, pointing out to a high dispersion of such

categories over the feature space, which yields to a very high number of false neg-

atives. Also, the high dispersions observed in the boxplots for some of the worst

predicted classes demonstrate that there is a high variability among repetitions of

the experiment which means that those low performance are not confident. Con-

versely, the categories with high performance show also low dispersions associated

to them, hinting consistency in the predictors.

Although the main purpose of this chapter is not to design a highly accurate

GO term predictor, but to provide a comprehensive analysis of the predictability

of GO terms from primary structure information, it is important to mention how

this method compares with currently used prediction tools. The blue and green

lines in Figure 2.3 represent the prediction performance of BLASTP and the SVM
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Figure 2.3: Prediction performance with the complete set of features. Bars in
the left plots show sensitivity and specificity of SVMs. Lines depict geometric
mean as a global performance measure for SVM (green) and BLASTP (blue).
Right plots depict the p-values obtained by paired t-tests at a 95% significance
level. For each ontology, the best predicted categories are ordered from top to
bottom.

./Figuras/MF.E4.nr30.pv.eps
./Figuras/CC.E4.nr30.pv.eps
./Figuras/BP.E4.nr30.pv.eps


2.4. Concluding remarks 43

based predictor used in this work, respectively. Both methods were tested over the

same database described in the methods section. From Figure 2.3(a) it is possible

to conclude that the two methods provide similar prediction capabilities for the

molecular function ontology at this identity cutoff, with the SVM significantly

outperforming BLASTP only for two molecular functions, while the opposite

case occurs for three cases. In eight out of fourteen molecular functions, there is

no statistically significant difference between the methods. On the other hand,

figures 2.3(b) and 2.3(c) show that the SVM out-performed BLASTP for most

cellular components and biological processes, with only a few exceptions. It is

also important to point out that the results achieved here are competitive with

those reported by (Chou and Shen, 2010), which is one of the more recent and

effective predictors dedicated to plant proteins.

Finally, Figure 2.4 depicts the accuracy obtained in each category, when pre-

dictions of inferior GO terms were propagated up to their parents. Observe that

asterisks have been removed to point out that GO terms are now including all

their descendants.

It is notable how categories with the major number of descendants have been

negatively affected by their false positives. This is especially observed in Figure

2.4(b) for cytoplasm, and intracellular, and Figure 2.4(c) for cellular process and

metabolic process. Conversely, a few classes that were lacking sensitivity were

favored by the contributions of their descendants, as it is the case of the root

nodes of the ontologies.

2.4 Concluding remarks

An analysis of GO terms predictability in land plants proteins was carried out in

order to determine single categories or groups of related functions that are more

related with primary structure information. For this purpose, pattern recogni-

tion techniques were employed over a feature set of physical-chemical and sta-

tistical attributes computed over the primary structure of the proteins. High

predictability of several GO terms was observed in the three ontologies. Proteins

associated to transport activities showed high correct prediction rates when using

hydropathicity related features. Also, proteins involved with transcription (and
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Figure 2.4: Propagated prediction performance. Prediction performance when
propagating predictions of children nodes to their parents. Note that asterisks in
the category names have been removed since categories include all their member
now.
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therefore associated to the nucleus) presented high discriminability from the ex-

tracted features. Ribosomal and other proteins involved with translation, proved

to be highly predictable from features related to electric charges of the amino acid

sequence. At the biological process level, proteins related to regulation of gene

expression and nucleic acid metabolic process were easily predicted, while some

other biological processes showed low predictability from the extracted primary

structure features.





Chapter 3

Semi-supervised Gene Ontology

prediction for Embryophyta

organisms

Supervised machine learning uses a labeled set of instances to train the classifier.

Labeled instances, however, are often difficult, expensive, or time consuming to

obtain, as they require the efforts of experienced human annotators. Meanwhile

unlabeled data may be relatively easy to collect, but there has been few ways to

use them (Zhu, 2007).

In the particular case of protein function prediction, it is a known fact that

only a small number of proteins have actually been annotated for certain func-

tions. Therefore, it is difficult to obtain sufficient training data for the supervised

learning algorithms and, consequently, the tools for protein function prediction

have very limited scopes (Zhao et al., 2008c). Besides, it is particularly hard to

find the representative negative samples because the available information in the

annotation databases, such as Gene Ontology (GO) (The Gene Ontology Con-

sortium, 2004), only provides information about which protein belongs to which

functional class but there is no certainty about which protein does not belong to

the class (Zhao et al., 2008a). To see this, consider the functional path of a GO

term as the path on the ontology from the root to the node representing that GO

term. Since the current functional annotation might be incomplete, it is hard to
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justify whether or not the proteins annotated with the nodes on the functional

paths of a GO node (the ancestors of the term) would belong to this GO node if

a deeper study was performed. Therefore these proteins must only be considered

as unlabeled samples regarding that GO term (Bi et al., 2007).

Under such circumstances, semi-supervised learning methods provide an al-

ternative approach to protein annotation (Zhao et al., 2008c). Semi-supervised

learning (SSL) is halfway between supervised and unsupervised learning: in ad-

dition to labeled data, the algorithm is provided with an amount of unlabeled

data that can be used to improve the estimations about the data. This chap-

ter presents an analysis of the predictability of GO terms with semi-supervised

learning methods, also providing an analysis of the assumptions that the different

methods do, in order to understand their successfulness.

3.1 State of the art in semi-supervised classifica-

tion

The idea of using both labeled and unlabeled data for designing robust predic-

tors has been on the machine learning community since around the middle sixties

with several proposals on self-training, where a supervised learning method is

iteratively re-trained with its own predictions over a set of unlabeled data for

successively refining the final output (see, for example, Scudder III (1965) and

Fralick (1967)). Later, the work in semi-supervised learning moved to the gen-

erative models, considering that each class has a Gaussian distribution. This is

equivalent to assuming that the complete data comes from a mixture model and,

with large amount of unlabeled data, the mixture components can be identified

with the expectation-maximization (EM) algorithm (McLachlan and Krishnan,

2007; Miller and Uyar, 1996). The interest in semi-supervised learning increased

in the nineties, mostly due to applications in natural language problems and text

classification (Blum and Mitchell, 1998; Joachims, 1999). According to Chapelle

and Schölkopf (2006), the work by Merz et al. (1992) was the first to use the

term “semi-supervised” for classification with both labeled and unlabeled data.
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A more complete historical perspective of semi-supervised learning can be found

on (Chapelle and Schölkopf, 2006, chapter 1).

One significant difference between supervised and semi-supervised methods is

that, unlike supervised learning, in which a good generic learning algorithm can

perform well on a lot of real-world data sets without specific domain knowledge,

in semi-supervised learning there is commonly accepted that there is no “black

box” solution and a good understanding of the nature of the data is required to

achieve successful performance (Chapelle and Schölkopf, 2006, Chapter 21). This

is mainly due to the fact that, in order to deal with labeled and unlabeled data,

current semi-supervised algorithms have to make strong assumptions about the

underlying joint probability measure P (X,Y) e.g. a relation of the probability

of the feature space P (X) and the joint probability of the feature space and the

label set P (Y,X). There are several different semi-supervised learning methods,

and each one makes different assumptions about this link. These methods include

generative models, graph-based models, semi-supervised support vector machines,

and so on (Zhu and Goldberg, 2009).

The main assumption made by semi-supervised learning algorithms is the

“semi-supervised smoothness assumption” (Chapelle and Schölkopf, 2006, chapter

1):

Semi-supervised smoothness assumption: If two points x1, and x2 in a

high-density region are close, then so should be their corresponding label

sets y1, y2. Note that by transitivity, this assumption implies that if two

points are linked by a path of high density (e.g., if they belong to the same

cluster), then their outputs are likely to be close. If, on the other hand,

they are separated by a low-density region, then their outputs need not be

close.

Such assumption originates the two common assumptions used in semi-supervised

learning:

Cluster assumption: If points are in the same cluster, they are likely to be

of the same class. This assumption does not imply that each class forms

a single, compact cluster, it only means that thera are no instances of
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two distinct classes in the same cluster. The cluster assumption can be

formulated in an equivalent way:

Low density separation: The decision boundary should lie in a low-density

region.

