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Abstract

Functional annotation of protein sequence with high accuracy has become one of the most important issues in modern

biomedical studies, and computational approaches of significantly accelerated analysis process and enhanced accuracy are

greatly desired. Although a variety of methods have been developed to elevate protein annotation accuracy, their ability in

controlling false annotation rates remains either limited or not systematically evaluated. In this study, a protein encoding

strategy, together with a deep learning algorithm, was proposed to control the false discovery rate in protein function

annotation, and its performances were systematically compared with that of the traditional similarity-based and de novo

approaches. Based on a comprehensive assessment from multiple perspectives, the proposed strategy and algorithm were

found to perform better in both prediction stability and annotation accuracy compared with other de novo methods.

Moreover, an in-depth assessment revealed that it possessed an improved capacity of controlling the false discovery rate

compared with traditional methods. All in all, this study not only provided a comprehensive analysis on the performances

of the newly proposed strategy but also provided a tool for the researcher in the fields of protein function annotation.

Key words: protein function prediction; deep learning; prediction stability; annotation accuracy; false discovery rate

Introduction

Functional annotation of protein sequence with high accuracy

(AC) has become one of the most important issues in under-

standing the molecular mechanism of life [1, 2] and has great

biological [3–5], pathological [6–8] and pharmaceutical [9–16]

implications.With the rapid accumulation of a wealth of protein

sequences, the functional annotation of proteins has become
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increasingly challenging [17]. Particularly, only ∼1% of all protein

sequences in UniProt [18] have experimentally verified func-

tions [19–22], and it is estimated that ∼90% of the annotated

proteins in the ontology of molecular function (MF)/biological

process (BP) [23] come from only nine species [24]. Even for

these nine model organisms, ∼60% of their proteins have not

had any experimentally determinedMF/BP term [24]. Traditional

methods for protein function annotation are mainly based on

the experiments such as mass spectrometry, microscopy and

RNA interference, which are reported as very time-consuming

and resource-demanding because of the low throughput and

restricted scope of methodology [25–31]. As such, the computa-

tional approaches of significantly accelerated analysis process

and enhanced AC are greatly desired [32–37].

Computational methods popular in current protein func-

tion prediction [38–40] can be roughly divided into three cat-

egories: information, structure and sequence based [41]. The

information-based methods [26, 42–45] are suitable for predict-

ing the functions of interacting proteins [46–49] and proteins

from coexpressed genes [41, 47, 50] but seriously restricted by the

great noises in protein–protein interaction data and insufficient

number of annotated proteins [17, 41, 49]. The structure-based

methods [51–54] are found to be accurate [47, 55] but signifi-

cantly limited by the lack of crystallized protein folds or struc-

tures [47] and the unclear relations between structural similarity

and functional similarity in many cases [41, 56]. Among those

three method categories, the sequence-based ones have now

become the most widely applied method in protein function

prediction [41] due to the relatively easy access of abundant

high-quality sequence data in public database [46, 50] and its

powerful ability to predict the function of remotely relevant

protein and the homologous proteins of distinct functions [47,

57]. There are two types of sequence-based approaches: similar-

ity based and de novo [41]. Particularly, similarity-based meth-

ods (like BLAST (a tool used for finding regions of similarity

between biological sequences) [58] and HMMER (a tool used

for searching sequence databases for sequence homologs, and

for making sequence alignments) [59]) assign an unannotated

protein with the function of another protein similar in sequence

to that protein [41]. Since the similarity-based methods are

reported to depend heavily on the sequence homology, the de

novo ones are considered as an effective complement [41, 60],

which is irrespective of sequence similarity and good at pre-

dicting the distantly related proteins and the homologous pro-

teins of distinct functions [61, 62]. The de novo methods are

generally based on supervised learningmodel, such as K-nearest

neighbor (KNN) [63], probabilistic neural network (PNN) [64] and

support vector machine (SVM) [62]. They are reported to be

powerful in predicting the functions of proteins [65–70] and other

molecules [71].

However, the high false discovery rate of the sequence-based

protein function prediction remains a severe problem [72–76].

In particular, the databases adopted by similarity-based meth-

ods for searching homology often contain noise, and the rela-

tion between sequence similarity and homology is sometimes

unclear [41]; the representativeness of the training data analyzed

by de novo method is not always sufficient [62]. In the past

few years, several pioneer efforts have been made to solve the

problems [77]. On one hand, a stringent score cutoff is adopted

by BLAST and HMMER to control the false discovery hits in

detecting homologies [78]. On the other hand, some machine

learning methods have been used to identify false homologies

[79, 80], and a putative negative training data set derived from

representative seed proteins of Pfam families, which has high

coverage of the protein family space, is constructed to reduce the

false discovery rate [62]. Recently, the deep learning algorithm is

frequently applied in sequence and omics data analysis [81, 82],

biomedical imaging and biomedical signal processing [83, 84],

which demonstrates a remarkable performance [85]. In protein

function annotation, a multitask deep neural network has been

designed to predict the function of the proteins from multi-

classes [83], and a deep restricted Boltzmann machine is used

to annotate the proteins with Gene Ontology (GO) term in the

deep position of a directed acyclic graph [23, 86].Moreover, amul-

ticlassification model has been constructed to predict protein

functional classes [87]. Although those methods are reported to

be effective in elevating protein annotation AC [88], their ability

in controlling false annotation rates is either limited or not sys-

tematically evaluated [57]. Thus, the significant enhancement

on controlling false discovery rate is still urgently needed, and

the corresponding tool is required in the filed of protein function

annotation [62].

In this study, a protein encoding strategy, together with

a deep learning algorithm, was proposed to control the

false discovery rate in protein function annotation, and its

performances were systematically compared to that of the

traditional similarity-based and de novo methods. First, the

training and testing data sets with the highest and lowest

similarities were separately constructed for distinguishing the

performances among different methods. Second, a protein

encoding strategywas proposed and integrated to deep learning-

based algorithm, and its performances were compared with

other traditional methods from multiple perspectives. Third,

the capacity of the proposed method in controlling the false

discovery rate was assessed by the comprehensive genome

scanning and enrichment factor (EF). In summary, this study

provided a comprehensive analysis on the performances of a

newly proposed protein function annotation strategy.

Materials and methods

The functional families studied in and protein
sequences collected for this analysis

In total, 20 protein families of different GO terms were collected

from diverse subclasses in the MF of the GO database by max-

imizing their representativeness among all MF categories [23],

and the GO families with different numbers of proteins were

selected to enable the discussion of the effect of sample size

on prediction result. The total numbers of proteins in these GO

families were from ∼800 to ∼33 500 (after removing repeated

protein sequences). As provided in Table 1, each studied GO

family was indicated by a GO ID [23], and the total number of

proteins (with sequence length of ≤1000) in the 20 GO families

were listed (ranging from 802 to 33 178). The sequences of the

proteins in these 20 families were collected from the UniProt

database [89], and the repeated sequences were removed to

avoid possible bias.

