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Protein kinase C α enhances migration of
breast cancer cells through FOXC2-
mediated repression of p120-catenin
Thao N. D. Pham1,3†, Bethany E. Perez White1,4†, Huiping Zhao1, Fariborz Mortazavi2 and Debra A. Tonetti1*

Abstract

Background: Despite recent advances in the diagnosis and treatment of breast cancer, metastasis remains the

main cause of death. Since migration of tumor cells is considered a prerequisite for tumor cell invasion and

metastasis, a pressing goal in tumor biology has been to elucidate factors regulating their migratory activity.

Protein kinase C alpha (PKCα) is a serine-threonine protein kinase implicated in cancer metastasis and associated with

poor prognosis in breast cancer patients. In this study, we set out to define the signaling axis mediated by PKCα to

promote breast cancer cell migration.

Methods: Oncomine™ overexpression analysis was used to probe for PRKCA (PKCα) and FOXC2 expression in mRNA

datasets. The heat map of PRKCA, FOXC2, and CTNND1 were obtained from the UC Santa Cruz platform. Survival data

were obtained by PROGgene and available at http://www.compbio.iupui.edu/proggene. Markers for EMT and adherens

junction were assessed by Western blotting and quantitative polymerase chain reaction. Effects of PKCα and FOXC2 on

migration and invasion were assessed in vitro by transwell migration and invasion assays respectively. Cellular localization

of E-cadherin and p120-catenin was determined by immunofluorescent staining. Promoter activity of p120-catenin was

determined by dual luciferase assay using a previously validated p120-catenin reporter construct. Interaction between

FOXC2 and p120-catenin promoter was verified by chromatin immunoprecipitation assay.

Results: We determined that PKCα expression is necessary to maintain the migratory and invasive phenotype of both

endocrine resistant and triple negative breast cancer cell lines. FOXC2 acts as a transcriptional repressor downstream of

PKCα, and represses p120-catenin expression. Consequently, loss of p120-catenin leads to destabilization of E-cadherin

at the adherens junction. Inhibition of either PKCα or FOXC2 is sufficient to rescue p120-catenin expression

and trigger relocalization of p120-catenin and E-cadherin to the cell membrane, resulting in reduced tumor cell

migration and invasion.

Conclusions: Taken together, these results suggest that breast cancer metastasis may partially be controlled through

PKCα/FOXC2-dependent repression of p120-catenin and highlight the potential for PKCα signal transduction networks

to be targeted for the treatment of endocrine resistant and triple negative breast cancer.
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Background
Breast cancer is one of the most commonly diagnosed

malignancies in women worldwide, according to the World

Health Organization. Major advances in detection, diagno-

sis, and treatment have contributed to a steady decline in

disease mortality [1]. However, metastasis remains the major

cause of death in patients. At the molecular level, cancer

metastasis is thought to be initiated by an epithelial-

mesenchymal transition (EMT), a process whereby epithe-

lial cells undergo drastic morphological and biochemical

changes to acquire a spindle-shaped, highly motile, mes-

enchymal cell type [2, 3]. Loss of E-cadherin at the adhe-

rens junction (AJ) is considered a seminal and early event

in EMT [2–4]. In cancer cells, down-regulation or loss of

E-cadherin can result from inactivating mutations [5],

promoter hypermethylation [6, 7], and transcriptional

repression by EMT core regulators such as SNAIL [8, 9],

ZEB [10], E12/47 [11], and TWIST [12]. p120-catenin, a

cytoplasmic component of AJ, is a regulator of E-cadherin

stability [13–15]. p120-catenin belongs to a family of

armadillo-repeat proteins that binds to the highly con-

served juxtamembrane domain of E-cadherin [16, 17].

Removal of p120-catenin or weakening E-cadherin-

p120-catenin interactions can lead to rapid internal-

ization and degradation of E-cadherin [13, 15, 18, 19].

Furthermore, loss of p120-catenin in lung cancer was

shown to result in the transcription-independent

reduction of E-cadherin [13, 20]. Therefore, factors

that regulate p120-catenin can influence the stability

of E-cadherin and AJs respectively. One of these fac-

tors is FOXC2, a forkhead transcription factor that

actively represses p120-catenin transcription in non-

small cell lung cancer (NSCLC) cell lines [20]. In this

system, FOXC2-mediated repression of p120-catenin

is causal to the down-regulation of E-cadherin protein

[20]. In breast cancer, expression of FOXC2 is associ-

ated with and causal to chemotherapy resistance and

metastasis in triple negative breast cancer (TNBC) [21,

22], a subtype defined by the absence of estrogen receptor

(ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2) expression. Yet, it

remains unknown whether FOXC2 can actively repress

transcription of p120-catenin in breast cancer.