Manifold assumption: The (high-dimensional) data lie (roughly) on a low-

dimensional manifold. Instances that are close according to the manifold

geodesic distance are likely to be of the same class.

According to each assumption, there are three main families of semi-supervised

methods: generative methods (cluster assumption), density-based methods (low

density separation), and graph-based methods (manifold assumption). In the

following sub-sections each family of methods will be reviewed, emphasizing on

the assumptions made by each one. It should be pointed out that, since semi-

supervised learning is a rapidly evolving field, the review is necessarily incomplete.

A wider review in this matter can also be found on (Zhu and Goldberg, 2009).

3.1.1 Generative methods

Generative methods follow a common strategy of augmenting the set of labeled

samples with a large set of unlabeled data and combining the two sets with

the Expectation-Maximization algorithm, in order to improve the parameter es-

timates Cozman et al. (2003). They assume a probabilistic model p(x, y) =

p(y)p(x|y), where p(x|y) is an identifiable mixture distribution. The most com-

monly employed distributions are the Gaussian Mixture Models:

p(x|y) =
K∑

k=1

πkN(x|θ) (3.1)

where N(x|θ) is the gaussian distribution with parameters θ = [µk,Σk], being µk

the mean vector and Σk the covariance matrix of the k−th Gaussian component,

and πk the mixing components such that
∑K

k=1 πk = 1 for k = 1, 2, . . . , K.

Ideally only one labeled example per component is needed to fully determine

the mixture distribution. In this setting, any additional information on p(x)
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is useful and the EM algorithm can be used for estimating θ. A strength of

the generative approach is that knowledge of the structure of the problem or the

data can naturally be incorporated by modeling it (Chapelle and Schölkopf, 2006,

chapter 1). However, generative techniques provide an estimate of p(x) along the

way, although this is not required for classification, and in general this proves

wasteful given limited data. For example, maximizing the joint likelihood of a

finite sample need not lead to a small classification error, because depending on

the model it may be possible to increase the likelihood more by improving the fit

of p(x) than the fit of p(y|x) (Chapelle and Schölkopf, 2006, chapter 2).

The aforementioned works of Miller and Uyar (1996) and McLachlan and

Krishnan (2007), among others, shown to be strong methods for classifying text

data. Also, Nigam et al. (2000) have applied the EM algorithm on mixture of

multinomial for the task of text classification, showing better performance than

those trained only from the supervised set. Fujino et al. (2005) extend generative

mixture models by including a “bias correction” term and discriminative training

using the maximum entropy principle. However, anecdotal evidence is that many

more studies were not published because they obtained negative results, showing

that learning a mixture model will often degrade the performance of a model fit

using only the labeled data (Zhu and Lafferty, 2005); one published study with

these conclusions is Cozman et al. (2003). This is due to the strong assumption

done by generative methods: that the data actually comes from the mixture

model, where the number of components, prior p(y), and conditional p(x|y) are

all correct (Zhu and Goldberg, 2009).

3.1.2 Density-based methods

With the rising popularity of support vector machines (SVMs), Semi-Supervised

SVMs (S3VMs) emerged as an extension to standard SVMs for semi-supervised

learning. S3VMs find a labeling for all the unlabeled data, and a separating

hyperplane, such that maximum margin is achieved on both the labeled data and

the (now labeled) unlabeled data. As a result, unlabeled data guides the decision

boundary away from dense regions. The assumption of S3VMs is that the classes

are well-separated, such that the decision boundary falls into a low density region
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in the feature space, and does not cut through dense unlabeled data (Zhu and

Goldberg, 2009, chapter 6).

In a similar way than the conventional SVMs described in section 4.1.2, the

optimization problem for an S3VMs can be stated as follows:

θ∗ = argmin
θ∈T

{
1

2
||θ||2 + C

L∑

i=1

ℓ (fθ(xi)yi) + λ
L+U∑

i=L+1

ℓ (|fθ(xi)|)

}
(3.2)

where ℓ(t) = max(0, 1− t) is the hinge loss function, C is the trade-off parameter

and λ is a new regularization parameter. The first two terms in the above equation

correspond to the traditional solution for the standard supervised SVM shown in

equation (2.2), while the last term puts fθ(xi) of the unlabeled points xi away

from 0 (thereby implementing the low density assumption) (Chapelle et al., 2006).

Again, as in the supervised case, the kernel trick can be used for constructing

non-linear S3VMs. While the optimization in SVM is convex and can be solved

with QP-hard complexity, optimization in S3VM is a non-convex combinatorial

task with NP-Hard complexity. Most of the recent work in S3VM has been fo-

cused on the optimization procedure (a full survey in this matter can be found in

(Chapelle et al., 2008)). Among the proposed methods for solving the non-convex

optimization problem associated with S3VMs, one of the first implementations is

the S3VMlight by (Joachims, 1999), which is based on local combinatorial search

guided by a label switching procedure. Chapelle and Zien (2005) presented a

method based on gradient descent on the primal, that performs significantly bet-

ter than the optimization strategy pursued in S3VMlight; the work by Chapelle

et al. (2006) proposes the use of a global optimization technique known as “con-

tinuation”, often leading to lower test errors than other optimization algorithms;

Collobert et al. (2006) uses the Concave-Convex procedure, providing a highly

scalable algorithm in the nonlinear case.

Other recent proposals include (Li et al., 2010) which focuses on the class-

imbalance problem and proposes a cost-sensitive S3VM; Qi et al. (2012) which

describes laplacian twin support vector machines; and several approaches to adap-

tive regularizations like (Xu et al., 2009) and (Wang et al., 2011).
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3.1.3 Graph-based methods

Graph-based methods start with a graph where the nodes are the labeled and

unlabeled data points, and (weighted) edges reflect the similarity of nodes. The

assumption is that nodes connected by a large-weight edge tend to have the same

label, and labels can propagate throughout the graph. In other words, graph-

based methods do the assumption that labels are “smooth” with respect to the

graph, such that they vary slowly on the graph. That is, if two instances are

connected by a strong edge, their labels tend to be the same (Zhu and Goldberg,

2009, chapter 5).

This family of methods enjoy nice properties from spectral graph theory. They

commonly use an energy function as objective in the optimization problem, en-

suring that the labels will change slowly through the graph (consequently im-

plementing the manifold assumption) (Hein et al., 2005). Some common graphs

include the following (Zhu and Goldberg, 2009, chapter 5):

Fully connected graphs: The graph needs to be weighted so that similar nodes

have large edge weight between them. The disadvantage is in computational

cost as the graph is dense. A common choice in this case is the “exp-weighted

graph” where the weights between instances xi and xj are defined as:

Wij = exp(−
‖xi − xj‖

2

2α
) (3.3)

where α is a bandwidth hyperparameter that controls the decay rate.

Sparse graphs: In this kind of graphs each node connects to only a few nodes,

making them computationally fast. They also tend to enjoy good empirical

performance. There are two common choices: k−NN graphs and ǫ−NN

graphs. In the former, instances xi and xj are connected by an edge if

any of them are included into the k nearest neighbors of the other. k is a

hyperparameter that controls the density of the graph. Small k may result

in disconnected graphs. For ǫ−NN graphs, xi and xj are connected by

an edge, if the distance ‖xi − xj‖ ≤ ǫ. The hyperparameter ǫ controls

neighborhood radius.
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A graph is represented by the (L+U)× (L+U) weight matrix W , Wij = 0 if

there is no edge between instances xi and xj. Once the graph has been defined,

a real function over the nodes can be defined fθ : X → R. In order to achieve

that unlabeled points that are similar (as determined by the edges of the graph)

to have similar labels, the quadratic energy function can be used as objective:

θ∗ = argmin
θ∈T

{
1

2

∑

ij

Wij(fθ(xi)− fθ(xj))
2

}
(3.4)

Since this objective function is minimized by constant functions, it is necessary

to constrain fθ to take values fθ(xi) = yi, for all the labeled data xi ∈ XL. Finally,

let D be the diagonal degree matrix, where Dii =
∑

j Wij is the degree of node

xi. The combinatorial Laplacian ∆ is defined as:

∆ ≡D −W (3.5)

and it is easy to verify that:

θ∗ = argmin
θ∈T

{
fT
θ
∆fθ

}
(3.6)

There are many related methods that exploit the idea of obtaining a target

function being smooth on the graph. Such methods include, among others, the

Mincut (Blum and Chawla), which partitiones the graph for minimizing the num-

ber of pairs of linked instances with different labels; graph random walks (Azran,

2007); harmonic functions (Zhu and Lafferty, 2005); local and global consistency

(Zhou et al., 2004) and manifold regularization (Belkin et al., 2006; Sindhwani

et al., 2006). Some more recent proposals have focused on the problem of large

graph construction, like Liu et al. (2010) and Lin (2012).