Constructing the data sets of training and testing

Since a binary classification model was constructed for the

studied GO families, the proteins in each family were considered

as positive data. In order to significantly enhance the repre-

sentativeness of negative data (nonmembers of a GO family), a

putative data set was therefore constructed by considering the

following steps: (1) the Pfam family of each protein in a particular

GO family was collected from the Pfam database [90], (2) the Pfam

families of all proteins in that GO family were considered as the

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

1
/4

/1
4
3
7
/5

5
4
2
8
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Protein function annotation 1439

Table 1. Twenty GO families collected from diverse subclasses in MF of GO database by maximizing their representativeness among all MF
categories. The numbers of proteins (with the sequence length of ≤1000) in these GO families were from 802 to 33 178, and the number of Pfam
families covered by each GO family was from 57 to 1092. These GO families were sorted by their total numbers of proteins included

Functional GO families studied in this work GO ID No. of proteins No. of Pfam

families covered

No. of proteins in

training data set

No. of proteins in

testing data set

Cyclase activity GO:0009975 802 57 624 178

Cyclin-dependent protein kinase activity GO:0097472 2951 64 2295 656

Phosphoprotein phosphatase activity GO:0004721 4324 152 3363 961

Transcription coregulator activity GO:0003712 4684 346 3643 1041

Positive regulation of transferase activity GO:0051347 4732 355 3680 1052

Negative regulation of catalytic activity GO:0043086 6239 512 4853 1386

Transferase activity, transferring acyl groups GO:0016746 8845 238 6879 1966

Ubiquitin-like protein transferase activity GO:0019787 9553 255 7430 2123

Transferase activity, transferring glycosyl

groups

GO:0016757 9694 278 7540 2154

Structural constituent of ribosome GO:0003735 10 492 204 8160 2332

Regulation of hydrolase activity GO:0051336 10 995 686 8551 2444

Positive regulation of catalytic activity GO:0043085 11 803 719 9180 2623

Positive regulation of MF GO:0044093 13 677 884 10 637 3040

Peptidase activity GO:0008233 18 665 597 14 517 4148

DNA-binding transcription factor activity GO:0003700 19 677 693 15 304 4373

Hydrolase activity, acting on ester bonds GO:0016788 22 599 802 17 578 5021

Protein kinase activity GO:0004672 23 068 642 17 942 5126

Hydrolase activity, acting on acid anhydrides GO:0016817 28 327 779 22 032 6295

Signaling receptor activity GO:0038023 28 700 525 22 322 6378

Catalytic complex GO:1902494 33 178 1092 25 805 7373

‘positive Pfam family’ and (3) three representative seed proteins

from the rest of the Pfam families (named as ‘negative Pfam

family’) were collected to construct a putative negative data set

(PND). Since the resulting PND was characterized by its proteins

of significantly diverse Pfam families, its representativeness on

those nonmembers of a GO family was substantially enhanced

and could be applied for controlling false discovery [57, 62].

Moreover, the level of representativeness of the studied data

sets has great impacts on the performances of the analyzed

methods [62]. Particularly, the higher similarity between the data

set used to construct models and that to test models could

result in better functional prediction [57]. Thus, the training and

testing data sets with the highest or the lowest similarity were

constructed for the analyses here. First, the sequences were

converted to digital vectors using the novel strategy proposed

in this study (described in the following section). Second, the

positive data set (containing all proteins from a particular GO

family) was classified into six groups using the K-means cluster-

ing algorithm (the distance used in this clustering was Euclidean

distance) [91].On one hand, in order to construct the training and

testing data setswith the highest similarity, one-third of proteins

in each group of the positive data set were randomly selected

out to construct the testing data set (combining six groups),

and the remaining two-thirds were used to form training data

set (combining six groups). On the other hand, to construct the

training and testing data sets with the lowest similarity, two

groups were randomly selected out from those six groups to

construct the testing data set, and the remaining four were

used to form training data set. For both situations, two out of

those three representative seed proteins from the negative Pfam

families were randomly selected out to form the training data

set, and the remaining onewas used to construct the testing data

set. Furthermore, to evaluate the false discovery rate of those

studied methods, all protein sequences in the human genome

were collected from the UniProt database [89].

The methods studied and assessed in this work

The sequence homology was the basis of protein function pre-

diction, which could be detected by similarity analysis among

sequences. Generally, the sequences with higher similarity were

more likely homologous. BLAST was one of the most popular

tools for sequence similarity analysis [58]. Herein, the sequences

of proteins in the training data set of each GO family were

collected to construct a searchable database, and then any query

protein was searched against this database using BLAST and

annotated with the function of themost similar protein. HMMER

was another popular tool for sequence similarity analysis used

in this study, which was based on the hidden Markov model

[59]. Similar to the BLAST, the searchable database was also

constructed based on the sequences of proteins in the training

data set of each GO family. Then, any protein was searched

against this database using HMMER [59] and annotated based on

the most similar one.

Moreover, there were three de novo methods studied and

assessed in this study. The SVM tried to find a hyperplane to sep-

arate the members from nonmembers of a particular GO family

by maximizing the margin defined in protein feature space [92].

The KNN predicted the class of a protein by the majority vote of

its neighbors with a given distance metric [93], and the PNN was

a neural network based on Bayesian decision theory [94]. These

three methods were directly applied under the Python environ-

ment. As reported in the previous studies [57, 62], a method for

converting the protein sequence to the digital feature vector had

been successfully applied in SVM, KNN and PNN and had been

shown good performance in protein function prediction. This

method converted the protein sequence into the digital vector

according to its properties and composition of amino acids [62,

95]. The properties adopted here included (1) hydrophobicity, (2)

Van der Waals volume, (3) polarity, (4) polarizability, (5) charge,

(6) secondary structure, (7) solvent accessibility and (8) surface

tension [62, 96–98]. Each property was represented by three
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Figure 1. The workflow of the deep learning algorithm (CNN) applied together with the sequence encoding technique proposed in this study.

groups of descriptors: the global composition of given amino

acid, frequencies with which the property changes along entire

protein and distribution pattern of property along sequence. The

detail on this digitalizing method could be found in previous

studies [57, 62].

The deep learning algorithm used in this study was the con-

volutional neural network (CNN).As shown in Figure 1 (Encoding

Layer), a new sequence encoding technique was first proposed

to generate a 1000×5 binary array for any protein sequence.

Particularly, each amino acid was encoded by a 5-bit binary

number (from [0,0,0,0,1] for alanine to [1,0,1,0,0] for tyrosine).