Protein kinase C alpha (PKCα) belongs to the conven-

tional subgroup of the PKC family that is comprised of

12 isozymes identified thus far [23–25]. Numerous stud-

ies, including our own, have demonstrated that expression

of PKCα is associated with endocrine resistance [26, 27]

and poor prognosis [27, 28] in ER-positive (ER+) breast

tumors. In addition, expression of PKCα is elevated in

TNBC patients [29, 30] and shown to be responsible for

chemotherapy resistance and metastasis [30]. To the best

of our knowledge, the relationship between PKCα and

FOXC2 has not been examined.

In this study, we investigated the interplay among PKCα,

FOXC2, and p120-catenin in breast cancer. We report a

novel regulatory relationship between PKCα and FOXC2,

particularly in endocrine resistant ER+ and basal A TNBC.

Defined by microarray-based gene expression, basal A cell

lines are distinct from basal B cell lines in that they are

enriched in basal cytokeratins, ETS pathways and BRCA1

signatures [31, 32]. In basal A TNBC and endocrine resist-

ant ER+ breast cancer, we demonstrate that PKCα is an

upstream regulator of FOXC2 expression and activity. We

report here that FOXC2 is a transcriptional repressor of

p120-catenin leading to dissolution of AJs and enhanced

migration and invasion in both ER+ and TNBC cell

lines, events that potentially contribute to their meta-

static potential.

Methods

Cell culture conditions and treatment

All cells were maintained in a humidified incubator with

5% CO2 at 37 °C. MCF7 cells were originally obtained

from the Michigan Cancer Foundation (Detroit, MI) in

1992 and T47D cells were originally obtained from ATCC

in 1996; both cell lines were stored at early passage.

T47D:A18, a hormone-responsive clone, has been

described previously [33]. T47D:A18 and MCF7 cells were

cultured in RPMI with 10% FBS. MCF7:TAM1 [34],

MCF7/PKCα [35, 36], MCF7:5C [37] and T47D:C42 [33]

are hormone-independent and endocrine-resistant clones

that were previously described. MCF7:TAM1 and MCF7/

PKCα were cultured in RPMI with 10% FBS supplemented

with 4-hydroxytamoxifen (4-OHT, 10−7 M) and G418

(100 μg/mL) respectively1. MCF7:5C and T47D:C42 were

cultured in phenol red-free RPMI with 10% charcoal

stripped FBS [33, 37]. Before experiments, estrogen-

dependent cell lines were stripped in phenol red free

media for 3 days. TNBC cell lines HCC1937 (CRL 2336™)

and HCC1143 (CRL 2321™) were obtained from ATCC

(Manassas, VA, USA). They were cultured and passaged

in RPMI with 10% FBS according to the ATCC’s instruc-

tion. The TNBC cell line MDA-MB-231 (CL#10A) was

cultured in MEM supplemented with 10% FBS. All cell

culture reagents were obtained from Life Technologies

(Carlsbad, CA, USA). Cell lines were tested negative for

Mycoplasma contamination (MycoAlertTM Mycoplasm

Detection Kit, Lonza Ltd., Walkersville, MD, USA), and

were authenticated using Short Tandem Repeat (STR)

method by the Research Resource Center core at the

University of Illinois at Chicago (Chicago, IL, USA) in

2016. For TPA treatment, cells were treated with 100 nM

for 2 h before mRNA was collected and analyzed.