Most graph-based methods are inherently transductive, giving predictions for

only those points in the unlabeled set, and not for an arbitrary test point. The

simplest strategy for extending the method for unseen data is by dividing the

input space into Voronoi cells centered on the labeled instances. From an algo-

rithmic point of view, this strategy is equal to classify instances by its 1-nearest-

neighbor. Zhu and Lafferty (2005) proposed an approach that combines genera-

tive mixture models and discriminative regularization using the graph Laplacian
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in order to provide an inductive model. Laplacian SVMs, proposed by Belkin

et al. (2006), provides a natural inductive algorithm since it uses a modified SVM

for classification. The optimization problem in this case is regularized by the

introduction of a term for controlling the complexity of the model according to

equation (3.6):

θ∗ = argmin
θ∈T

{
∑

i

ℓ (fθ(xi)yi) + λ
∑

ij

Wij (fθ(xi)− fθ(xj))
2

}
(3.7)

where Wij is the weight between the i−th and j−th instances in the graph and λ is

again a regularization parameter. A lot of experiments show that Laplacian SVM

achieves state of the art performance in graph-based semi-supervised classification

Qi et al. (2012).

3.1.4 Applicatons of semi-supervised learning for protein

function prediction

A few semi-supervised methods have been applied for both gene function predic-

tion (over the DNA sequence) and protein function prediction (over the amino

acids sequence). Kasabov and Pang (2003) used a S3VMs for promoter recogni-

tion, improving predictive performance by 55% over the standard inductive SVM

results. Li et al. (2003) used a “co-updating” schema of two SVMs, each one

trained over a different source of data, for discriminating among five functional

classes in the yeast genome. For the problem of predicting the functional proper-

ties of proteins, Krogel and Scheffer (2004) conducted an extensive study on the

caveats of incorporating semi-supervised learning and transduction for predict-

ing various functional properties of proteins corresponding to genes in the yeast

genome, founding that S3VMs significantly decrease performance compared to in-

ductive SVMs. Shin and Tsuda (2006) used graph-based semi-supervised learning

for functional class prediction of yeast proteins, using protein interaction networks

for obtaining the graphs.

More recently, King and Guda (2008) proposes a generative semi-supervised

method for protein functional classification and provide experimental results of
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classifying a set of eukaryotic proteins into seven subcellular locations from the

Cellular Component ontology of GO. Zhao et al. (2008b) proposed a new algo-

rithm to define the negative samples in protein function prediction. In detail,

the one-class SVMs and two-class SVMs are used as the core learning algorithm

in order to identify the representative negative samples so that the positive sam-

ples hidden in the unlabeled data can be recovered. Shin et al. (2009) propose

a method for integrating multiple graphs within a framework of semi-supervised

learning and apply the method to the task of protein functional class predic-

tion in yeast. The proposed method performs significantly better than the same

algorithm trained on any single graph.

3.2 Proposed methodology: semi-supervised learn-

ing for predicting gene ontology terms in Em-

bryophyta plants

3.2.1 Selected semi-supervised algorithms

In order to test the efficiency of semi-supervised learning in the task of predicting

protein functions, two state of the art methods were chosen, each one imple-

menting a different semi-supervised assumption: S3VM following the concave-

convex optimization procedure (CCP) (Collobert et al., 2006) (implementing the

low-density separation assumption and consequently the cluster assumption) and

Laplacian-SVM Belkin et al. (2006) (implementing the manifold assumption).

CCP S3VM: The S3VM proposed by (Collobert et al., 2006; Sinz et al., 2007)

was chosen since it provides high scalability in the nonlinear case, making

it the most suitable choice for the amounts of Embryophyta proteins in the

databases used in this work. Consider the set of labeled points XL = {xi}
L
i=1

for which labels {yi}Li=1 are provided, and the points XU = {xi}
L+U
i=L+1 the

labels of which are not known. The objective function to be optimized in
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this case, corresponds to:

JS3VM(θ) =
1

2
||θ||2 + C

L∑

i=1

ℓ (fθ(xi)yi) + λ
L+U∑

i=L+1

ℓ (|fθ(xi)|) (3.8)

where the function ℓ(t) = max(0, 1 − |t|) is the hinge loss function. The

main problem with this objective function, in contrast to the classical SVM

objective, is that the additional term is non-convex and gives rise to local

minima. Additionally, it has been experimentally observed that the objec-

tive function tends to give unbalanced solutions, classifying all the unlabeled

points in the same class. A constraint should be imposed on the data to

avoid this problem (Chapelle and Zien, 2005):

1

L

L∑

i=1

yi =
1

U

L+U∑

i=L+1

fθ(xi) (3.9)

which ensures that the number of unlabeled samples assigned to each class

will be the same fraction as in the labeled data. CCP decomposes a non-

convex function J into a convex component Jvex and a concave component

Jcave. At each iteration, the concave part is replaced by the tangential

approximation at the current point and the sum of this linear function and

the convex part is minimized to get the next iterate. The first two terms

in equation (3.8) are convex, while the third term can be decomposed into

the sum of a convex function plus a concave one:

Jvex = max(0, 1− |t|) + 2|t| (3.10)

Jcave = −2|t| (3.11)

If an unlabeled point is currently classified positive, then at the next itera-
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Algorithm 1 CCP for S3VM
Require: Initial θ from the supervised SVM

while convergence of yi is not met do
yi ← fθ(xi), i = L+ 1, L+ 2, . . . , L+ U

θ = argmin

{
1
2
||θ||2 + C

L∑

i=1

ℓ (fθ(xi)yi) + λ
L+U∑

i=L+1

ℓ̃ (fθ(xi)yi)

}

end while
return θ

tion, the convex loss on this point will be:

ℓ̃(t) =





0 if t ≥ 1,
(1− t) if |t| < 1,
−4t if t ≤ −1

(3.12)

The CCP algorithm for the semi-supervised support vector machines is

presented in Algorithm 1.

Laplacian SVM: Regarding the graph-based algorithms, Laplacian support vec-

tor machines (Lap-SVM) were chosen since, according to Qi et al. (2012),

many experiments show that Lap-SVM achieves state of the art performance

among graph-based semi-supervised classification methods. This method,

as proposed in Belkin et al. (2006), uses an objective function that is slightly

different to equation (3.7), that is:

JLapSVM(θ) =
1

L

L∑

i=1

ℓ (fθ(xi)yi) + λA‖θ‖
2 +

λI

(L+ U)2
fT
θ
∆fθ (3.13)

where λA and λI are two regularizing constants that must be set by the

user. Belkin et al. (2006), also demonstrated a modified version of the

Representer Theorem that ensures that the solution function can be given

again by linear combination of kernel functions as in equation (2.3), and the

Lap-SVMs can be implemented by using a standard SVM quadratic solver.
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3.2.2 Databases

Before proceeding with the prediction of protein functions, a set of three bench-

mark problems constructed by Chapelle and Schölkopf (2006) was used to test the

algorithms in order to provide an analysis of the relation between the performance

of the semi-supervised learning methods and the different dataset structures. The

benchmark were artificially created in order to create situations that correspond

to certain assumptions. The three datasets have 750 instances, from wich 100 are

labeled while the remaining are unlabeled.

g241n This data set was constructed to have potentially misleading cluster struc-

ture, and no manifold structure. It has 375 points drawn from each of two

unit-variance isotropic Gaussians, the centers of which have a distance of

6 in a random direction; these points form the positive class. Then the

centers of two further Gaussians for the negative class were fixed by moving

from each of the former centers a distance of 2.5 in a random direction. The

identity matrix was used as covariance matrix, and 375 points were sam-

pled from each new Gaussian. A two-dimensional projection of the resulting

data is shown on Figure 3.1(a).

g241c This data set accomplishes the cluster assumption, that is, the classes

correspond to clusters but the manifold assumption does not hold. It has

750 points drawn from each of two unit-variance isotropic Gaussians, the

centers of which had a distance of 2.5 in a random direction. The class

label of a point represents the Gaussian it was drawn from. All dimensions

are standardized (shifted and rescaled to zero-mean and unit variance). A

two-dimensional projection of the resulting data is shown on Figure 3.1(b).