Only the proteinswith the sequence length of nomore than 1000

amino acids were analyzed in this study, which constitute the

majority (>98%) of the proteins in any GO family. For the proteins

of sequence length of less than 1000 amino acids, their empty

amino acid positions were complemented by the 5-bit binary

number [0,0,0,0,0]. Moreover, for the amino acids that were not

among those 20 common ones, they were encoded by another

number [1,0,1,0,1]. Second, CNN was applied, which consisted of

multiple layers: a convolutional layer, a pooling layer, two fully

connected layers and a softmax layer (Figure 1). The encoding

array connected directly with the convolutional layer, which

scanned the encoding array through an mk ×5 convolution ker-

nel and resulted in a feature vector:

aci = f

⎛

⎝

mk
∑

j=1

5
∑

l=1

(

X(j+i−1)l ∗ Wjl

)

+ bi

⎞

⎠

where aci indicated the output of the ith neuron of the feature

vector, mk denoted the length of the kth convolution kernel, X

referred to input protein encoding array and W and bi were a

(mk ×5) weight array and a bias, respectively. f defined the ReLU

activation function [99]. Third, the max pooling layer was used,

and themaximumneuron output value of the feature vector was

selected as the output of the pooling layer.

amax
j = max

(

aci
) (

i = 1, 2, · · · , L − mk + 1
)

where amax
j indicated the output of the jth neuron of the pooling

layer. To fully extract protein features, eight different lengths of

convolution kernel (for each length, there are 120 kernels) were

used to scan the protein encoding array. Therefore, after the

pooling layer, a vector containing 960 outputs for each protein

was obtained. Fourth, using this vector, the fully connected

layers generated the output for each layer:

a
f1
i = σ

⎛

⎝

960
∑

j=1

(

amax
j ∗ w

f1
ij

)

+ b
f1
i

⎞

⎠

a
f2
j = σ

(

1000
∑

i=1

(

a
f1
i ∗ w

f2
ji

)

+ b
f2
j

)

where a
f1
i denoted the output of the ith neuron of the first fully

connected layer and a
f2
j referred to the output of the jth neuron

of the second fully connected layer.w
f1
ij and b

f1
i indicated the jth

weight and the bias of the ith neuron of the first fully connected

layer; w
f2
ji and b

f2
j indicated the ith weight and the bias of the jth

neuron of the second fully connected layer. σ was ELU activation

function [100]. Finally, the output vector of the fully connected

layer was further used as the input of a softmax layer, which

provided the classification probability of the query protein:

Y = softmax
(

a
f2w′

+ b
′

)

where af2 indicated the output vector of the second fully

connected layer and w′ and b
′ referred to weight array and bias
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Table 2. The performances of three de novo (SVM, KNN and PNN) and the deep learning (CNN) methods proposed in this study on the training
and testing data sets (for eight representative GO families) with the highest similarity based on popular measurements (SE, SP, PR, AC andMCC).
Each GO family was denoted by its GO ID, and its corresponding GO term was shown in Table 1

GO ID
CNN SVM KNN PNN

SE% SP% PR% AC% MCC SE% SP% PR% AC% MCC SE% SP% PR% AC% MCC SE% SP% PR% AC% MCC

GO:0097472 85.2 99.9 99.1 98.5 0.91 81.0 99.1 90.2 97.3 0.84 70.9 97.7 76.4 95.1 0.71 72.7 98.6 84.7 96.2 0.76

GO:0004721 79.5 99.2 93.9 96.6 0.85 65.2 99.3 93.2 94.7 0.75 68.0 95.6 70.8 91.9 0.65 55.5 98.7 87.0 92.9 0.66

GO:0051347 81.3 99.6 97.5 96.9 0.87 78.4 97.3 83.4 94.5 0.78 75.6 93.5 66.9 90.9 0.66 63.8 99.1 92.8 93.9 0.74

GO:0003735 80.7 98.7 95.8 93.8 0.84 87.2 97.6 93.2 94.8 0.87 84.7 95.6 87.8 92.6 0.81 84.9 95.5 87.7 92.6 0.81

GO:0016746 71.7 96.2 85.8 90.2 0.72 70.5 96.6 86.8 90.2 0.72 70.7 92.5 75.2 87.2 0.65 64.8 93.7 76.8 86.7 0.62

GO:0043085 69.3 98.1 94.3 89.2 0.74 75.4 95.2 87.5 89.1 0.74 78.8 87.1 73.2 84.5 0.65 66.7 95.6 87.2 86.7 0.68

GO:0003700 81.1 95.0 92.3 89.0 0.78 82.8 94.8 92.2 89.7 0.79 81.9 90.9 87.0 87.1 0.74 84.3 89.0 85.0 87.0 0.73

GO:0044093 80.7 93.5 86.6 89.1 0.76 78.7 94.1 87.5 88.8 0.75 80.6 85.5 74.5 83.8 0.65 72.6 92.5 83.7 85.6 0.68

vector, respectively. Y was the classification probability of

sequence X (Figure 1).

The CNN model was implemented with the Python pro-

gramming language and the TensorFlow library. The binary

cross-entropy loss function was adopted in all models training,

and the Adam [101] optimizer (learning rate= 0.001, β1 =0.9,

β2 =0.999 and ε =10−8) was used for the optimization during

back-propagation. The weight parameters were initialized with

the He initialization method [102], and biases were initialized to

zero. The batch normalizationwas applied in the fully connected

layers before ELU activation function for accelerating the speed

of convergence, and the strategy of dropout [103] was also used

in the fully connected layer with a drop rate of 0.6 to randomly

remove a certain number of neurons at each training step in

order to prevent the overfitting of the neural network.

Assessing the AC and false discovery rate of protein
function annotation

Five popular measurements, such as sensitivity (SE), specificity

(SP), precision (PR), AC and Matthews correlation coefficient

(MCC) [57, 104],were adopted in this study to evaluate the perfor-

mance of each protein functional annotation method. Since the

SP was reported to be effective in evaluating the methods’ false

discovery rate [57], it was adopted in this study to assess the false

discovery rate of the de novo methods and the constructed deep

learning model based on the testing data set. Moreover, in order

to further assess the false discovery rate ofmethods, a real-world

application of the human genome scanning was performedwith

each method. For BLAST and HMMER, the training data set was

used to construct the searching databases. For de novo and deep

learning methods, the training data set was applied to train the

models. Because it is not necessary to use the negative data set in

predictionswith BLAST andHMMER, the SP cannot be calculated

in the genome scanning for both methods, the false discovery

rate was evaluated by the EF for discovering the proteins in each

GO family:

EF =
(NPT/NP)

/

(NT/N)

where NP referred to the total number of proteins in the testing

data set predicted by the method as the members of certain GO

family, NPT indicated the total number of predicted proteins in

the testing data set truly belonging to this particular GO family,

N denoted the total number of proteins in the studied genome

and NT referred to the total number of proteins in the testing

data set truly belonging to the studied GO family. The value of

EF is no less than zero; however, only when the EF value is larger

than 1, there is an enrichment. The larger the EF, the lower the

false discovery rate.

Results and discussion

Methods’ performances based on the training and
testing data sets with the highest similarity

The performances of studied methods were first calculated and

assessed based on the constructed training and testing data sets

with the highest similarity (the way to construct such data sets

was provided in the second section ofMaterials andMethods).As

shown in Table 2, eight representative GO families were selected

randomly from all 20 studied GO families, and the performances

of three de novo (SVM, KNN and PNN) and the proposed deep

learning (CNN) methods were provided based on five measure-

ments (SE, SP, PR, AC and MCC). Taking AC as an example, it

spanned from 89.0% to 98.5%, from 89.1% to 97.3%, from 84.5%

to 95.1%, and from 86.7% to 96.2% for CNN, SVM, KNN and PNN,

respectively. Moreover, for MCC, it ranged from 0.72 to 0.91, from

0.72 to 0.87, from 0.65 to 0.81, and from 0.62 to 0.81, respectively.

As shown, the exact AC and MCC values of CNN and SVM were

slightly higher than that of the remaining methods (KNN and

PNN), but no significant difference was observed for AC values

(the P-values for AC values between any twomethodswere larger

than 0.05). ForMCC values,CNN is better thanKNNand PNNwith

the P-values of 0.004 and 0.011, respectively, SVM is better than

KNN and PNN with the P-values of 0.012 and 0.038, respectively,

and there is no significant difference between CNN and SVM.

