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Abstract

Genome-wide association studies (GWAS) for Autism Spectrum Disorder (ASD) thus far met limited success in the
identification of common risk variants, consistent with the notion that variants with small individual effects cannot be
detected individually in single SNP analysis. To further capture disease risk gene information from ASD association studies,
we applied a network-based strategy to the Autism Genome Project (AGP) and the Autism Genetics Resource Exchange
GWAS datasets, combining family-based association data with Human Protein-Protein interaction (PPI) data. Our analysis
showed that autism-associated proteins at higher than conventional levels of significance (P,0.1) directly interact more
than random expectation and are involved in a limited number of interconnected biological processes, indicating that they
are functionally related. The functionally coherent networks generated by this approach contain ASD-relevant disease
biology, as demonstrated by an improved positive predictive value and sensitivity in retrieving known ASD candidate genes
relative to the top associated genes from either GWAS, as well as a higher gene overlap between the two ASD datasets.
Analysis of the intersection between the networks obtained from the two ASD GWAS and six unrelated disease datasets
identified fourteen genes exclusively present in the ASD networks. These are mostly novel genes involved in abnormal
nervous system phenotypes in animal models, and in fundamental biological processes previously implicated in ASD, such
as axon guidance, cell adhesion or cytoskeleton organization. Overall, our results highlighted novel susceptibility genes
previously hidden within GWAS statistical ‘‘noise’’ that warrant further analysis for causal variants.
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Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelop-

mental illness with significant clinical and genetic heterogeneity.

Family and twin studies demonstrated that ASD is one of the most

heritable neuropsychiatric disorders, but there is yet no consensus

on the underlying genetic architecture [1,2]: while single-gene

disorders, metabolic disorders and Copy Number Variants (CNVs)

account for approximately 30% of the etiology of ASD [1,3–7],

the contribution of common risk variants to the remaining

heritability is still unclear. Thus far, each large genome-wide

association study (GWAS) carried out for ASD highlighted a

single, non-overlapping locus [8–11], which frequently was not

replicated by subsequent independent replication studies [12].

Devlin et al. (2011) have recently predicted that common

variants having an odds ratio of 1.5 or more are very unlikely to

exist; few, if any, common variants with an impact on risk

exceeding 1.2 may still await discovery, but require much larger

sample sizes, while variants with modest impact may range from

zero to many thousands [13]. The small effect of common risk

variants for ASD represents a challenge for their individual

detection using conventional single-marker association analysis,

which likely allows many true loci to remain hidden within the

GWAS statistical ‘‘noise’’. Evidence from classical quantitative

genetic analysis further suggests that most of the heritability

missing in complex diseases is rather hidden below the threshold

for genome-wide significant associations [14,15].
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New strategies are therefore needed to increase the power of

GWAS analysis. The use of molecular networks, which is not

limited by a priori sorting the genes into incompletely annotated

predefined gene sets, is emerging as an appealing unbiased

alternative to pathway analysis. Network-based approaches have

been widely applied in the analysis of high-throughput expression

data from a wide range of diseases [16] and have proven successful

in the identification of subnetwork markers more reproducible and

with a higher prediction performance than individual markers

[17]. More recent studies incorporated protein networks into the

analysis of genome-wide association data, using networks to search

for interacting loci in human GWAS data [18,19] or to identify

genome wide-enriched pathways [20–24]. However, an unsuper-

vised global network analysis of ASD GWAS data that includes all

signals without arbitrary significance thresholds has not been

performed, and may lead to the identification of many risk variants

of small effect below the accepted threshold for statistical

significance.

Based on the premise that disease-causing genes are likely to be

functionally related, in the present study we applied a network-

based approach to two ASD GWAS datasets, the AGP consortium

GWAS and the GWAS carried out in the Autism Genetic

Resource Exchange (AGRE) dataset [10]. For this purpose we

integrated genome wide association data with Human Protein-

Protein interaction data and examined topological network

properties indicative of connectivity at various levels of association,

confirming our hypothesis that genes associated to ASD at a

‘‘statistical noise’’ level are functionally connected beyond random

expectation. We compared the enrichment in known ASD

candidates of network genes versus top GWAS genes, and the

overlap of network genes vs the overlap at gene or SNP level

between the two ASD datasets. The network obtained was further

tested for ASD specificity using networks derived from six

unrelated diseases GWAS, and explored for biological processes

associated with ASD.