Digit1 This data set was designed to consist of points close to a low-dimensional

manifold embedded into a high-dimensional space, but not to show a pro-

nounced cluster structure. It comes from a system that generates artificial

writings (images) of the digit “1” (Hein and Audibert, 2005). The numbers

are generated from a function with five degrees of freedom and a sequence

of transformations is later applied to introduce noise and different biases
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Figure 3.1: Two-dimensional projections of the benchmark datasets. Filled
circles represent labeled data while empty circles represent unlabeled data.

to the images. The data will therefore lie close to a five-dimensional man-

ifold. Figure 3.2(b), taken from Chapelle and Schölkopf (2006), shows one

of the original images in the dataset (Figure 3.2(a)) and the transformed

one (Figure 3.2)

For the protein function prediction task, the database described in section

2.2.1 was used as the set of labeled instances. Then, all the available Em-

bryophyta proteins at UniProtKB/Swiss-Prot database that has no entries in

the GOA project were added as the core set of unlabeled instances. As discussed

in the introduction to this chapter, the proteins associated to the nodes in the

functional path of a GO term, were also left as unlabeled instances regarding that

classifier. Finally, 30000 unlabeled instances were randomly chosen in order to

accomplish an approximate relation of ten unlabeled instances per each labeled

one (remember from section 2.2.1 that the set of labeled protein sequences com-

prises 3368 instances). All the unalebeled sequences were characterized according

to the procedure described in section 2.2.3 and the same feature selection strategy

from section 2.2.5.

./Figuras/benchmark.7.eps
./Figuras/benchmark.5.eps
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(a) Original image (b) After rescaling, adding noise
and masking dimensions (x)

Figure 3.2: Example instance from the Digit1 dataset (taken from Chapelle
and Schölkopf (2006))

3.2.3 Decision making

The S3VM and Lap-SVM were used as base classifiers, both of them with the

Gaussian kernel. For the Lap-SVM, the K-NN graph was selected for implement-

ing the manifold regularization term, since there is some empirical evidence that

suggests that fully connect graphs performs worse than sparse graphs (Zhu and

Goldberg, 2009, chapter 5).

All the parameters of the algorithms, including the dispersion of the kernels,

the trade-off parameters of the SVMs, the regularization constants of both meth-

ods and the number of neighbors for constructing the graph, were tuned with

a particle swarm optimization meta-heuristic. Again, the decision making was

implemented following the one-against-all strategy with SMOTE oversampling

for avoiding class-imbalance. Also, the 5-fold cross-validation strategy was im-

plemented for assessing the performance of the predictors.

3.3 Results and discussion

3.3.1 Analysis of benchmark datasets

Table 4.1 shows the results obtained with each algorithm over the three bench-

mark datasets. Again, the geometric mean between sensitivity and specificity is

used as global performance measure. The first line on each value of the table shows

./Figuras/digit1A.eps
./Figuras/digit1B.eps
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Table 3.1: Performance over the three benchmark sets. Each position shows
“mean ± standard deviation” and the corresponding p-value. Highlighted values
are significantly better than the supervised SVM.

Dataset SVM S3VM Lap-SVM

g241n
0.76± 0.11 0.80± 0.12 0.80± 0.07

– 0.43 0.34

g241c
0.61± 0.07 0.76± 0.13 0.58± 0.16

– 0.03 0.70

Digit1
0.85± 0.10 0.87± 0.13 0.92± 0.06

– 0.69 0.09

“mean ± standard deviation” across the five repetitions of the cross-validation

procedure. The second line shows the corresponding p-value for a paired t-test

between the semi-supervised methods and the supervised SVM. Bold face val-

ues indicate which values are significantly better than the supervised SVM for a

paired t-test at 90% significance level.

As expected, S3VM shows a superior performance for the dataset implement-

ing the cluster assumption, while Lap-SVM outperforms the supervised SVM

in the dataset that implements the manifold assumption. None of the semi-

supervised methods is able to outperform the supervised algorithm when none of

the semi-supervised assumptions holds. This is perhaps the most important issue

when dealing with semi-supervised learning: previous knowledge of the nature of

the data is required to select the appropriate learning model.

3.3.2 Analysis of GO prediction in Embryophyta plants

Figure 3.3 shows a comparison between the results with the S3VM (orange line)

and the SVM method presented in chapter 2 (green line). The results with the su-

pervised SVM are the same as in Figure 2.3, but the classes are ordered this time

according to the performance of the SS3VM method. Again, left plots show sensi-

tivity, specificity and geometric mean achieved with the five-fold cross-validation

procedure, while right plots depicts the corresponding p-values obtained from a

paired t-test at a 95% significance level. Orange bars show the cases when the
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S3VM significantly outperforms the supervised SVM and green bars show the

opposite case.

The main purpose of this comparison is to verify whether or not the inclusion

of the additional cluster-based semi-supervised term in the training of the SVM

improves the performance of the system, thus providing information about the

accomplishment of the cluster assumption when the unlabeled data is incorpo-

rated to the training process. Figure 3.3(a) shows that six out of the fourteen

molecular functions considered in this ontology were significantly improved. In

particular, Receptor binding, Transcription factor activity and Enzime regulator

activity have a special importance, considering that the SVM method was out-

performed by BLASTp in those three GO terms when using the supervised model

(see figure 2.3(a)). The inclussion of the cluster assumption also improved the

performance on Hydrolase activity*, Binding* and Protein binding*. Regarding

the Cellular Component ontology (Figure 3.3(b)), eight cellular components were

significantly improved, while another two (Mitochondria and Cytoplasm* ) also

reached high p-values over 0.9. Finally, sixteen biological processes presented sta-

tistically significant improvements when including the unlabeled data with the

semi-supervised cluster assumption. Only one biological process, Lipid metabolic

process, suffered a statistically significant deterioration, which indicates that the

unlabeled data is presenting a misleading cluster structure regarding this GO

term.

In order to analyze how this improvements affect the system when compared

to conventionally used prediction tools, Figure 3.4 shows a comparison between

the results with the S3VM (orange line) and the traditional BLASTp method

(blue line). It can be seen from figure 3.4(a) that the S3VM significantly outper-

forms BLASTp in five molecular functions, while BLASTp remains better than

the S3VM only for Transcription factor activity. In contrast to Figure 2.3(a),

BLASTp reduced the number of GO terms where it showed superiority from four

GO terms to just one, while the machine learning method went from being supe-

rior in two molecular function to five. Regarding the cellular component ontology,

there are only two cellular components for which there is no statistically signifi-

cant difference between BLASTp and the S3VM: Perixosome and Endosome. For
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Figure 3.3: Comparisson between the S3VM method and the supervised SVM.
Bars in the left plots show sensitivity and specificity of the S3VM and lines depict
geometric mean for S3VM (orange) and the classical supervised SVM (green).
Right plots depict the p-values obtained by paired t-tests at a 95% significance
level. For each ontology, the best predicted categories are ordered from top to
bottom.
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Figure 3.4: Comparisson between BLASTp and the S3VM method. Bars in the
left plots show sensitivity and specificity of the S3VM and lines depict geometric
mean for S3VM (orange) and BLASTp (blue). Right plots depict the p-values
obtained by paired t-tests at a 95% significance level. For each ontology, the best
predicted categories are ordered from top to bottom.
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all the remaining eighteen cellular components, the semi-supervised method ob-

tained superior performance. A similar behavior is shown at figure 3.4(c), where

the S3VM significantly outperforms BLASTp in 35 out of the 41 biological pro-

cesses, while the remaining six process showed no statistical difference between

the methods.