The results above indicated that, for the data sets with the

highest similarity, the studied methods showed a similar per-

formance as each other. In other words, the models trained

using the high representative data sets by difference methods

performed consistently well, which denoted that the training

and testing data sets with the highest similarity might have a

low resolution on distinguishing the performances of different

methods. Therefore, in order to provide an in-depth assess-

ment on studied methods, the training and testing data sets

with the lowest similarity could be considered as more effective

in providing the performance assessment of higher resolution.

Moreover, in the real world of protein function annotation, it

was almost impossible to have all query proteins (with func-

tion unknown) fully represented by the proteins with annotated

functions. Therefore, the assessment based on the data sets with

the highest similarity could only draw the upper ceiling of the

methods’ performances, and the data sets in most real-world
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Table 3. The performances of three de novo (SVM, KNN and PNN) and the deep learning (CNN) methods proposed in this study on the training
and testing data sets (for 20 studied GO families) with the lowest similarity based on popular measurements (SE, SP, PR, AC and MCC). Each GO
family was indicated by its GO ID, and its corresponding GO term was provided in Table 1

GO ID
CNN SVM KNN PNN

SE% SP% PR% AC% MCC SE% SP% PR% AC% MCC SE% SP% PR% AC% MCC SE% SP% PR% AC% MCC

GO:0009975 26.4 99.9 94.0 97.9 0.49 11.8 99.8 67.7 97.4 0.28 10.1 98.3 14.4 95.8 0.10 16.3 96.3 11.2 94.1 0.10

GO:0097472 67.7 99.9 99.6 96.9 0.81 39.0 99.3 85.1 93.5 0.55 43.3 97.8 67.6 92.6 0.50 40.2 98.6 74.8 93.0 0.52

GO:0004721 55.6 99.5 94.5 93.6 0.70 28.4 99.2 84.0 89.7 0.45 36.4 95.2 54.2 87.3 0.38 32.4 97.3 64.8 88.5 0.40

GO:0003712 32.7 99.7 94.2 89.9 0.52 20.4 98.5 70.2 87.1 0.33 35.9 94.5 52.5 85.9 0.36 38.1 92.9 47.8 84.9 0.34

GO:0051347 42.5 99.9 98.7 91.4 0.62 26.9 98.8 79.3 88.2 0.42 37.4 92.7 47.0 84.5 0.33 37.5 96.0 62.0 87.4 0.42

GO:0043086 35.5 99.1 90.4 87.1 0.52 17.4 98.0 66.4 82.8 0.28 28.7 91.8 44.8 79.9 0.25 10.1 99.9 96.6 83.0 0.28

GO:0016746 40.0 97.7 84.9 83.7 0.51 27.1 93.7 58.0 77.5 0.28 30.0 86.2 41.1 72.5 0.18 9.9 99.4 84.8 77.7 0.24

GO:0019787 79.9 96.2 87.8 92.0 0.79 37.7 96.1 76.9 81.1 0.44 34.8 90.3 55.4 76.0 0.30 40.1 89.9 57.9 77.1 0.34

GO:0016757 48.9 97.3 86.5 84.7 0.57 22.0 96.2 68.0 77.0 0.29 38.5 84.9 47.2 72.8 0.25 32.7 92.7 61.2 77.1 0.32

GO:0003735 87.6 97.3 92.4 94.6 0.86 87.9 96.6 90.8 94.2 0.85 86.0 95.0 86.7 92.6 0.81 84.4 93.1 82.2 90.7 0.77

GO:0051336 28.3 98.9 91.2 78.2 0.43 23.0 94.4 63.1 73.5 0.26 38.6 84.3 50.5 70.9 0.25 46.5 83.2 53.4 72.4 0.31

GO:0043085 44.0 98.0 90.7 81.3 0.54 32.9 94.9 74.3 75.7 0.37 54.8 79.8 54.9 72.1 0.35 57.8 80.5 57.0 73.5 0.38

GO:0044093 41.6 96.3 85.4 77.5 0.48 29.0 94.6 73.9 72.0 0.33 46.7 80.2 55.4 68.7 0.28 23.1 97.3 81.7 71.7 0.33

GO:0008233 62.0 92.9 86.0 80.2 0.59 49.2 92.8 82.7 74.9 0.48 67.9 72.6 63.4 70.7 0.40 60.6 80.7 68.7 72.4 0.42

GO:0003700 77.7 94.1 90.7 87.1 0.74 62.2 89.1 81.0 77.6 0.54 67.0 85.2 77.1 77.4 0.53 68.2 84.5 76.6 77.5 0.54

GO:0016788 53.9 89.1 81.0 72.8 0.46 45.9 86.5 74.5 67.6 0.36 64.8 65.0 61.5 64.9 0.30 55.9 78.2 68.9 67.8 0.35

GO:0004672 76.8 95.5 93.7 86.8 0.74 49.1 88.0 78.1 69.9 0.41 60.3 71.7 65.0 66.4 0.32 50.9 86.6 76.8 70.0 0.40

GO:0016817 60.7 95.0 92.9 77.1 0.59 45.3 84.9 76.5 64.3 0.33 68.2 60.8 65.4 64.7 0.29 67.1 65.4 67.8 66.3 0.32

GO:0038023 71.3 91.6 90.0 81.1 0.64 59.4 90.6 87.1 74.5 0.52 57.2 83.7 78.9 70.0 0.42 57.0 84.7 79.9 70.4 0.43

GO:1902494 49.6 87.2 83.4 66.0 0.39 42.8 79.9 73.4 59.0 0.24 58.6 62.5 66.9 60.3 0.21 58.9 66.6 69.6 62.3 0.25

occasionsweremuch less representative. Especially for the novel

or newly discovered proteins, which attract great and broad

attentions, the training data set or database could not provide

any representativeness to the novel ones. Therefore, compared

with the upper ceiling, a bottom line (the training and testing

data sets with the lowest similarity) was expected to be capable

of revealing the lower limits of the performances of all studied

methods.

Methods’ performances based on the training and
testing data sets with the lowest similarity

The performances of the studied methods were calculated and

assessed based on the constructed data sets with the lowest

similarity (the way to construct such data sets was provided

in the second section of Materials and Methods). As illustrated

in Table 3, the performances of three de novo and one deep

learning methods on all 20 GO families were provided based

on five measurements. Moreover, the statistical differences of

these measurements between any two methods were shown

in Figure 2. As one of the most comprehensive parameters in

any category of predictors [57], the MCC reflected the stability

of protein function predictor, which described the correlation

between a predictive value and the actual value [62, 105, 106]. As

illustrated on the left panel of Figure 2A, the variations of MCC

values among methods were provided (the actual MCC value of

eachmethodwas subtracted by theminimumMCC value among

four different methods). As shown, the CNNmethod showed the

consistently higher MCC values compared with the other three

methods, and the MCC values of KNN method were the lowest

in most of the GO families. As all GO families were ordered by

their total numbers of proteins, there was no clear trend on the

MCC values with the increase of protein amount. Moreover, to

assess the statistical differences of MCC values between any

two methods, the violin box plots based on the MCC values in

Table 3were drawn on the right panel of Figure 2A.As illustrated,

there were significant differences (P<0.01) between theMCCs of

CNN and that of the rest methods, and there was no significant

difference in MCCs between any two of those three de novo

methods. These results demonstrated an enhanced stability of

the CNN-based protein function annotation model compared

with three popular de novo methods.
As another important parameter for protein function anno-