Materials and Methods

A workflow of the strategy for network definition, validation and

identification of the most relevant candidate genes is shown in

Figure 1.

Ethics statement
All the data used is previously published and publicly available.

Written informed consent has been previously obtained from all

families and procedures had approval from institutional review

boards from all the institutions involved in recruitment and

research, following national and international ethical and legal

regulations and the principles of the Declaration of Helsinki.

Datasets
The AGP dataset included 2818 trios consisting of autistic

patients and both parents collected as part of the AGP

Consortium. Patients were diagnosed and genotyped as previously

reported [8]. Written informed consent was obtained from all

families and procedures had approval from institutional review

boards [8]. A total of 723 423 SNPs meeting the QC criteria [9],

genotyped in 8491 individuals, were tested for association using

the Transmissions Disequilibrium Test (TDT) implemented in

PLINK v1.07 [25].

The GWAS replication dataset from the Autism Genetic

Resource Exchange (AGRE) included 943 ASD families (4,444

subjects) from the AGRE cohort [10]. SNP genotyping data was

obtained from AGRE [10]. Analysis in this study was limited to

SNPs in common with the AGP GWAS and meeting the same QC

criteria (425 587 SNPs).

Summary SNP association results were obtained from the

database of Genotype and Phenotype (dbGAP) repository for 6

case-control GWAS for other pathologies, including Parkinson’s

Disease (PD) [26], Systemic Lupus Erythematosus (SLE) [27],

Multiple Sclerosis (MS) [28], Type 1 Diabetes (T1D) [29], Breast

Cancer (BC) [30] and Neuroblastoma (NB) [31] (Table S1). All

individuals included were of European ancestry and the sample

size was as similar as possible to the replication ASD dataset

(AGRE).

Integration of gene association data with Protein-Protein
interaction data
Genotyped SNPs from the AGP and AGRE GWAS were

assigned to specific genes if they were located within or up to 10 kb

from the gene, using the GRCh37/hg19 genome build (Step 1).

Each gene was assigned a gene score using MAGENTA (Meta-

analysis Gene-set Enrichment of variant associations) [32], which

allocates to each gene the most significant P-value among the

TDT P-values of all individual SNPs mapped to that gene.

MAGENTA then uses step-wise multivariate linear regression

analysis to regress out of this P-value the confounding effects of

gene size, number of SNPs per kilobase (kb), number of

independent SNPs, number of recombination hotspots and the

number of linkage disequilibrium units per kb.

Genes selected at various gene-wise P-value cutoffs (0.5,

-LogP,5) were superimposed onto their corresponding protein on

a large human protein-protein interaction (PPI) network, convert-

ing Entrez gene IDs to Uniprot IDs (release 2010_04) (Step 2).

This PPI network, covering 12372 proteins and 58365 interac-

tions, was previously built compacting data from six public PPI

databases: BIND, BioGRID, HPRD, IntAct, MINT and MPPI

[33–40].

PPI network analysis
Topological properties from the resulting network were

analyzed to select the gene-wise P-value for which corresponding

proteins were functionally connected beyond random expectation,

thus the lowest gene-wise P-value for which there is still relevant

biological data in the GWAS that can be captured through

network analysis (step 3). Three metrics indicative of this

functional coherence were estimated for various association

gene-wise P-value thresholds, for the two ASD datasets, and

compared with those determined for 1000 equal size sets of

randomly selected proteins from the human PPI network. The

metrics evaluated were 1) the percentage of proteins directly

interacting; 2) the percentage of isolated nodes, which represents

the fraction of selected proteins with no interactions with any other

selected protein; and 3) the size of the largest connected

component (LCC), the largest group of selected proteins that are

reachable from each other in the network. An empirical P-value
was obtained computing the fraction of random samples where the

value of the network metric is greater (or smaller in the case of

isolates) than the observed one. Network analysis was performed

using python module Network X.