On the other hand, Figure 3.5 shows the comparison between the supervised

SVM and the Laplacian-SVM. This analysis provides information about the im-

pact of incorporating unlabeled data on the training set but, this time, by im-

plementing the semi-supervised manifold assumption. This time, it is possible

to see that there are less GO terms that have been improved by the inclusion

of the unlabeled data. For the molecular function ontology (Figure 3.5(a)), only

the Nucleotide binding and Enzyme regulator activity GO terms were signifi-

cantly improved respecting the supervised SVM; in turn the implementation of

the manifold assumption significantly degraded the performance for the GO term

Transcription factor activity. Regarding the cellular component ontology (Figure

3.5(b)), improvements are present for Perixosome, Vacuole and the root node of

the ontology, while a decrease is evinced for the Nucleus* GO term. As for the bi-

ological process ontology, seven GO terms enhaced their prediction performance (

Embryonic development, Response to extracellular stimulus, Response to external

stimulus*, Metabolic process*, Response to biotic stimulus, Cell communication

and the root node of the ontology), while another two were worsened (Cell cycle

and DNA metabolic process).

Figure 3.6 depicts a comparison between the results obtained with BLASTp

and the Lap-SVM method. The first important result that can be inferred from

the present analyses is that, in general terms, for the problem of protein function

prediction, the semi-supervised cluster assumption holds for many more cases

than the semi-supervised manifold assumption. However, the most important

aspect to be analyzed here, is how the results in Figure 3.6 complement the

results from Figure 3.4. Only two molecular functions presented an statistically

significant superior performance with the Lap-SVM over BLASTp. One of them,

RNA binding, did not show statistical significance when comparing BLASTp and

S3VM. The same behavior is present for the Perixosome cellular component and

for the biological processes Transport and Lipid metabolic process. This results
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Figure 3.5: Comparison between the Lap-SVM method and the supervised
SVM. Bars in the left plots show sensitivity and specificity of the Lap-SVM and
lines depict geometric mean for Lap-SVM (orange) and the classical supervised
SVM (green). Right plots depict the p-values obtained by paired t-tests at a 95%
significance level. For each ontology, the best predicted categories are ordered
from top to bottom.
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Figure 3.6: Comparison between BLASTp and the Lap-SVM method. Bars in
the left plots show sensitivity and specificity of the Lap-SVM and lines depict
geometric mean for Lap-SVM (orange) and BLASTp (blue). Right plots depict
the p-values obtained by paired t-tests at a 95% significance level. For each
ontology, the best predicted categories are ordered from top to bottom.
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indicate that the manifold assumption is best suited than the cluster assumption

for this particular GO terms. A few GO terms were not improved by any of the

assumptions.

3.4 Concluding remarks

In this chapter, an analysis of the suitability of semi-supervised methods for the

prediction of protein functions in Embryophyta plants was performed. A review

of the state of the art of semi-supervised classifiers was presented, highlighting

the different assumptions that each method does about the underlying distribu-

tion of the data. Two semi-supervised methods were chosen to perform the tests,

each representing one of the main semi-supervised assumptions: cluster assump-

tion and manifold assumption. The results show that semi-supervised learning

applied to the prediction of GO terms in Embryophyta organisms, significantly

outperforms the supervised learning approach, at the same time outperform-

ing the commonly used sequence alignment strategy in most cases. In general

terms, the highest performance were reached when applying the cluster assump-

tion. However, several GO terms that were not significantly improved with the

cluster assumption, achieved higher performance with the manifold based semi-

supervised method, demonstrating that a single assumption is not enough for

improving the learning process by the exploitation of the additional unlabeled

data.





Chapter 4

Semi-supervised learning with

multi-objective optimization

Semi-supervised learning uses unlabeled data to improve the estimation of the

predictor function fθ. However, there are two main concerns in order to correctly

explode the information contained in the unlabeled data. First, as mentioned in

the preceding chapter, each model has to make some specific assumption about

the underlying structure of the data. Then, it turns evident that blindly selecting

a semi-supervised learning method for a specific task will not necessarily improve

performance over supervised learning. In fact, unlabeled data can lead to worse

performance with the wrong assumption (Zhu and Goldberg, 2009, chapter 2).

Second, when integrating unsupervised and supervised information by means of

an objective function, it is not usually clear what the best weighting between

these components will be, and it is possible that the weighting chosen may have

a significant effect on the final outcome (Handl and Knowles, 2006).

In this scenario, managing semi-supervised learning within the framework of

multi-objective optimization, may provide a more flexible tool for the integration

of both unsupervised and supervised components. Specifically, the use of Pareto

optimization provides the means to avoid the need for hard constraints and for

a fixed weighting between unsupervised and supervised objectives (Handl, 2006).

Additionally, since multi-objective optimization allows the integration of multi-

ple individual objectives, it would be possible to integrate several semi-supervised
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assumptions within the same learning process, thus allowing for a wider applica-

bility of the method.

In this chapter, a new method for semi-supervised learning within the frame-

work of multi-objective optimization is proposed. This method combines su-

pervised learning with the semi-supervised cluster and manifold assumptions,

obtaining a flexible strategy that with low dependency on the data distribution.

The efficiency of the method is tested over several toy problems and is finally

employed on the prediction of GO terms for protein function prediction in Em-

bryophyta plants.

4.1 Proposed method

Most density-based methods and graph-based methods reviewed in sections 3.1.2

and 3.1.3, respectively follow a common principle in order to incorporate the

unlabeled samples into a supervised learner: they include an additional regularizer

term into the optimization problem. As shown in equation (3.8), S3VM defines a

regularization term which penalizes functions which vary in high-density regions:

JS3VM(θ) =
1

2
||θ||2 + C

L∑

i=1

ℓ (fθ(xi)yi) + λ

L+U∑

i=L+1

ℓ (|fθ(xi)|)

where λ is a regularization coefficient that must be set by the user. In the

same way, the optimization criterion defined on equation (3.13) by the Lap-SVM

method, uses a regularizer which prefers functions which vary smoothly along the

manifold:

JLapSVM(θ) =
1

L

L∑

i=1

ℓ (fθ(xi)yi) + λA‖θ‖
2 +

λI

(L+ U)2
fT
θ
∆fθ

where λA and λI are again two regularization constants that must be fixed by the

user. It is quite straightforward to notice that regularization can be viewed as

a special case of a multi-objective optimization problem, where several objective

functions are being linearly combined by the introduction of linear weights (reg-

ularization constants). The aforementioned equations can be viewed as a special
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case of a multi-objective optimization problem where there are a number of pos-

sibly conflicting objective functions {Ji(θ)}
M
i=1, and they are linearly combined in

a unique objective function by the introduction of linear weights:

J(θ) = λ1J1(θ) + . . .+ λMJM(θ) (4.1)

Solving the regularized optimization problem for a unique combination of

weights λi, yields to a solution that focuses on the objective functions with the

highest weights. Many authors have demonstrated the inability of the method

to capture Pareto optimal points that lie on non-convex portions of the Pareto

optimal curve (Chen, 1998; Huang et al., 2007). Besides, it is well known that the

method does not provide an even distribution of points in the Pareto optimal set,

but only a linear approximation of the preference function (Marler and Arora,

2009).