Western blot

Whole cell extracts of cultured cells were prepared in lysis

buffer (Cell Signaling Technology, Danvers, MA, USA)
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supplemented with the protease inhibitor phenylmethane

sulfonyl fluoride (PMSF). Protein concentration was deter-

mined by the bicinchoninic acid assay (BCA) (Thermo

Fisher Scientific, Waltham, MA, US) and separated on

SDS-PAGE gel. The following antibodies and dilution

factors were used: PKCα (1:200, Santa Cruz Biotechnology,

Santa Cruz, CA, USA), E-cadherin (1:1000, Cell Signaling

Technology, Danvers, MA, USA), p120-catenin (1:200,

Santa Cruz Biotechnology, Santa Cruz, CA, USA), FOXC2

(1:1000, Abcam, Cambridge, MA, USA). β-actin (1:1000,

Sigma-Aldrich, St. Louis, MO, USA) was used as loading

control. Blocking agents were either 5% non-fat dry milk or

5% bovine serum albumin (BSA) depending on the specific

antibody. Mouse and rabbit horseradish peroxidase-

conjugated secondary antibodies were purchased from GE

Healthcare Life Sciences (Pittsburgh, PA, USA) and used at

a 1:2000 dilution factor. Images of blots were acquired on a

Bio-Rad ChemiDoc System following incubation with

SuperSignal West Dura luminol solution (Thermo Fisher

Scientific, Waltham, MA, USA). Protein bands were quan-

tified using densitometry measured in Quantity One (Bio-

Rad, Hercules, CA, USA). When necessary, membrane was

stripped using Restore Western Blot Stripping Buffer

(Thermo Fisher Scientific, Waltham, MA, USA).

Migration and invasion assays

Corning® transwell inserts (Corning Inc., Corning, NY,

USA) were used for the migration and invasion assays

following the manufacturer’s instruction. For invasion

assay, inserts were coated with reconstituted Corning®

Matrigel® Growth Factor Reduced (GFR) Basement Mem-

brane (Corning Inc., Corning, NY, USA) and incubated

for 2 h at 37 °C. Cells (1 × 105) were plated in the upper

chamber and FBS was used as the chemoattractant in the

bottom chamber. For the experiments that involved

MCF7/PKCα, fibroblast-conditioned media was used as

the chemoattractant instead because we found FBS to be

inhibitory to their migration and invasion (data not

shown). After overnight incubation, inserts were fixed in

ice cold 100% methanol and stained with a 0.2% crystal

violet/ 2% ethanol solution. Following staining, inserts

were rinsed with water and allowed to air dry before

imaging. Total number of migrated and invasive cells/well

was counted with 100X total magnification light micros-

copy. At least four areas per well were counted and

averaged for analysis. Graph represents the fold change of

number of migrating or invading cells relative to the con-

trol as explained in the legend.

Quantitative reverse transcriptase-PCR (qRT-PCR)

mRNA was extracted by Trizol® reagent (Thermo Fisher

Scientific, Waltham, MA, USA) and purified following the

manufacturer’s instruction. mRNA was reverse transcribed

using the High Capacity cDNA Reverse Transcription kit

(Applied Biosystems, Foster City, CA, USA). Detection of

transcripts was done using a SYBR green reaction mixture

in the StepOne Plus Real Time PCR Machine (Applied Bio-

systems, Foster City, CA, USA) using the standard amplifi-

cation and detection protocol. Primer sequences are shown

in Table 1.

Small-interfering (si) RNA-mediated knockdown

Cells were transfected with 50 nM (Cf ) siRNA targeting

PKCα or FOXC2 following the manufacturer’s instruction.

PKCα siRNA was purchased from Dharmacon (Lafayette,

CO) (ON-TARGET plus SMARTpool) and Sigma Aldrich

(predesigned, lab-validated siRNA). FOXC2 siRNA was

purchased from Dharmacon (Lafayette, CO) (ON-TAR-

GET plus SMARTpool) and IDT (San Jose, CA, USA)

(Dicer-substrate, lab-validated siRNAs). Media was chan-

ged 24 h following transfection and every 3–4 days for the

duration of the experiment. Efficiency of siRNA knock-

down was confirmed with either qRT-PCR or Western

blot. siRNA sequences are shown in Table 2. Specificity of

PKCα siRNA is shown in Additional file 1: Figure S1.

Luciferase reporter activity assay

The p120-catenin short luciferase reporter construct was

kindly provided by Dr. Fariborz Mortazavi (Department of

Medicine, David Geffen School of Medicine, University of

California, Los Angeles, CA). To assess p120-catenin

promoter activation, cells were co-transfected with p120-

catenin reporter construct and β-galactosidase using

Lipofectamine ® 2000 (Thermo Fisher Scientific, Waltham,

MA, USA). Luciferase activity was measured using the

Dual Luciferase Reporter Assay (Applied Biosystems,

Foster City, CA) and normalized against the activity of β-

galactosidase following the manufacturer’s instructions.