Performance against a candidate gene list and overlap
between datasets
To evaluate the performance of the proteins included in the

LCC in retrieving known ASD candidate genes, the precision and

recall against a curated list of ASD candidate genes were

calculated (step 4). This list was obtained from SFARIGene and

Network-Based Analysis of ASD GWAS
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includes 236 genes having at least minimal evidence of association

with ASD (categories 1 to 4) or categorized as syndromic (https://

gene.sfari.org/autdb/Welcome.do).

Precision (Positive Predictive value) is the proportion of known

candidate genes among the selected genes, while recall (Sensitivity)

is the proportion of known candidate genes retrieved by the

Figure 1. Workflow of the strategy for network definition, validation and identification of most relevant candidate genes.
doi:10.1371/journal.pone.0112399.g001
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selection. The precision and recall calculated for the genes

encoding LCC proteins were compared to those determined using

two other gene selection criteria: a) all genes selected at the same

gene P-value cutoff used to derive LCC; b) the same number of

top genes (ranked according to gene-wise P-values) as those

included in the LCC.

Overlap between the AGP and AGRE datasets at SNP, gene

and LCC levels was determined using the Jaccard index, defined

as the size of the intersection divided by the size of the union of the

datasets. For comparison purposes the size of each dataset LCC

was used to select from each GWAS dataset an equal number of

top SNPs (ranked by their TDT P-value) and top genes (ranked by

their gene-wise P-value).

Gene ranking and functional enrichment
To rank ASD-associated proteins included in the AGP LCC by

ASD specificity and reproducibility, a prioritization system was

created, assigning a score to each protein based on their presence

in the LCC derived from the AGRE ASD replication dataset and

from each of the six unrelated disease datasets (step 5). Each

protein included in the AGP LCC had an initial score of 0.5. If the

protein was present in the AGRE ASD dataset LCC, 0.5 was

added to the initial protein score, whereas for each unrelated

disease dataset LCC where the protein was present, one sixth of

0.5 was subtracted from the score. Therefore, protein scores vary

between 0 and 1, with zero representing a protein present in the

LCCs of the AGP dataset and the 6 unrelated diseases, while a

score of 1 is attributed to a protein present only in the LCCs of

both ASD datasets.

Functional enrichment was tested by DAVID (The Database for

Annotation, Visualization and Integrated Discovery 2008_ver-

sion6th; http://david.abcc.ncifcrf.gov) [41,42], a publicly available

bioinformatics tool that identifies functionally related groups of

genes. Overrepresentation of mouse-mutant phenotypes was

evaluated using the web tool MamPhea [43]. The complete list

of the genes in the PPI network was used as background and P-
values were corrected by the Benjamini correction. Top-scoring

genes were further investigated using NextBio platform (Cuper-

tino, CA, USA), a curated and correlated repository of experi-

mental data derived from an extensive set of public resources (eg.

ArrayExpress and GEO) [44]. Protein-protein networks were

visualized in Cytoscape [45].

Results

Genes associated to ASD at P,0.1 are functionally
related
Transmission Disequilibrium Tests were initially carried out in

parallel for the AGP and AGRE datasets to identify small effect

risk variants. In the sample of 2818 AGP families, single SNP

transmission disequilibrium tests of the 723423 SNPs meeting the

QC criteria showed no SNPs reaching the threshold for genome-

wide significance. Two SNPs showed association signals at P,
161026 and very few exceeded P,161025. In the AGRE

dataset, after a similar quality control protocol and using only

SNPs common to both datasets, three SNPs located in regions with

no overlap with the AGP top findings showed association at P,
161026. Given the dearth of meaningful results from these two

GWAS efforts, we proceeded with a network analysis strategy.