A more flexible solution can be obtained by managing the optimization prob-

lem as a multi-objective optimization task, where the objective function produces

a vectorial output of length M :

J(θ) = {J1(θ), . . . , JM(θ)} (4.2)

In this setting, the optimization algorithm does not searches for a unique so-

lution, but for the set of all Pareto-optimal solutions with non-convex trade-off

surfaces. Tackling the semi-supervised classification problem within the frame-

work of multi-objective optimization provide a more flexible framework for the

integration of both unsupervised and supervised components. Specifically, the use

of Pareto optimization provides the means to avoid the need for hard constraints

and for a fixed weighting between unsupervised and supervised objectives. Con-

sequently, one would expect a multi-objective approach to semi-supervised clas-

sification to perform more consistently across different data sets, and to be less

affected by model assumptions.
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4.1.1 Objective functions

Once again, consider a set of labeled instances XL = {xi}
L
i=1 for which labels

{yi}
L
i=1 are provided, and a set of unlabeled instances XU = {xi}

L+U
i=L+1 the labels

of which are not known. In principle, a linear decision function will be considered:

fθ(x) = 〈θ,x〉 (4.3)

Three objective functions are proposed in a multi-objective minimization

framework. One for reflecting the error achieved in the classification of the la-

beled training data, and the other two for exploiting the information contained on

the unlabeled samples. A separate objective is defined for each semi-supervised

assumption: low density assumption (and implicitly the cluster assumption) and

the manifold assumption, covering the complete landscape of semi-supervised

assumptions. The proposed objectives are:

Jsup(θ) =
1

2
||θ||2 + C

L∑

i=1

ℓ (fθ(xi)yi) (4.4)

Jclus(θ) =
L+U∑

i=L+1

ℓ (|fθ(xi)|) (4.5)

Jman(θ) =
∑

ij

Wij(fθ(xi)− fθ(xj))
2 (4.6)

where ℓ(t) = max(0, 1−t) is the hinge loss function, C is a trade-off parameter for

regulating the complexity of the model and Wij is the graph weight connecting

the i−th and j−th instances. The first objective function, Jsup, is the standard

SVM objective function that is minimized when the decision boundary maximizes

the margin between the classes in the labeled instances. The second objective,

Jclus, is minimized when the evaluations fθ(xi) of the unlabeled points xi are

away from 0, that is, when the decision boundary is away from the unlabeled

instances. This ensures the accomplishment of the low density assumption and,

consequently, the cluster assumption. Finally, the third objective function, Jman,

is an energy function that is minimized when the labels change slowly through
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the graph, which accomplishes the manifold assumption.

Since these three objectives are not necessarily minimized for the same vector

of parameters θ simultaneously, it is necessary to provide a Pareto optimal set of

solutions {θ∗i}Pi=1 reflecting the trade-offs among the objectives. Then, a single

solution can be selected according to its coherence with the application at hand.

4.1.2 Non-linear mapping

Traditional supervised SVMs can be extended to the non-linear case by using the

kernel trick described in section . This procedure implies mapping the data into a

high dimensional Hilbert space H through a mapping Φ : X 7→ H, where a linear

decision boundary is able to correctly assign the class labels. The mapping Φ can

be explicitly computed or only implicitly through the use of a kernel function K

such that K(x1,x2) = 〈Φ(x1),Φ(x2)〉. A square kernel matrix K can thus be

computed, which elements are given by Kij = K(xi,xj).

However, since the inclusion of the additional objectives does not allow to

express the whole optimization problem in terms of dot products, the optimization

must be performed directly on the feature space. For this purpose is necessary

to consider that, even in the case of a high dimensional feature space H, a finite

training set of size N (for the semi-supervised setting N = L+U), when mapped

to this feature space, spans a vectorial subspace E ⊂ H whose dimension is at

most N (Belkin et al., 2006).

Let {vi}
N
i=1 be an orthonormal basis of E, where the p−th vector vp can be

expressed as:

vp =

N∑

i=1

AipΦ(xi) (4.7)

where A is a matrix that necessarily has to satisfy ATKA = I. A possible

solution (among several choices) can be obtained by the eigendecomposition of

K as K = UT
ΛU , which provides A = UΛ

−1/2. Then, a mapping Ψ : X 7→ RN
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can be computed as:

Ψp(x) =

L∑

i=1

AipK(x,xi), p = 1, 2, . . . , N (4.8)

This mapping satisfies the relation 〈Ψ(xi),Ψ(xj)〉 = K(xi,xj) and can be

used for obtaining a feature space where the linear function fθ provides a non-

linear decision boundary in the original space X.

4.2 Proposed method: multi-objective semi-supervised

learning for predicting GO terms in Embryophyta

plants

4.2.1 Selected multi-objective strategy: cuckoo search

Due to their population-based nature, meta-heuristic algorithms are able to ap-

proximate the whole Pareto front of a multi-objective optimization problem in

a single run. Nowadays, real world applications of large scale multi-objective

optimization are feasible thanks to the developments of this kind of algorithms,

and several review papers and books have been recently published in this matter

(Talbi, 2009; Yang, 2010; Zhou et al., 2011).

Recently, a new meta-heuristic search algorithm called Cuckoo Search (CS)

has been developed by Yang and Deb (2009), and its multi-objective extension,

Multi-Objective Cuckoo Search (MOCS) was lately proposed (Yang and Deb,

2011). MOCS has been tested against a subset of well-chosen test functions, and

have been applied to solve design optimization benchmarks in structural engi-

neering showing a clear superiority in comparison with other algorithms (Yang

and Deb, 2013). This superiority can be attributed to the fact that cuckoo search

uses a combination of vectorized mutation, crossover by permutation and Lévy

flights and selective elitism among the best solutions. In addition, the not-so-good

solutions can be replaced systematically by new solutions, and new solutions are

often generated by preferring quality solutions in the solution sets. Thus, the

mechanism of the overall search moves is more subtle and balanced, compared
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with the simple mechanism used by other meta-heuristics such as particle swarm

optimization or genetic algorithms.

Cuckoo Search is based on the parasitic behavior exposed by some species of

Cuckoo birds. Its natural strategy consists on leaving eggs in host nests created

by other birds. This eggs presents the particularity to have a big similitude with

host eggs, the more similar they are, the greater is its chance of survival. Based

on this statement, Cuckoo Search uses three idealized rules (Yang and Deb, 2009):

1. Each cuckoo lays one egg at a time, and dumps it in a randomly chosen

nest.

2. The best nests with high quality of eggs (solutions) will carry over to the

next generations.

3. The number of available host nests is fixed, and a host can discover an alien

egg with a probability pa ∈ [0, 1]. In this case, the host bird can either

throw the egg away or abandon the nest so as to build a completely new

nest in a new location.

The fisrt assumption can be achieved by the generation of new random so-

lutions from the existing ones. Such procedure is driven by Lévy flights of the

form:

θ
(t+1)
i = θ

(t)
i + α⊕ Lévy(γ) (4.9)

where α is the step size and the random step is drawn from a Lévy distribution:

Lévy ∼ u = t−γ , (1 < γ ≤ 3) (4.10)

which has an infinite variance with an infinite mean. The steps form a random

walk with a power-law step-length distribution with a heavy tail. Figure 4.1

shows an example of three Lévy flights generated from the same starting point

at (0, 0).

On the other hand, the last assumption can be approximated by replacing

a fraction pa of the Q nests by new nests (with new random solutions at new

locations). Parameters pa and α are directly concerned with the efficiency of
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Figure 4.1: Example of three Lévy flights of length 100 starting from the origin

the search, allowing to find globally and locally improved solutions, respectively.

Additionally, these parameters directly influence the convergence rate of the op-

timization algorithm. For instance, if the value of pa tends to be small and α

value is large, the algorithm will increment the number of iterations to converge

to an optimal value. On the other hand, if the value of pa is large and α is

small, the convergence speed of the algorithm tends to be very high but it is

more likely to converge to a local optimum. Valian et al. (2011) proposed an

improvement which consists on using a range of pa and α to change dynamically

in each iteration,following the equations:

pa(t) = pmax −
t

T
(pmax − pmin) (4.11)

α(t) = αmaxe
(cT ) (4.12)

./Figuras/Levy.eps
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Algorithm 2 Multi-objective Cuckoo Search
Require: Objective function J(θ) = [J1(θ), J2(θ), . . . , JM(θ)]
Require: Initial population of P host nests {θi}

P
i=1, each one with M eggs

Require: Maximal number of iterations T
Initialize the iterations counter t = 0
Initialize an empty set of Pareto-optimal solutions P(0) = ∅
while (|P| < P ) ∨ (t < T ) do

Get a cuckoo randomly (say i) by Lévy flights
Evaluate and check if the solution is Pareto optimal
Choose a nest among P (say j) randomly
Evaluate M solutions for nest j
if New solutions of nest j dominate those of nest i then