Confocal microscopy

Cells (2–4 × 105) were seeded on coverslips in 6 well plates

to reach 80% confluence in 2 days. Cells were fixed by

incubating with 4% paraformaldehyde in PBS, pH 7.4 for

10 min at room temperature, and washed three times with

ice-cold PBS. Permeabilization was achieved with 0.1%

Triton-100X in PBS for 1 min. After three PBS washes,

cells were incubated with blocking buffer (10% normal

goat serum (Cell Signaling Technology, Danvers, MA,

USA) in 1X PBS) for 1 h at room temperature, followed

by overnight incubation with primary antibody in

Table 1 qPCR primers used in this study

Transcript Forward primer (5′-3′) Reverse primer (5′-3′)

ACTB ATCGTCCACCGCAAATGCTTCTA AGCCATGCCAATCTCATCTTGTT

CDH1 CCAGAAACGGAGGCCTGAT CTGGGACTCCACCTACAGAAAGTT

CTNND1 ATGTTTGCGAGGAAGCCGC CGAGTGGTCCCATCATCTG

FOXC2 GCCTAAGGACCTGGTGAAGC TTGACGAAGCACTCGTTGAG
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a humidified chamber at 4 °C. On the next day, coverslips

were rinsed three times with wash buffer (0.1% BSA in 1X

PBS), followed by 1 h incubation with secondary antibody

for 1 h at room temperature. The following antibodies

were used: mouse E-cadherin (Cell Signaling Technology,

Danvers, MA, USA), rabbit p120-catenin, rabbit PKCα

(Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-

rabbit IgG (H + L), F(ab’)2 Fragment (Alexa Fluor® 488

Conjugate) (Cell Signaling Technology, Danvers, MA

USA), anti-mouse IgG (H + L), F(ab’)2 Fragment (Alexa

Fluor® 555 Conjugate) (Cell Signaling, Danvers, MA,

USA). Following the manufacturer, all antibodies were

used at 1:100 dilution factor: primary antibodies

were diluted in blocking buffer (10% normal goat

serum/PBS) and secondary antibodies were diluted in

dilution buffer (1% normal goat serum/PBS). Cover-

slips were then incubated with Prolong® Gold Anti-

fade Reagent with DAPI (Cell Signaling, Danvers,

MA, USA) overnight. Images were obtained by the

Zeiss Laser Scanning Microscope (LSM) 710 at the

Core Imaging Facility at the University of Illinois at

Chicago (Chicago, IL, USA). Intensity quantification

was done using ImageJ.

Chromatin Immunoprecipitation (ChIP)

Protocol was optimized from a protocol previously

described by Carey et al. [38]. Specifically, 80-100μg of

chromatin was incubated with either FOXC2 (ChIP

grade, Abcam, Cambridge, MA, USA) or the negative

control IgG (Cell Signaling Technology, Danvers, MA,

USA) overnight at 4 °C. The antibody-DNA complex

was captured by Protein G Agarose/ Salmon Sperm

DNA bead (Millipore, Billerica, MA, USA). DNA was puri-

fied and analyzed by qRT-PCR using the previously re-

ported primers that recognize p120-catenin promoter

region ((20) as shown below. Primers that recognize

the upstream and downstream region from the re-

ported binding site (+127 to +309) of FOXC2 on

p120-catenin were used as negative controls Table 3.

Oncomine™ data mining

Oncomine™ (Compendium Bioscience, Ann Arbor, MI,

USA) overexpression analysis was used to probe for PRKCA

(PKCα) and FOXC2 expression in mRNA datasets. P values

less than 0.05 were considered significant.

The cancer genome atlas (TCGA) gene expression

For the generation of PRKCA, FOXC2, and CTNND1

heat map, the TCGA data, analyzed using the Agi-

lentG4502A_07_3 array platform, were obtained from

the UC Santa Cruz platform (https://genome-cancer.ucs-

c.edu). All samples were intrinsically classified by PAM50

assay and the expression of ER, PR, and HER2. They were

then stratified based on the relative transcripts expression

of the selected gene (PRKCA, FOXC2, and CTNND1).

Statistical analysis

All analyses were performed using GraphPad Prism 6.0

software. One-way and two-way ANOVA followed by

default post-test or t-tests were used when appropri-

ate. Statistics with P values less than 0.05 were con-

sidered significant.