tation assessment, the AC referred to the total number of true

members (positive plus negative) divided by the number of stud-

ied proteins [57], which was essential to be compared among

different methods. Herein, the variations of AC values among

methods (the actual AC of each method was subtracted by the

minimum ACs among four different methods) were therefore

calculated and provided on the left panel of Figure 2B. Similar

to MCCs, the CNN method showed the consistently higher AC

values compared with other three methods, and the AC values

of KNNmethodwere also the lowest inmost of those GO families

(there was no clear trend on the AC values with the increase

of protein amount either). Furthermore, to assess the statistical

differences of the ACs between any two methods, the violin box

plot based on the ACs in Table 3 was drawn on the right panel

of Figure 2B. As illustrated, there were significant differences

(P<0.05) between the AC values of CNN and that of the rest

methods, and therewas no significant difference in ACs between

any two of those three de novo methods. These results showed

the elevated AC of the CNN-based protein function annotation

model compared with three popular de novo methods.

Besides the stability (MCC) and AC, SE and SP were also fre-

quently used to assess themethods’ prediction performances on

positive and negative data sets, respectively. Thus, in this study,

similar analyses were also conducted and shown in Figure 2C, D.

Since the SPwas known as an effectivemetric reflecting the false

discovery rate, both CNN and SVM showed enhanced control

on the false discovery when comparing with KNN and PNN.

All in all, based on the comprehensive assessment from four

different perspectives (MCC, AC, SE and SP), the CNN method
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Figure 2. Variations (the actual value of each method subtracted by the minimum value among four different methods) of four measurements among different protein

function annotation methods: (A) MCC, (B) AC, (C) SE, (D) SP. On the right side, the statistical differences between any two methods were provided as the violin box

plots. ∗ indicated great difference of P< 0.05, and ∗∗ denoted significant difference of P< 0.01. Detailed P-values are provided in Supplementary Table S1.

proposed here was found to perform better in both prediction

stability and annotation AC compared with three popular de

novo methods. Although both CNN and SVM were found with

enhanced control of false discovery rate, the SEs of CNN were

found to be significantly enhanced (P=0.007) compared with

that of SVM.

In-depth assessment on the false discovery rates based
on genome scanning

Besides the SP, the EF was one of the most popular and effective

metrics for assessing the false discovery rate of any functional

annotationmethod [57]. As known, the SP values assess the false

discovery rate via only considering the prediction performance

on the PND, while the EF evaluates the false discovery by fully

considering the real-world true members of a particular GO

family. Therefore, the EFs were applied in this study to comple-

ment the SP and further make in-depth assessment on the false

discovery rate of each studied methods. In other words, in order

to evaluate the false discovery rate of each method in the real

world, multiple methods (CNN, BLAST, HMMER, SVM, KNN and

PNN) were used to scan the human genome to identify human

proteins belonging to each GO family. As shown in Table 4,

the total numbers of proteins identified by different methods

together with their corresponding EFs were provided. Moreover,

the EFs of each method based on different GO families were

illustrated in Figure 3. As shown, there were clear variations

among the EFs of different methods. Particularly, as shown on

the right panel of Figure 3, there were significant differences

(P<0.01) between the EFs of CNN and that of all de novomethods

and BLAST. Based on the statistical analysis conducted in this

study, there was no significant variation between the EFs of CNN

and that of PHMM (a probabilistic model called Poisson Hidden

Markov Model, which used in the HMMER), but the calculated

P-value (0.054) was very close to 0.05. Furthermore, as provided

in Table 4, the majority (17 out of 20, 85.0%) of the EFs of CNN

were higher than that of PHMM. In conclusion, based on the

information provided in Figure 3 and Table 4, the deep learning

strategy CNN proposed in this study showed an improved ability

to control the false discovery rate.
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Figure 3. The EFs of different protein function annotation methods of the training and testing data sets (for all studied GO families) with the lowest similarity. On the

right side, the statistical differences of the EFs between any two methods were provided as the violin box plots. ∗ indicated great difference of P<0.05, and ∗∗ denoted

significant difference of P< 0.01. Detailed P-values are provided in the Supplementary Table S2.

Table 4. The total numbers of proteins and the EFs of three de novo (SVM, KNN and PNN) identified by two similarity-based (BLAST and HMMER)
and the deep learning (CNN) methods proposed in this study based on the training and testing data sets (for all 20 studied GO families) of the
lowest similarity. Each GO family was indicated by its GO ID, and its corresponding GO term was provided in Table 1

GO ID
No. of proteins identified by each method EF

CNN SVM KNN PNN BLAST PHMM CNN SVM KNN PNN BLAST PHMM

GO:0009975 56 235 657 1416 1594 1347 53.61 0 2.28 3.18 8.48 11.14

GO:0097472 202 434 619 561 1598 923 44.59 14.65 8.56 13.22 8.29 14.92

GO:0004721 352 712 1824 1402 2403 1844 32.73 12.36 5.17 7.17 6.28 8.41

GO:0003712 637 1403 2648 3114 4408 3541 10.79 3.38 2.19 2.40 2.80 3.65

GO:0051347 725 1689 3873 1421 5858 4521 9.15 3.37 1.22 4.17 2.43 3.22

GO:0043086 1087 2291 3822 528 5911 4888 7.75 2.63 1.92 9.37 2.14 2.67

GO:0016746 924 2173 3878 401 2076 1604 12.61 3.51 2.51 17.44 7.76 10.44

GO:0019787 1954 2339 3822 3921 3328 2499 7.72 4.79 2.67 3.06 5.02 6.62

GO:0016757 881 1265 4146 2352 1770 1451 11.20 6.05 2.56 3.88 8.36 10.20

GO:0003735 520 750 965 1564 1207 1029 33.03 21.22 17.8 10.98 14.58 17.10

GO:0051336 1436 4334 6885 6693 7187 5887 3.76 1.10 0.81 1.26 1.81 2.28

GO:0043085 2152 4710 8846 8082 7984 6470 4.27 1.78 1.23 1.53 1.83 2.29

GO:0044093 3458 5172 9417 2664 8654 7048 2.65 1.61 1.10 2.79 1.69 2.07

GO:0008233 2850 3842 8106 5906 5409 4327 3.52 1.85 1.18 1.50 2.24 2.77

GO:0003700 3877 6586 6861 6604 6537 5167 4.07 1.87 1.66 1.84 2.58 3.27

GO:0016788 3975 4867 9351 7019 5338 4414 2.45 1.75 1.18 1.52 2.72 3.33

GO:0004672 2904 5918 8287 4895 6621 4633 3.87 1.40 1.35 2.05 2.21 2.96

GO:0016817 2207 5443 10 649 8903 6531 5053 5.15 1.89 1.24 1.48 2.43 3.13

GO:0038023 4230 5919 7314 6684 5616 3573 3.06 1.93 1.79 2.03 2.60 3.48

GO:1902494 4133 6900 10 017 8399 6466 4991 2.45 1.31 1.04 1.35 2.16 2.84

Conclusions

Based on the comprehensive assessment using different mea-

surements (MCC, AC, SE and SP), the CNN method together with

the protein encoding strategy proposed in this study was found

to perform better in both prediction stability and annotation

AC compared with the popular de novo methods. Moreover, the

in-depth assessment revealed that it possessed an improved

capacity of controlling the false discovery rate in current protein

functional annotation comparedwith other traditionalmethods.