The first step involved calculating gene-wise association P-
values corrected for gene size and linkage disequilibrium, taking

into account only the SNPs mapping within 10kb from each gene

(403360 SNPs), followed by the integration of GWAS data onto

protein interaction data. Then, we determined the lowest gene-

wise P-value threshold for which genes encoding the network

proteins were functionally related, inferred by their proximity in

the network. Statistical noise is expected to have random

connections in the network, while disease proteins are more likely

to establish direct interactions between them and more rarely be

isolated in the network, translating into a larger group of proteins

that are all interconnected. For both ASD datasets, proteins

encoded by genes selected at a gene-wise -Log10P cutoff between

0.5 and 1.5 were found to establish significantly more direct

interactions than equal sized sets of randomly selected proteins

(Empirical P values 0.001,P,0.043), with the significance

maintained up to -Log10P=22.0 in the case of AGRE dataset

(Figure S1, Figure 2A). The number of isolated nodes was found to

be significantly smaller in sets of ASD-associated proteins at the

same range of gene-wise -Log10P-values than in random sets

(Empirical P values 0.001,P,0.038), again with significant

differences maintained for lower gene-wise P-values in the AGRE

dataset (Figure S1, Figure 2A). When compared to the same

number of random proteins from the network, proteins encoded

by genes selected at a gene-wise -Log10P,1 from either ASD

dataset are interconnected in a significantly larger LCC (Empirical

P values 0.001,P,0.007) (Figure S1, Figure 2B). The large size

of the largest connected components, 416 and 367 proteins for the

AGP and AGRE datasets, respectively, indicates the existence of

several small effect risk genes reinforcing the high genetic

heterogeneity in ASD.

Based on the lowest gene-wise P-value for which the percentage

of direct interactions was significantly higher, the percentage of

isolated nodes significantly smaller and the size of the LCC

significantly larger than random expectation (Figure 2A and B),

we established gene-wise -Log10P=1 as the cutoff value to infer

functional coherence from the two ASD datasets.

The overall results indicate that, as hypothesized, genes

associated with ASD at the range of GWAS statistical noise

encode proteins that are functionally related and preferentially

directly interact, confirming our expectation that there is indeed

unexplored relevant biology at this statistical level.

Functionally coherent sub networks associated with ASD
contain relevant ASD biology
To test whether the identified groups of functionally connected

proteins captured by the largest connected components indeed

contain ASD-relevant biology, we compared the performance of

the genes selected through the LCC against a list of known

candidates, [5] with the performance of all genes selected from the

GWAS at the same gene-wise P-value cutoff or the performance of

a number of GWAS top genes equal to the number of genes

encoding LCC proteins. Genes implicated in ASD are largely

unknown, thus low precision values are expectable given the

incompleteness and noise in the available knowledge in the field.

Table 1 shows that, for both datasets, genes encoding proteins

included in the LCC presented a 2 to 2.5 fold higher precision

against the list of known genes than all the GWAS genes selected

at the same statistical level cutoff. In other words, genes included

in the LCC, and thus encoding functionally related proteins, are

enriched in known candidates compared with the set of genes

selected from the GWAS at the same statistical level, demonstrat-

ing that our filtering approach of association results based on PPIs

more specifically captures ASD-relevant genes. A 1.3 to 3.3 fold

increase is observed when comparing LCC genes with the same

number of GWAS top genes, showing that a protein interaction-

based selection was more accurate than selecting only the most

strongly associated genes.

Network-Based Analysis of ASD GWAS
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Concerning the proportion of known genes that are retrieved by

our selection, or recall, LCC encoding genes had a lower recall

compared with all genes selected at the same cutoff, as expected

since LCC genes are a subset of this selection (Table 1). However,

compared with the top-gene selection, the 1.4 to 3 fold increase in

the recall achieved by LCC encoding genes, indicates that

additional relevant low effect genes are being captured. Further

inspection of the known genes present in the top gene set and the

LCC encoding genes confirmed that LCCs capture not only larger

effect genes overlapping with top genes, such as MET (Uniprot

P08581)(in AGP dataset), but additionally capture low effect genes,

such as TSC2 (Uniprot P49815), which single gene association

analysis alone does not have the power to detect.

One of the major problems in ASD GWAS and GWAS in

general is the low reproducibility of results between different

datasets. Indeed, we found only one SNP (rs11837890 in TBK1
gene) and 10 genes in common between the two datasets, when

comparing the same number of SNPs or genes (ranked by P-
values) than genes included in the LCCs from each dataset.

Remarkably, we observed a 25 and 2.5-fold increase in the overlap

between the two ASD datasets (AGP and AGRE) at PPI network

level when compared to SNP or gene level, respectively (Figure

S2).