Results

TNBC tumors display high expression of PKCα and

FOXC2, and low expression of p120-catenin

To investigate the relationship between PKCα, FOXC2

and p120-catenin, we first examined the Oncomine™

database for relative transcript levels of PRKCA (encod-

ing for PKCα) and FOXC2. In four independent reports

examining TNBC samples, both PRKCA and FOXC2

rank among the top 10% of genes associated with the

TNBC subtype (Additional file 2: Figure S2). These results

are in agreement with previous reports that TNBC tumors

express high PKCα [29, 30] and FOXC2 protein expres-

sion [21, 22]. Whereas FOXC2 was previously demon-

strated to be a repressor of p120-catenin expression in lung

cancer [20], it is not known whether this inverse

relationship holds true in breast cancer. Kaplan-Meier ana-

lyses on two independent datasets, GSE22219 [39] and

GSE42568 [40], support the hypothesis that in patients

whose tumors lack ER expression, high FOXC2/CTNND1

(p120-catenin) ratio (high FOXC2, low CTNND1) was asso-

ciated with shorter relapse free survival (RFS) (P < 0.001 and

P = 0.08 for GSE22219 and GSE42568 respectively) (Fig. 1a).

Using microarray data provided by The Cancer Genome

Atlas (TCGA) dataset, we were able to evaluate the expres-

sion levels of PRKCA (PKCα), FOXC2, and CTNND1 in

breast cancer patients (http://genome.ucsc.edu/). Patients

Table 2 Small-interfering RNA used in this study

Gene Sequences

PRKCA (ON-TARGET plus
SMARTpool)

UAAGGAACCACAAGCAGUA
UUAUAGGGAUCUGAAGUUA
GAAGGGUUCUCGUAUGUCA
UCACUGCUCUAUGGACUUA

FOXC2 (ON-TARGET plus
SMARTpool)

CCUACGACUGCACGAAAUA
CCAACGUGCGGGAGAUGUU
GGAUUGAGAACUCGACCCU
GCGCCUAAGGACCUGGUGA

FOXC2 (Dicer-substrates) #1
5′ CGACUGCACGAAAUACUGACGUGTC 3′
5′ GACACGUCAGUAUUUCGUGCAGUCGUA 3′
#2
5′ GGUGGUGAUCAAGAGCGAGGCGGCG 3′
5′ CGCCGCCUCGCUCUUGAUCACCACCUU 3′
#3
5′ ACAUCAUGACCCUGCGAACGUCGCC 3′
5′ GGCGACGUUCGCAGGGUCAUGAUGUUC 3’
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were classified molecularly as normal-like, luminal B, lu-

minal A, HER2-enriched, and basal-like [41], as well as by

ER, PR, and HER2 expression. Relative expression of

PRKCA, FOXC2, and CTNND1 in all tumor samples,

using the AgilentG4502A_07_3 array platform, were

computed and visualized by a heat map. Overall, pa-

tients whose tumors are classified as basal-like and/or

as TNBC express higher levels of PRKCA and FOXC2

along with lower levels of CTNND1 when compared to

tumors of other subtypes (Fig. 1b). Interestingly, in the

same GSE22219 and GSE42568 datasets, high FOXC2/

CTNND1 ratio also indicated a trend for reduced RFS

for ER+ patients although the association is weaker than

that in ER− patients (P = 0.3 and 0.13 for GSE22219

and GSE42568 respectively) (Fig. 1c). Together, these

data prompted us to further examine the functional

consequence of the PKCα, FOXC2, and p120-catenin

relationship in breast cancer at the molecular level.

PKCα and its downstream target, FOXC2, enhance

migration and invasion in basal A TNBC and endocrine

resistant ER+ breast cancer

We examined the expression pattern of PKCα and FOXC2 in

ER+ and TNBC breast cancer cell lines. Among ER+ cell lines,

T47D:A18 and MCF7 cell lines are sensitive to endocrine

treatment (such as tamoxifen) whereas T47D:C42, MCF7/

PKCα, MCF7:TAM1 and MCF7:5C are all resistant to endo-

crine treatment as previously described [33, 34]. TNBC cell

lines HCC1143 and HCC1937 (basal A) and MDA-MB-231

(basal B) were chosen based on molecular profiling [31, 32].