All in all, this study not only provided a comprehensive analysis

on the performances of the newly proposed strategy but also

provided a valuable tool for the researcher in the fields of protein

function annotation.

Key Points

• Functional annotation of protein sequence with high

accuracy has become one of the most important issues

in modern biomedical studies.
• A protein encoding strategy, together with a deep learn-

ing algorithm, was proposed to control false discovery

rate in protein function annotation.
• The proposed strategy and algorithmwere found to per-

form better in prediction stability, annotation accuracy

and false discovery rate compared with the traditional

methods.
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Acknowledgments

This study was funded by the National Key Research

and Development Program of China (2018YFC0910500),

National Natural Science Foundation of China (81872798),

Fundamental Research Funds for Central Universities

(2018QNA7023, 10611CDJXZ238826, 2018CDQYSG0007 and

CDJZR14468801), Innovation Project on Industrial Generic

Key Technologies of Chongqing (cstc2015zdcy-ztzx120003),

Key Project of Zhejiang Province Ministry of Science and

Technology (2015C03055) and Key Project of National Natural

Science Foundation of China (81730108).

References

1. Chang YC, Hu Z, Rachlin J, et al. COMBREX-DB: an exper-

iment centered database of protein function: knowl-

edge, predictions and knowledge gaps. Nucleic Acids Res

2016;44:D330–5.

2. Sahraeian SM, Luo KR, Brenner SE. SIFTER search: a web

server for accurate phylogeny-based protein function pre-

diction. Nucleic Acids Res 2015;43:W141–7.

3. Goldstrohm AC, Hall TMT, McKenney KM. Post-

transcriptional regulatory functions of mammalian

Pumilio proteins. Trends Genet 2018;34:972–90.

4. Qiao W, Akhter N, Fang X, et al. From mutations to mech-

anisms and dysfunction via computation and mining of

protein energy landscapes. BMC Genomics 2018;19:671.

5. Woods RJ. Predicting the structures of glycans, glycopro-

teins, and their complexes. Chem Rev 2018;118:8005–24.

6. Shiihashi G, Ito D, Yagi T, et al. Mislocated FUS is suffi-

cient for gain-of-toxic-function amyotrophic lateral sclero-

sis phenotypes in mice. Brain 2016;139:2380–94.

7. Skrlj B, Konc J, Kunej T. Identification of sequence variants

within experimentally validated protein interaction sites

provides new insights into molecular mechanisms of dis-

ease development.Mol Inform 2017;36:00017.

8. Seneviratne U, Nott A, Bhat VB, et al. S-nitrosation of pro-

teins relevant to Alzheimer’s disease during early stages of

neurodegeneration.Proc Natl Acad Sci U SA 2016;113:4152–7.

9. Li B, Tang J, Yang Q, et al. NOREVA: normalization and

evaluation of MS-based metabolomics data. Nucleic Acids

Res 2017;45:W162–70.

10. Li B,Tang J,YangQ, et al.Performance evaluation and online

realization of data-driven normalization methods used in

LC/MS based untargeted metabolomics analysis. Sci Rep

2016;6:38881.

11. Lai AC, Crews CM. Induced protein degradation: an

emerging drug discovery paradigm. Nat Rev Drug Discov

2017;16:101–14.

12. Tang J, Fu J,Wang Y, et al.Simultaneous improvement in the

precision, accuracy and robustness of label-free proteome

quantification by optimizing datamanipulation chains.Mol

Cell Proteomics 2019; doi:10.1074/mcp.RA118.001169.

13. Li YH, Li XX, Hong JJ, et al. Clinical trials, progression-speed

differentiating features and swiftness rule of the inno-

vative targets of first-in-class drugs. Brief Bioinform 2019;

doi:10.1093/bib/bby130.

14. Zhang Y, Ying JB, Hong JJ, et al. How does chirality deter-

mine the selective inhibition of histone deacetylase 6? A

lesson from trichostatin a enantiomers based onmolecular

dynamics. ACS Chem Nerosci 2019;10:2467–80.

15. Li X, Li X, Li Y, et al. What makes species productive of

anti-cancer drugs? Clues from drugs’ species origin, drug-

likeness, target and pathway. Anticancer Agents Med Chem

2018;19:194–203.

16. Han Z, Xue W, Tao L, et al. Identification of key long

non-coding RNAs in the pathology of Alzheimer’s dis-

ease and their functions based on genome-wide associa-

tions study, microarray, and RNA-seq data. J Alzheimers Dis

2019;68:339–55.

17. Zhao B, Hu S, Li X, et al. An efficient method for protein

function annotation based onmultilayer protein networks.

Hum Genomics 2016;10:33.

18. The UniProt Consortium. UniProt: the universal protein

knowledgebase. Nucleic Acids Res 2017;45:D158–69.

19. Das S, Orengo CA. Protein function annotation using pro-

tein domain family resources.Methods 2016;93:24–34.

20. You R, Zhang Z, Xiong Y, et al. GOLabeler: improving

sequence-based large-scale protein function prediction by

learning to rank. Bioinformatics 2018;34:2465–73.

21. Tang J, Fu J, Wang Y, et al. ANPELA: analysis and per-

formance assessment of the label-free quantification

workflow for metaproteomic studies. Brief Bioinform 2019;

doi:10.1093/bib/bby127.

22. Li S, Li J, Ning L, et al. In silico identification of protein

S-palmitoylation sites and their involvement in human

inherited disease. J Chem Inf Model 2015;55:2015–25.

23. Ashburner M, Ball CA, Blake JA, et al.Gene ontology: tool for

the unification of biology. The gene ontology consortium.

Nat Genet 2000;25:25–9.

24. Clark WT, Radivojac P. Analysis of protein function

and its prediction from amino acid sequence. Proteins

2011;79:2086–96.

25. Frasca M, Cesa-Bianchi N. Multitask protein function pre-

diction through task dissimilarity. IEEE/ACM Trans Comput

Biol Bioinform 2017; doi:10.1109/TCBB.2017.2684127.

26. Cao R, Cheng J. Integrated protein function prediction

by mining function associations, sequences, and pro-

tein–protein and gene–gene interaction networks. Methods

2016;93:84–91.

27. Schnoes AM, Ream DC, Thorman AW, et al. Biases in the

experimental annotations of protein function and their

effect on our understanding of protein function space. PLoS

Comput Biol 2013;9:e1003063.

28. Li YH, Yu CY, Li XX, et al. Therapeutic target database

update 2018: enriched resource for facilitating bench-to-

clinic research of targeted therapeutics. Nucleic Acids Res

2018;46:D1121–7.

29. Yang H, Qin C, Li YH, et al. Therapeutic target database

update 2016: enriched resource for bench to clinical drug

target and targeted pathway information. Nucleic Acids Res

2016;44:D1069–74.