Replace nest i by the new solution of nest j
end if
Abandon a fraction pa of worst nests
Sort and find the current Pareto optimal solutions {θ∗}(t) and update the
set of global Pareto optimal solutions P(t+1) = P(t) ∪ {θ∗}(t)

end while
return P

where t is current iteration, T is the maximum number of iterations, and c is a

constant given by:

c =
1

T
log

(
αmin

αmax

)
(4.13)

The MOCS algorithm is summarized in Algorithm 2. Notice that the only

free parameters that must be directly chosen by the user are the size of the

population and the maximal number of iterations. While the latter is not of

significant importance as it only provides an “emergency stop” in the cases when

the algorithm does not converge, the former is directly linked to the number

of points in the Pareto front that will be obtained. In order to obtain a good

resolution and maximizing the precision on the estimation of the Pareto front, this

number must be as high as possible. However, it will increase the computational

time for the training. This parameter was empirically fixed to P = 1000 for all

the analysis in this chapter.
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4.2.2 Decision making

As in the previous analyses, the Gaussian kernel and the K-NN graph were se-

lected as base tools for implementing the objective functions. There are only three

free parameters to be tuned this time: the dispersion of the kernel, the trade-off

parameter of the SVM in the supervised objective and the number of nearest

neighbors for constructing the graph in the manifold-based objective. Such pa-

rameters were, once again, tuned the particle swarm optimization strategy. It

is important to remark that, unlike the analyses in the previous chapter, all the

regularization parameters are unnecessary here.

Again, the decision making was implemented following the one-against-all

strategy with SMOTE oversampling for avoiding class-imbalance and 5-fold cross-

validation was implemented for assessing the performance of the predictors. How-

ever, there is one additional step that is necessary for the multi-objective strategy:

selecting the most appropriate solution among the set of Pareto-optimal trade-

offs. This task is usually left to be carried out by a human expert, depending

on his knowledge of the application at hand. In the case of protein functional

prediction, the chosen solution must reflect the biological knowledge about the

problem, which is contained in the set of GO terms associated to each sequence.

To this end, an additional cross-validation step is performed, in order to select

the solution with the highest prediction accuracy, which in turn constitutes the

most biologically feasible solution. Figure 4.2 depicts the complete methodology

for estimating the performance of the proposed method. Every 80/20 split rep-

resents a cross-validation procedure (80/20 is the partitioning for a single fold in

a 5-fold cross-validation schema).

4.3 Results and discussion

In this section, the same datasets described in the preceding chapter (section

3.2.2) are used for obtaining an estimation of the performance of the proposed

method. In order to provide a more detailed analysis on the interpretation of

the Pareto-optimal sets that are obtained from the multi-objective strategy, sev-

eral solution points from the same Pareto front are analyzed in the case of the
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Figure 4.2: Flow diagram of the proposed methodology. The green area high-
lights the training process

benchmark datasets. Later, the method is tested over the Embryophyta proteins

database and the results are compared with those of the supervised approach.

4.3.1 Analysis with the benchmark datasets

Figures 4.3, 4.4 and 4.5 show the Pareto fronts obtained for each one of the

benchmark datasets g241n, g241c, and Digit1, respectively. For each figure,

the left plot depicts a three-dimensional reconstruction of the Pareto front, while

the right plots show the two-dimensional projections for a better comprehension.

Each Pareto front has four highlighted solutions: the three minima for each ob-

jective function (green for the supervised objective, yellow for the cluster-based

objective and orange for the manifold-based objective) and the most feasible so-

lution found by the proposed method (red).

It is important to note that, since the cross-validation procedure implies the

training and testing of several classifiers (one per each fold), the depicted Pareto

fronts correspond only to the first fold of each problem. Nevertheless, in general

terms there is a low variability among the results. Table 4.1 shows the global
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Figure 4.3: Pareto front for the g241n benchmark dataset. The yellow, orange
and green dots depict the minima for the the manifold, cluster and supervised
objectives, respectively. The red dot depicts the most feasible solution according
to the class labels, found by the cross-validation procedure.
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Figure 4.4: Pareto front for the g241c benchmark dataset. The yellow, orange
and green dots depict the minima for the the manifold, cluster and supervised
objectives, respectively. The red dot depicts the most feasible solution according
to the class labels, found by the cross-validation procedure.
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Figure 4.5: Pareto front for the Digit1 benchmark dataset. The yellow, orange
and green dots depict the minima for the the manifold, cluster and supervised
objectives, respectively. The red dot depicts the most feasible solution according
to the class labels, found by the cross-validation procedure.

performance results for the three benchmark problems, with each one of the

highlighted solutions. Each position in the table shows the mean and standard

deviation across the ten folds of the cross-validation procedure.

There are several interesting results to observe from Table 4.1. First of all,

it must be noted that the proposed method is able to automatically select the

best solution on the Pareto front, implicitly assigning a different weight to each

objective, that is consistent with the nature of the problem. Remember from

section 3.2.2 that the g241n dataset has a misleading structure where unlabeled

data are neither organized on well defined clusters nor on an underlying manifold

structure. In this case, it is possible to observe (see Figure 4.3) that the best

solution found (the red one) is closer to the minimum of the supervised objective

(green dot) than to any other minima. That means that the method assigned a

higher importance to the supervised objective than to the other two. Regarding

the g241c dataset, which has a well defined cluster structure, the best solution

found is consistently closer to the yellow dot (see Figure 4.4) that represents

the minimum of the cluster-based objective. The proper observed on Figure 4.5,
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Table 4.1: Performance over the three benchmark sets for several solutions from
the Pareto fronts. Each position shows “mean ± standard deviation”. Highlighted
values on the right are the highest among the three individual objectives.

Dataset Proposed solution Supervised Cluster Manifold

g241n 0.63± 0.008 0.60± 0.031 0.45± 0.068 0.56± 0.014

g241c 0.725± 0.002 0.56± 0.256 0.67± 0.033 0.15± 0.198

Digit1 0.93± 0.005 0.71± 0.264 0.70± 0.159 0.92± 0.011

where the best solution found is very close to the minimum of the manifold-based

objective (orange dot). This is consistent with the nature of the Digit1 dataset

which was designed to have an underlying manifold structure.

The second aspect that must be noted here is that minimizing one single

objective is not enough to achieve the best performance results on any problem.

On all cases,the best results were achieved for a solution on the Pareto front, that

does not exactly matches any of the single-objective minima. Even in the case

of the Digit1 dataset (Figure 4.5), where the best found solution (red) is very

close to the minimum of the manifold-based objective (orange), there is a slight

difference between those solutions that is reflected in the performance on Table

4.1.

Finally, it is worth to note the low standard deviation values achieved by the

proposed method, which demonstrates the reliability of the method in spite of

the random component of the underlying optimization strategy employed.

4.3.2 Analysis of GO prediction in Embryophyta plants

Figure 4.6 shows a comparison between the results with the proposed method

(orange line) and the classical supervised SVM method presented in chapter 2

(green line). Again, left plots show sensitivity, specificity and geometric mean

achieved with the five-fold cross-validation procedure, while right plots depicts

the corresponding p-values obtained from a paired t-test at a 95% significance

level. Orange bars show the cases when the proposed multi-objective method

significantly outperforms the supervised SVM and green bars show the oppo-

site case. This time, Figure 4.6(a) shows that nine molecular functions reached
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significantly better prediction performance with the proposed method over the

supervised SVM. Also, on the five remaining molecular functions, both methods

achieved statistically similar results, presumably since the unlabeled data is not

contributing to improve the predictions, but in no case the inclusion of this data

degraded the performance of the predictor as it happened with the Lap-SVM in

the preceding chapter (Figure 3.5). A similar behavior was also obtained for the

Cellular Component ontology in Figure 4.6(b), were fifteen out of the 21 con-

sidered cellular components were statistically better predicted by the proposed

method. The same happened also for the Biological Process ontology (Figure

4.6(c)) where only nine out of the whole set of 41 biological processes did not

show an statistically significant improvement.

Finally, Figure 4.7 shows a comparison between the proposed method and

BLASTp. From the whole set of 75 GO terms included in the database, only

Transcription Factor Activity showed an statistically better prediction perfor-

mance with BLASTp. This can be due to the characterization step and could be

the subject of future studies.

4.4 Concluding remarks

In this chapter, a multi-objective optimization-based method for performing semi-

supervised prediction of protein functions in Embryophyta plants was proposed.