The basal B subgroup is reported to be highly enriched with

EMT and stem cell signatures whereas basal A cell lines are

characterized by upregulation of ETS- and BRCA-related

pathways [31, 32]. Compared to basal B, the basal A subgroup

is reported to better reflect the biology of the clinical basal-

like breast cancer [31]. PKCα and FOXC2 are expressed in all

endocrine resistant and basal TNBC (A and B) cell lines and

Fig. 1 The PKCα - FOXC2 - p120-catenin pathway is prognostically relevant in breast cancer patients. a High expression of FOXC2 and low expression

of CTNND1 (p120-catenin) in ER− patients correlate with poorer relapse free survival (RFS). b TNBC/Basal-like patients express higher levels of PRKCA

(PKCα), FOXC2, and lower levels of CTNND1 compared to patients of other molecular subtypes. Molecular subtypes were determined by PAM50 assay.

Gene expression data were computed and analyzed on UCSC Genome Browser (http://genome.ucsc.edu/). c High expression of FOXC2 and low

expression of CTNND1 in ER+ patients are associated with a tendency towards poorer RFS. Survival data and significance were analyzed

and obtained from PROGgene as previously described [55]
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among ER+ breast cancer cell lines, the endocrine resistant

cells (T47D:C42, MCF7/PKCα, MCF7:TAM1, and MCF7:5C)

have higher expression of PKCα compared to their endocrine

sensitive counterparts T47D:A18 and MCF7 (Fig. 2a). When

compared to their endocrine sensitive parental cell lines

MCF7 and T47D:A18, MCF7/PKCα and T47D:C42 are more

migratory and MCF7/PKCα cells are more invasive compared

to MCF7 (Fig. 2b and Additional file 3: Figure S3). Interest-

ingly, characteristics of enhanced migration and invasion

observed in MCF7/PKCα partially correlate with markers

consistent with an EMT (Fig. 2c). Specifically, MC7/PKCα

cells show down-regulation of epithelial markers ZO-1 and

E-cadherin compared to MCF7, however, elevated expres-

sion of mesenchymal markers Vimentin, N-cadherin, and

P-cadherin is not observed (Fig. 2c). This result suggests

that MCF7/PKCα cells have not undergone a complete

EMT and perhaps this is not necessary for cancer cells to

acquire a migratory and invasive phenotype.

Interestingly, either PKCα or FOXC2 knockdown was

sufficient to reduce the migratory and invasive capabilities

of MCF7/PKCα cells (Fig. 2d). Similarly, PKCα or FOXC2

knockdown in basal A cell lines HCC1937 and HCC1143

resulted in significantly lower migration and invasion

capabilities (Fig. 2d). Therefore, we concluded that the

positive contribution of PKCα and FOXC2 on migration

and invasion can be extended beyond the scope of basal B

TNBC [21, 22].

To assess a possible relationship between PKCα and

FOXC2, all cell lines were treated with 12-O-tetradecanoyl-

phorbol-13-acetate (TPA), an activator of several PKC family

Fig. 2 PKCα and FOXC2 enhance migratory and invasive capabilities of breast cancer cells. a Expression of PKCα and FOXC2 in a panel of breast

cancer cell lines. b Migratory and invasive properties are assessed and compared between MCF7 and MCF7/PKCα. Representative pictures of migrating

and invading cells are shown. c Expression of epithelial (ZO-1, E-cadherin, p120-catenin) and mesenchymal markers (Vimentin, N-cadherin, P-cadherin)

in MCF7 and MCF7/PKCα are evaluated with Western blot. Blot is representative of three independent replicates. β-actin was used as the loading control.

d Migration and invasion properties in breast cancer cells upon PKCα and FOXC2 knockdown. Experiments were done in the endocrine resistant cell line

MCF7/PKCα and basal A TNBC cell lines HCC1143 and HCC1937. The number of migrating/invading cells per treatment was normalized against that of

non-targeting siRNA treatment. Representative pictures of migrating and invading cells from MCF7/PKCα and HCC1143 cell lines are shown.