30. Zhu F, Shi Z, Qin C, et al. Therapeutic target database

update 2012: a resource for facilitating target-oriented drug

discovery. Nucleic Acids Res 2012;40:D1128–36.

31. Zhu F, Han B, Kumar P, et al. Update of TTD: therapeutic

target database. Nucleic Acids Res 2010;38:D787–91.

32. Cao R, Freitas C, Chan L, et al. ProLanGO: protein

function prediction using neural machine translation

based on a recurrent neural network. Molecules 2017;22:

1732.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

1
/4

/1
4
3
7
/5

5
4
2
8
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbz081#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib


1446 Hong et al.

33. Zhu F, Han L, Zheng C, et al. What are next generation

innovative therapeutic targets? Clues from genetic, struc-

tural, physicochemical, and systems profiles of successful

targets. J Pharmacol Exp Ther 2009;330:304–15.

34. Xu J, Wang P, Yang H, et al. Comparison of FDA approved

kinase targets to clinical trial ones: insights from their sys-

tem profiles and drug-target interaction networks. Biomed

Res Int 2016;2016:2509385.

35. Fu J, Tang J, Wang Y, et al. Discovery of the con-

sistently well-performed analysis chain for SWATH-MS

based pharmacoproteomic quantification. Front Pharmacol

2018;9:681.

36. Zhu F, Li XX, Yang SY, et al. Clinical success of drug targets

prospectively predicted by in silico study. Trends Pharmacol

Sci 2018;39:229–31.

37. XueW,Yang F,Wang P, et al.What contributes to serotonin-

norepinephrine reuptake inhibitors’ dual-targeting

mechanism? The key role of transmembrane domain

6 in human serotonin and norepinephrine transporters

revealed by molecular dynamics simulation. ACS Chem

Nerosci 2018;9:1128–40.

38. Jain A, Kihara D. Phylo-PFP: improved automated protein

function prediction using phylogenetic distance of dis-

tantly related sequences. Bioinformatics 2019;35:753–9.

39. Zhang C, Freddolino PL, Zhang Y. COFACTOR: improved

protein function prediction by combining structure,

sequence and protein–protein interaction information.

Nucleic Acids Res 2017;45:W291–9.

40. Wan S, Duan Y, Zou Q. HPSLPred: an ensemble multi-

label classifier for human protein subcellular location

prediction with imbalanced source. Proteomics 2017;17:

1700262.

41. Cruz LM, Trefflich S, Weiss VA, et al. Protein function pre-

diction.Methods Mol Biol 1654;2017:55–75.

42. PiovesanD,GiolloM, Ferrari C, et al.Protein function predic-

tion using guilty by association from interaction networks.

Amino Acids 2015;47:2583–92.

43. LvQ,MaW,LiuH, et al.Genome-wide protein–protein inter-

actions and protein function exploration in cyanobacteria.

Sci Rep 2015;5:15519.

44. Mateos A, Dopazo J, Jansen R, et al. Systematic learning of

gene functional classes from DNA array expression data by

using multilayer perceptions. Genome Res 2002;12:1703–15.

45. Huttenhower C, Hibbs M, Myers C, et al. A scalable method

for integration and functional analysis of multiplemicroar-

ray datasets. Bioinformatics 2006;22:2890–7.

46. Hawkins T, Chitale M, Kihara D. New paradigm in pro-

tein function prediction for large scale omics analysis.Mol

Biosyst 2008;4:223–31.

47. Tiwari AK, Srivastava R. A survey of computational intelli-

gence techniques in protein function prediction. Int J Pro-

teomics 2014;2014:845479.

48. Vazquez A, Flammini A, Maritan A, et al. Global protein

function prediction from protein–protein interaction net-

works. Nat Biotechnol 2003;21:697–700.

49. Peng W, Wang J, Cai J, et al. Improving protein function

prediction using domain and protein complexes in PPI

networks. BMC Syst Biol 2014;8:35.

50. Nariai N,Kolaczyk ED,Kasif S. Probabilistic protein function

prediction from heterogeneous genome-wide data. PLoS

One 2007;2:e337.

51. Hwang H, Dey F, Petrey D, et al. Structure-based prediction

of ligand–protein interactions on a genome-wide scale. Proc

Natl Acad Sci U S A 2017;114:13685–90.

52. Sillitoe I, Lewis TE,Cuff A, et al.CATH: comprehensive struc-

tural and functional annotations for genome sequences.

Nucleic Acids Res 2015;43:D376–81.

53. Lam SD, Dawson NL, Das S, et al. Gene3D: expand-

ing the utility of domain assignments. Nucleic Acids Res

2016;44:D404–9.

54. Holm L, Rosenstrom P. Dali server: conservation mapping

in 3D. Nucleic Acids Res 2010;38:W545–9.

55. Maghawry HA,MostafaMG,Gharib TF.A new protein struc-

ture representation for efficient protein function predic-

tion. J Comput Biol 2014;21:936–46.

56. Pearson WR. Protein function prediction: problems and

pitfalls. Curr Protoc Bioinformatics 2015;51:4.12.1–8.

57. Yu CY, Li XX, Yang H, et al. Assessing the performances of

protein function prediction algorithms from the perspec-

tives of identification accuracy and false discovery rate. Int

J Mol Sci 2018;19:183.

58. Camacho C, Coulouris G, Avagyan V, et al. BLAST+:

architecture and applications. BMC Bioinformatics 2009;

10:421.

59. Potter SC, Luciani A, Eddy SR, et al.HMMERweb server: 2018

update. Nucleic Acids Res 2018;46:W200–4.

60. Zhao B, Wang J, Wu FX. Computational methods to predict

protein functions from protein–protein interaction net-

works. Curr Protein Pept Sci 2017;18:1120–31.

61. Peled S, Leiderman O, Charar R, et al. De-novo protein

function prediction using DNA binding and RNA binding

proteins as a test case. Nat Commun 2016;7:13424.

62. Li YH, Xu JY, Tao L, et al. SVM-Prot 2016: a web-server

for machine learning prediction of protein functional fam-

ilies from sequence irrespective of similarity. PLoS One

2016;11:e0155290.

63. Lan L, Djuric N, Guo Y, et al. MS-kNN: protein function

prediction by integrating multiple data sources. BMC Bioin-

formatics 2013;14:S8.

64. Gonzalez-Camacho JM, Crossa J, Perez-Rodriguez P, et al.

Genome-enabled prediction using probabilistic neural net-

work classifiers. BMC Genomics 2016;17:208.

65. Khan ZU, Hayat M, Khan MA. Discrimination of acidic and

alkaline enzyme using Chou’s pseudo amino acid com-

position in conjunction with probabilistic neural network

model. J Theor Biol 2015;365:197–203.

66. Hayat M, Khan A. Predicting membrane protein types by

fusing composite protein sequence features into pseudo

amino acid composition. J Theor Biol 2011;271:10–7.

67. NaveedM,KhanA.GPCR-MPredictor:multi-level prediction

of G protein-coupled receptors using genetic ensemble.

Amino Acids 2012;42:1809–23.

68. Nath N, Mitchell JB. Is EC class predictable from reaction

mechanism? BMC Bioinformatics 2012;13:60.

69. Shen HB, Yang J, Chou KC. Fuzzy KNN for predicting mem-

brane protein types from pseudo-amino acid composition.

J Theor Biol 2006;240:9–13.