Taken together, these results showed that our selection of

functionally connected genes based on the largest connected

component is an effective approach to capture ASD-relevant

disease candidate genes, which might escape detection in an

analysis based only on association evidence, even at gene-level.

Functionally connected genes in ASD suggest novel
susceptibility genes
Given the observation that the largest connected component

contains ASD-relevant proteins, we further explored this network

for biological processes implicated in ASD (step 5). The largest

connected components generated by genes selected at -Log10P,1

from the AGP and AGRE datasets comprised 416 and 367

proteins, respectively. A first look into the biological processes

represented in these networks, using functional enrichment

analysis, revealed an enrichment in pathways related to regulation

of apoptosis and cell cycle. Additionally, intersection of the protein

network data with knockout mice phenotypes from the Mouse

Genome Informatics Database, showed that these proteins are

primarily involved in aberrant embryogenic and developmental

processes and anomalous immune system phenotypes.

A closer inspection of these LCCs at the gene level showed that

around 30 (7–8%) of the encoding genes were implicated in

neuropsychiatric or neurodegenerative disorders (Table S2). More

interestingly, 20 (5–6%) of the LCC encoding genes were found to

carry de novo mutations in ASD described in at least one of the

three whole exome sequencing studies recently published [4,7,46],

with 3 genes overlapping between the two datasets (CSDE1
(Uniprot O75534), PGD (Uniprot P52209), TSC2). In addition, 80

Figure 2. Network properties of proteins selected at gene-wise P,0.1 in each ASD. a) Comparison of percentage of direct interactions and
isolated nodes between proteins selected at gene-wise P,0.1 in each GWAS dataset (red circles) vs 1000 random samples of network proteins
(represented by light gray and dark gray box plots, for direct interactions and isolated nodes, respectively). The bottom and top of the box represent
the 25th and 75th percentile and the extremity of the whiskers the maximum and minimum of the random samples data. b) Same comparison for the
largest connected component (LCC) size.
doi:10.1371/journal.pone.0112399.g002

Table 1. Precision and recall were consistently higher for LCC genes relative to top GWAS genes or genes selected at P,0.1.

Precision (%) Recall (%)

Gene subset AGP dataset AGRE dataset AGP dataset AGRE dataset

LCC genes 2.16 2.74 3.81 4.24

GWAS Top genes 1.68 0.82 1.27 2.97

Genes selected at P,0.1 0.96 1,11 8.47 9.43

Precision and Recall (Percentage), by ASD dataset, of three sets of genes (genes selected at a gene wise P-value cutoff of 0.1, genes included in the LCC and the same
number of GWAS top genes) against a list of known disease candidates.
doi:10.1371/journal.pone.0112399.t001

Network-Based Analysis of ASD GWAS
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(,19%) of the AGP LCC-encoding genes were deleted or

duplicated by CNVs identified by the AGP whole genome analysis

as potentially pathogenic (with less than 50% of length overlap

with control datasets) (Table S2).

To further examine the specificity of the proteins in the AGP

LCC for ASD, this network was compared with LCCs generated

from six unrelated diseases GWAS (MS, SLE, T1D, BC, NB, PD).

Based on the presence of each protein in the LCC of each

unrelated disease and in the AGRE LCC, we derived a highly

stringent ASD-specificity protein score, allowing the prioritization

of encoding genes for follow-up. Low scoring proteins were not

replicated in the AGRE dataset, and were present in one or more

unrelated diseases, whereas the highest scoring proteins were

present in both ASD LCCs, but in none of the LCCs generated

from the unrelated diseases. This analysis revealed that the

majority of proteins (,63%) were present only in the AGP

network, while 31% of the proteins were present in at least one

additional non-ASD network, and thus were not specific. From the

25 proteins identified in both ASD networks, the majority (56%)

was not present in any ASD-unrelated network and 28% were

present in one of the ASD-unrelated networks.