The method includes three independent objectives covering the main assumptions

made by most semi-supervised methods in the literature, and combines them on a

multi-objective optimization framework. This framework provides a set of trade-

off solutions that can be analyzed to select the most feasible from the biological

perspective, by applying a cross-validation strategy. The results show that this

method is able to retrieve a prediction model that achieves equal or in most

cases performance than the classical supervised SVM. Also, it outperforms the

predictions of the commonly used BLASTp method for most of the GO terms

analyzed in Embryophyta proteins.
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Figure 4.6: Comparisson between the proposed multi-objective S3VM method
and the supervised SVM. Bars in the left plots show sensitivity and specificity
of the proposed method and lines depict geometric mean for it (orange) and the
classical supervised SVM (green). Right plots depict the p-values obtained by
paired t-tests at a 95% significance level. For each ontology, the best predicted
categories are ordered from top to bottom.
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Figure 4.7: Comparison between the proposed multi-objective S3VM method
and BLASTp. Bars in the left plots show sensitivity and specificity of the pro-
posed method and lines depict geometric mean for it (orange) and BLASTp (blue).
Right plots depict the p-values obtained by paired t-tests at a 95% significance
level. For each ontology, the best predicted categories are ordered from top to
bottom.
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Chapter 5

Conclusions

5.1 Main contributions

Protein function prediction is one of the most important challenges in bioinfor-

matics. The most common approach to perform this task is by using strategies

based on annotation transfer from homologues. The annotation process centers

on the search for similar sequences in databases of previously annotated proteins,

by using sequence alignment tools such as BLASTp. However, high similarity does

not necessarily implies homology, and there could be homologues with very low

similarity. As an alternative to alignment-based tools, more recent methods have

used machine learning techniques trained over feature spaces of physical-chemical,

statistical or locally-based attributes, in order to design tools that can be able of

achieving high prediction performance when classical tools would certainly fail.

The present work lies on the framework of machine learning applied to protein

function prediction, through the use of a modern paradigm called semi-supervised

learning. This paradigm is motivated on the fact that in many real-world prob-

lems, acquiring a large amount of labeled training data is expensive and time-

consuming. Because obtaining unlabeled data requires less human effort, it is of

great interest to include it in the learning process both in theory and in practice.

A high number of semi-supervised methods have been recently proposed and have

demonstrated to improve the accuracy of classical supervised approaches in a vast

number of real-world applications.
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Nevertheless, the successfulness of semi-supervised approaches greatly de-

pends on prior assumptions they have to make about the data. When such

assumptions does not hold, the inclusion of unlabeled data can be harmful to

the predictor. Here, the main approaches to perform semi-supervised learning

were analyzed on the problem of protein function prediction, and their underly-

ing assumptions were identified and combined in a multi-objective optimization

framework, in order to obtain a novel learning model that is less dependent on

the nature of the data.

All the experiments and analyses were focused on land plants (Embryophyta),

which constitutes an important part of the national biodiversity of Colombia,

including most agricultural products. Consequently, the Gene Ontology slim for

plants was used to define the target functions to be predicted. However, it is very

important to clarify that the methods and analyses performed in this thesis can

be replicated without major concerns over other target groups of study as far as

there is enough data to train the learning models.

Listed below are the main original contributions of this thesis:

– Construction of a comprehensive database comprising all the available Em-

bryophyta protein sequences with at least one annotation in the Gene On-

tology Annotation project (GOA). The dataset includes 3368 protein se-

quences from 189 different land plants and, for each sequence, a set of 438

physical-chemical and statistical attributes was computed. This database

does not include annotations associated to evidence codes from automatically-

assigned annotations and all the sequences belong to the reviewed part of

Uniprot. The database is publicly available at:

http://www.biomedcentral.com/1471-2105/14/68/.

– Definition of a full methodology for training machine learning models in the

prediction of Gene Ontology terms from the information contained in the

primary structure of proteins. Unless most published studies, this method-

ology carefully describes of all the necessary steps from the conformation of

the database, filtering, characterization, normalization, class balance, fea-

ture selection, and decision making, in order to obtain unbiased estimations

of predictability.
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– To the best of our knowledge, this thesis contains the most complete anal-

ysis on the predictability of GO terms from primary sequence information

in land plants. While most analyses in the state of the art comprise only

a few selected terms and single ontologies, the analysis presented in this

thesis includes 75 GO terms covering molecular functions, cellular compo-

nents and biological processes. This analysis provides a valuable guide for

researchers interested on further advances in protein function prediction on

Embryophyta plants.

– A complete analysis on the applicability of semi-supervised learning meth-

ods to the problem of protein function prediction over Embryophyta organ-

isms. This analysis is focused on the successfulness achieved by the different

assumptions made by the most common semi-supervised algorithms. It re-

vealed that the cluster assumption is, in general terms, the most suitable

for the problem at hand. However, it was also found that the manifold as-

sumption is more successful on the prediction of some GO terms, showing

that the assumptions can be regarded as complimentary to each other.

– Development of a novel method for semi-supervised learning that incorpo-

rates three independent objectives in a multi-objective optimization frame-

work. This approach provides less dependence on the assumptions to be

made about the data, which is the main drawback of the current semi-

supervised methods. The multi-objective optimization strategy generates

a set of trade-off solutions regarding the three proposed objectives and the

most biologically feasible solution can be chosen through its coherence with

the information contained on the GO labels. The results show that this

method achieves comparable and in most cases superior prediction perfor-

mance than both machine learning-based and alignment-based methods for

protein function prediction.

Additionally, several works were derived from the ideas on this thesis, originat-

ing three master thesis that are being developed under the co-supervision of the

author of this work. These three works are mainly focused on expanding machine

learning approaches in several dimensions for dealing with GO term prediction

from protein sequences:
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– Methodology for multi-class classification applied to bioinformatics in the

prediction of protein functions in plants by Andrés Felipe Giraldo Forero.

– Methodology for the characterization and classification of proteins using

wavelet-based approaches and dissimilarity learning by Gustavo Alonso Arango

Argoty.

– Class-balance methodology for the prediction of protein functions oriented

towards the automation of protein annotation process by Sebastián García

L’opez.

As a side result, this line of works have constituted the main core of the

bioinformatics research at Universidad Nacional de Colombia, sede Manizales,

leading to the development of the project “Predicción de términos de la On-

tología Genética a partir de métodos de caracterización dinámica y clasificación

semi-supervisada de secuencias de aminoácidos, aplicada a la clasificación fun-

cional de proteínas de café (Coffea arábica)”, jointly with the Centro Nacional

de Investigaciones en Café (CENICAFÉ), and currently founded by COLCIEN-

CIAS. Besides, this line of work has also contributed to the creation of a masters

program on bioinformatics at Universidad Nacional de Colombia, sede Manizales,

and has generated a high number of papers and conference proceedings.

5.2 Future research directions

In spite of the good results achieved in this thesis, there are several subjects that

can be further explored. Although there can be a vast number of them, there

are four main subjects that we identify as the most important future research

directions:

– Along this thesis, machine learning methods were considered as an alter-

native to traditional alignment-based method. However, the information

derived from this study could be used to get further improvement in predic-

tion performance by combining machine learning classifiers with annotation

transfer methods.
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– Classification performance are strongly influenced by the initial characteri-

zation stage that extracts numerical attributes from the protein sequences

and converts them into feature vectors. In this thesis, the influence of a

vast number of features was analyzed and automatic feature selection al-

gorithms were used in order to select the most discriminant features for

each GO term. However, as this work only considered global features of the

whole sequence, future research directions may be focused on the dynamic

characterization of the sequence in order to better explode the information

of the primary structure.

– The Cuckoo Search meta-heuristic employed in this work, can be subjected

to several improvements in the selection of its hyper-parameters and stop

conditions. Any improvement in this sense can contribute to a most efficient

implementation of the proposed method.

– Finally, the most recent semi-supervised algorithms are being focused on

changing the data representation instead of using accurate assumptions

about the actual distribution of it. Another future line of research can

be focused on the proposal of novel kernels that accomplish several semi-

supervised assumptions at once, in order to modify the feature space.
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