70. Xue W, Wang P, Tu G, et al. Computational identification

of the binding mechanism of a triple reuptake inhibitor

amitifadine for the treatment of major depressive disorder.

Phys Chem Chem Phys 2018;20:6606–16.

71. Li H, Yap CW, Ung CY, et al. Machine learning approaches

for predicting compounds that interact with therapeu-

tic and ADMET related proteins. J Pharm Sci 2007;96:

2838–60.

72. Hernandez C, Mella C, Navarro G, et al. Protein complex

prediction via dense subgraphs and false positive analysis.

PLoS One 2017;12:e0183460.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

1
/4

/1
4
3
7
/5

5
4
2
8
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Protein function annotation 1447

73. Brylinski M. Unleashing the power of meta-threading for

evolution/structure-based function inference of proteins.

Front Genet 2013;4:118.

74. Brandes N, Ofer D, Linial M. ASAP: a machine learn-

ing framework for local protein properties. Database

2016;2016:baw133.

75. Zheng G,Yang F, Fu T, et al.Computational characterization

of the selective inhibition of human norepinephrine and

serotonin transporters by an escitalopram scaffold. Phys

Chem Chem Phys 2018;20:29513–27.

76. Wang P, Zhang X, Fu T, et al. Differentiating physicochem-

ical properties between addictive and nonaddictive ADHD

drugs revealed by molecular dynamics simulation studies.

ACS Chem Nerosci 2017;8:1416–28.

77. Pearson WR, Li W, Lopez R. Query-seeded iterative

sequence similarity searching improves selectivity 5-20-

fold. Nucleic Acids Res 2017;45:e46.

78. Fokkens L, Botelho SM, Boekhorst J, et al. Enrichment of

homologs in insignificant BLAST hits by co-complex net-

work alignment. BMC Bioinformatics 2010;11:86.

79. Fujimoto MS, Suvorov A, Jensen NO, et al. Detecting false

positive sequence homology: amachine learning approach.

BMC Bioinformatics 2016;17:101.

80. Wei L, Zou Q. Recent progress in machine learning-

based methods for protein fold recognition. Int J Mol Sci

2016;17:2118.

81. Zhang ZQ, Zhao Y, Liao XK, et al. Deep learning in omics: a

survey and guideline. Brief Funct Genomics 2019;18:41–57.

82. Zou Q, Xing PW, Wei LY, et al. Gene2vec: gene subse-

quence embedding for prediction of mammalian N-6-

methyladenosine sites from mRNA. RNA 2019;25:205–18.

83. Fa R, Cozzetto D, Wan C, et al. Predicting human protein

function with multi-task deep neural networks. PLoS One

2018;13:e0198216.

84. Zeng NY, Zhang H, Song BY, et al. Facial expression recogni-

tion via learning deep sparse autoencoders.Neurocomputing

2018;273:643–9.

85. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief

Bioinform 2017;18:851–69.

86. Zou X, Wang G, Yu G. Protein function prediction using

deep restricted Boltzmann machines. Biomed Res Int

2017;2017:1729301.

87. Seo S, Oh M, Park Y, et al. DeepFam: deep learning based

alignment-free method for protein family modeling and

prediction. Bioinformatics 2018;34:i254–62.

88. Zou Q, Wan S, Ju Y, et al. Pretata: predicting TATA binding

proteins with novel features and dimensionality reduction

strategy. BMC Syst Biol 2016;10:114.

89. The UniProt Consortium. UniProt: the universal protein

knowledgebase. Nucleic Acids Res 2018;46:2699.

90. El-Gebali S, Mistry J, Bateman A, et al. The Pfam pro-

tein families database in 2019. Nucleic Acids Res 2019;47:

D427–32.

91. Brusco MJ, Shireman E, Steinley D. A comparison of latent

class, K-means, and K-median methods for clustering

dichotomous data. Psychol Methods 2017;22:563–80.

92. NobleWS.What is a support vectormachine?Nat Biotechnol

2006;24:1565–7.

93. Jiang Y, Kang J, Wang X. RRAM-based parallel comput-

ing architecture using k-nearest neighbor classification for

pattern recognition. Sci Rep 2017;7:45233.

94. Basant N, Gupta S, Singh KP. Predicting the acute neurotox-

icity of diverse organic solvents using probabilistic neural

networks based QSTR modeling approaches. Neurotoxicol-

ogy 2016;53:45–52.

95. Han LY, Cai CZ, Ji ZL, et al. Predicting functional family of

novel enzymes irrespective of sequence similarity: a statis-

tical learning approach. Nucleic Acids Res 2004;32:6437–44.

96. Karchin R,Karplus K,Haussler D.Classifying G-protein cou-

pled receptors with support vector machines. Bioinformatics

2002;18:147–59.

97. Dobson PD, Doig AJ. Distinguishing enzyme structures

from non-enzymes without alignments. J Mol Biol

2003;330:771–83.

98. Bock JR, Gough DA. Predicting protein–protein interactions

from primary structure. Bioinformatics 2001;17:455–60.

99. Eckle K, Schmidt-Hieber J. A comparison of deep networks

with ReLU activation function and linear spline-typemeth-

ods. Neural Netw 2019;110:232–42.

100. ChenY,Mai Y,Xiao J, et al. Improving the antinoise ability of

DNNs via a bio-inspired noise adaptive activation function

rand softplus. Neural Comput 2019;31:1215–33.

101. Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver

tumor diagnosis part I: development of a convolutional

neural network classifier for multi-phasic MRI. Eur Radiol

2019;29:3338–47.

102. Kim J, Calhoun VD, Shim E, et al. Deep neural network

with weight sparsity control and pre-training extracts

hierarchical features and enhances classification perfor-

mance: evidence from whole-brain resting-state func-

tional connectivity patterns of schizophrenia. Neuroimage

2016;124:127–46.

103. Sato M, Horie K, Hara A, et al. Application of deep learning

to the classification of images from colposcopy. Oncol Lett

2018;15:3518–23.

104. Wang J, Yang B, An Y, et al. Systematic analysis and pre-

diction of type IV secreted effector proteins by machine

learning approaches. Brief Bioinform 2017; doi:10.1093/

bib/bbx164.

105. Cui X, Yang Q, Li B, et al. Assessing the effectiveness of

direct data merging strategy in long-term and large-scale

pharmacometabonomics. Front Pharmacol 2019;10:127.

106. Li XX, Yin J, Tang J, et al. Determining the balance between

drug efficacy and safety by the network and biological

system profile of its therapeutic target. Front Pharmacol

2018;9:1245.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
ib

/a
rtic

le
/2

1
/4

/1
4
3
7
/5

5
4
2
8
8
3
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


	Protein functional annotation of simultaneously improved stability, accuracy and false discovery rate achieved by a sequence-based deep learning
	Introduction 
	Materials and methods
	The functional families studied in and protein sequences collected for this analysis
	Constructing the data sets of training and testing
	The methods studied and assessed in this work 
	Assessing the AC and false discovery rate of protein function annotation

	Results and discussion
	Methods' performances based on the training and testing data sets with the highest similarity 
	Methods' performances based on the training and testing data sets with the lowest similarity
	In-depth assessment on the false discovery rates based on genome scanning

	Conclusions
	Key Points

	Supplementary Data