Using this gene scoring system, based on gene reproducibility

and specificity for ASD, we built a network with the 14 top scoring

genes and their first neighbors in the LCC network (Figure 3). The

largest component of this network, although approximately 7 times

smaller than the original LCCs, showed a similar overlap (,5%)

with genes reported to have de novo mutations in ASD (PGD,
SYNE1 (Uniprot Q8NF91), TSC2) and an increased overlap with

known candidate genes (SYNE1, TSC2 and SHANK3 (Uniprot

Q9BYB0)) and with genes contained in potentially relevant CNVs

identified by the AGP analysis (,26%). Enrichment in mouse

phenotypes was also similar but, in addition, an enrichment in

abnormal nervous system phenotype became significant, and in

abnormal behavior/neurological phenotype borderline significant.

The genes encoding the 14 top scoring proteins were considered

the best candidates for harboring common variants associated with

ASD risk (Table 2). These genes are involved in various biological

processes, such as NGF signaling, axon guidance, cell adhesion and

migration, cytoskeleton regulation, apoptosis and DNA repair. A de
novomutation in the phosphogluconate dehydrogenase gene (PGD)
has recently been reported in ASD [4], while potentially pathogenic

CNVs deleting or duplicating the ABL1 (Uniprot P00519),

RPS6KA1 (Uniprot Q15418) and PPP1CB (Uniprot P62140)

genes were identified in ASD patients from the AGP study. A query

of our genes in the NEXTBIO platform, a data mining framework

that integrates and correlates global public datasets with several

normal and disease phenotypes, revealed correlations of six genes

with ASD. For instance, deletions within the NASP (Uniprot

P49321) gene were identified in ASD patients from the Simons

Simplex Collection (SSC) [47]. An altered expression of this gene, as

well as of the NR4A1 (Uniprot P22736), ABI1 (Uniprot Q8IZP0),

BBS4 (Uniprot Q96RK4), LMNA (Uniprot P02545) and ABL1
genes, was found in postmortem brain tissue [48] or lymphoblastoid

cells [49] of ASD patients. Some of the 14 top-scoring genes, namely

the CTSB (Uniprot P07858), BBS4, LMNA and ABL1 genes, were

associated with abnormal nervous system phenotypes in animal

models. The most strongly associated genes to ASD, using the AGP

data, were the peroxiredoxin 1 gene (PRDX1 (Uniprot Q06830))

and cathepsin B gene (CTSB).

Discussion

In this study we have conducted a network-based analysis of two

ASD GWAS datasets, hypothesizing that small effect ASD risk

variants hidden at the level of GWAS statistical noise can be

discovered from networks of genes with related biological

functions. Mapping of association data to a PPI network indeed

revealed that, in both datasets, ASD-associated genes at P,0.1

encoded proteins that directly interact beyond random expecta-

tion, are more rarely found isolated in the network and are

connected in significantly larger LCCs than expected by chance,

suggesting a functional connection. These results support recent

findings from the AGP consortium, showing that stronger

association of allele scores with case status was generally achieved

when those scores were based on markers associated at significance

thresholds higher than 0.2 [8]. The International Schizophrenia

GWAS consortium had similar results of optimal discrimination

between cases and controls only after the inclusion of markers with

P-values as high as 0.2, [14] using this allele scoring approach.

The relevance to ASD of these networks was further illustrated

by their higher performance in retrieving known ASD candidates

compared to top GWAS genes, and the increased similarity

between the two ASD datasets, when compared to SNP or gene

level overlap. Remarkably, the AGP and AGRE LCCs included

20 genes, respectively, in which de novo mutations have been

described in whole-exome sequencing studies of nearly a thousand

ASD patients [4,7,50]. A large overlap of our results with the

published data of these sequencing studies was not expected,

because the LCCs encoding genes are likely to harbor variants

transmitted by unaffected parents, whereas these sequencing

studies mainly focused, and reported only, de novo variants which
do not explain the heritability of the disorder, but support recent

observations that common and rare variants associated with ASD

disturb common neuronal networks [51]. Moreover, around 20%

of the AGP LCC encoding genes were deleted or duplicated by

potentially pathogenic CNVs detected in the AGP whole genome

CNV screening of 2446 ASD patients.

As an additional filter for meaningful ASD biology, we derived

an ASD candidate gene prioritization system ranking the genes

encoding proteins included in the AGP LCC for ASD reproduc-

ibility and specificity. The scoring system used was very stringent,

in particular since some of the control disorders are neurological

(Parkinson’s, multiple sclerosis or neuroblastoma) and may share

susceptibility genes and pathways with autism [52–56]. While we

may have discarded relevant autism risk genes that are ubiquitous

and common to these disorders, we believe that we enriched our

list of genes in true positive results with a higher chance of

experimental validation. In fact, the enrichment analysis per-

formed with the top-scoring genes and their first neighbors showed

a high content in mouse genes associated with nervous system or

neurological phenotypes and a similar or higher overlap with

candidate genes or genes reported with de novo mutations or

potentially pathogenic CNVs in ASD.

This approach generated a list of 14 top-scoring genes, present

in the two ASD networks and none of the other disorders, which

were considered strong candidates to harbor common variants

associated with ASD risk. These genes are mostly novel candidates

for ASD, and are involved in nervous system pathways or other

more fundamental biological processes which have been widely

associated to ASD, such as ubiquitination [4,9,57,58], cytoskeleton

organization and regulation [5,47,59] and cell adhesion [10,60].

For instance, the CTSB, BBS4, LMNA and ABL1 genes have

been associated with neurobiological phenotypes identified in an

enrichment analysis of mouse neurobiological phenotypes from a

list of 112 ASD candidate genes [61], with CTSB and ABL1
associated with cerebellum morphological and development

abnormalities. The AGP genome-wide analysis identified poten-

tially pathogenic CNVs spanning ABL1, RPS6KA1 and
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PPP1CB, whose relevance needs to be further established.

Likewise, in the phosphogluconate dehydrogenase gene (PGD), a

de novo mutation has recently been reported in a patient with

ASD [4], although with an uncertain deleterious effect. This gene

plays a critical role in protecting cells from oxidative stress [62]

and, together with PRDX1, which also has an important

antioxidant protective role in cells [63,64] and shows the strongest

association with ASD, supports emerging evidence for a role of

oxidative stress in ASD pathophysiology [65,66].

Thus far the use of protein networks to address common risk

variants in ASD was limited to enrichment analysis of GWAS top

hit genes in co-expressed or differentially expressed networks

[51,67]. In contrast, this study incorporated protein interaction

data into GWAS analysis, without a priori assumptions of

association thresholds. The present results have shown that

autism-associated genes at higher than conventional levels of

significance are functionally related, and were used to extract

relevant disease biology and uncover small effect variants

contributing to the disorder. The study highlighted a group of

novel susceptibility genes relevant for CNS function with a high

probability of bearing common variants associated with autism,

which have been elusive thus far, and warranting further analysis

for identification of causal variants.

Supporting Information

Figure S1 Network properties per gene-wise P-value for

each ASD dataset. For each –Log10 gene wise association P-
value cutoff in the x-axis, the percentage of direct interactions (A)

and isolated nodes (B) and the logarithm of the LCC size (C) were

plotted for proteins encoded by disease-associated genes (red line)

and for the mean of 1000 equal sized random samples of proteins

(blue line). Dark grey areas represent the range between the 25th

and 75th quartiles and light gray areas indicate the range between

the minimum and maximum values of the random data. Empirical

P-values are indicated for each gene wise association P-value
comparison. Values are plotted until the –Log10 for which the

percentage of direct interactions and isolated nodes reaches 0 and

100%, respectively.

(TIF)

Figure S2 Overlap between the two ASD datasets at

SNP, gene or network level. Venn diagrams showing the

overlap between the two ASD datasets (AGP and AGRE) at SNP,

gene or network level.

(TIF)

Table S1 GWAS datasets used in the analysis and

genotyping platforms.

(XLSX)

Figure 3. ASD top scoring gene network. This network illustrates the 14 top scoring genes included in the ASD LCC and their first neighbors.
Nodes are colored based on a score reflecting their presence in the second ASD dataset and in the 6 unrelated diseases LCCs. A darker color
represents a higher score, which means a higher specificity for ASD.
doi:10.1371/journal.pone.0112399.g003
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Table S2 AGP LCC network genes. List of the 416 genes

included in the AGP LCC with information on gene-wise

association P-value, specificity score for ASD and previous

findings regarding implication in ASD and other neurological

disorders.

(XLSX)
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