Graphs represent the SEM of at least three independent biological replicates. Significance was determined by student t-test (b) and two-way

ANOVA followed by Tukey’s test (d). *, P < 0.05 **, P < 0.01 ***, P < 0.001 ****, P < 0.0001
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members, including PKCα. TPA treatment results in reloca-

tion of PKC isoforms from the cytoplasm to the cell mem-

brane, indicative of activation. Indeed, upon TPA treatment,

we observed a clear translocation of PKCα from the cyto-

plasm to the cell membrane in two representative cell lines

(MCF7 and MCF7/PKCα) (Additional file 4: Figure S4). Fol-

lowing TPA treatment of endocrine resistant ER+ (T47D:C42,

MCF7/PKCα) and basal A TNBC cell lines (HCC1143,

HCC1937) we observed a significant induction of FOXC2 ex-

pression as measured by qRT-PCR (Fig. 3a). Correspondingly,

PKCα knockdown using siRNA was sufficient to reduce

FOXC2 expression at both the transcript and protein level in

these cell lines (Fig. 3b). In contrast, TPA treatment did not

have any effect on FOXC2 expression in either endocrine sen-

sitive (T47D:A18, MCF7) (Fig. 3a) or basal B TNBC cell line

(MDA-MB-231) (Additional file 5: Figure S5), suggesting a re-

lationship between PKCα and FOXC2 in these two subtypes

is unlikely. Altogether, our findings suggest that PKCα is a

positive regulator of FOXC2 expression in endocrine resistant

and basal ATNBC subgroups.

Loss of PKCα can restore the AJ in endocrine-resistant

breast cancer and TNBC cells

Loss of E-cadherin has been recognized as a characteris-

tic of the transition from benign lesions to invasive,

metastatic cancer [42]. At the molecular level, loss or

reduction of E-cadherin expression precedes and is often

causal to the dissociation of other members of the AJ,

signifying the dissolution of intercellular adhesion [42, 43].

In agreement with the observation that PKCα enhances

breast cancer cell motility (Fig. 2d), we examined the

effect PKCα has on AJ components. PKCα knockdown

resulted in a significant increase in E-cadherin and p120-

catenin protein expression (Fig. 4a), suggesting that PKCα

is a repressor of the two proteins. The increase of p120-

catenin protein upon PKCα knockdown correlated with

an increase in p120-catenin transcripts (Fig. 4b). However,

no changes in E-cadherin transcripts were observed (Fig.

4b). This result suggests that E-cadherin repression by

PKCα is not a transcriptional event and more likely a

result from reduced protein stability. As loss of p120-

catenin was previously reported to result in a transcription-

independent reduction of E-cadherin [13, 20], we reasoned

that PKCα-mediated repression of p120-catenin may be the

underlying mechanism for E-cadherin loss. To address this

hypothesis we examined p120-catenin and E-cadherin pro-

tein expression by immunofluorescent staining following

PKCα knockdown. We determined that p120-catenin was

recovered and localized at the cell membrane at 72 h after

siRNA transfection, followed by a recovery of E-cadherin at

approximately 24 h later (Fig. 4c). Quantitatively, we show

that p120-catenin significantly recovered at an earlier time

point than E-cadherin, supporting the notion that E-cadherin

recovery is a downstream effect of p120-catenin recovery.

FOXC2 is a transcriptional repressor of p120-catenin in

endocrine resistant ER+ breast cancer and basal A TNBC

FOXC2 was reported to be a transcriptional repressor of

p120-catenin in NSCLC cell lines [20]. We sought to

determine if the inverse relationship between FOXC2

and p120-catenin is also true in our breast cancer cell

lines. FOXC2 knockdown in two representative cell

lines, MCF7/PKCα and HCC1937, efficiently rescued

p120-catenin expression at both the transcript and pro-

tein level (Fig. 5a). Furthermore, FOXC2 knockdown

significantly increased the p120-catenin promoter activ-

ity as determined using a luciferase reporter construct

Fig. 3 FOXC2 is a downstream target of PKCα. a Breast cancer cells

were treated with either DMSO or TPA (100 nM, 2 h) and FOXC2

expression levels were determined by qRT-PCR. b FOXC2 expression

upon PKCα knockdown was assessed at both the transcript and protein

level. Blots are representative of three independent replicates. β-actin

was used as the loading control. Densitometry analysis of FOXC2 is

shown. Graphs represent the SEM of at least three independent biological

replicates. Significance was determined by student t-test and two-way

ANOVA, followed by Tukey’s tests. *, P < 0.05 **, P < 0.01 ****, P < 0.0001
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(Fig. 5b). These data suggest that FOXC2 suppresses

p120-catenin expression by repressing its transcription.

It is noteworthy that PKCα knockdown did not result in

recovery of p120-catenin expression in either MCF7

(Fig. 5c) or MDA-MB-231 (Additional file 5: Figure S5)

even though both cell lines co-express PKCα and

FOXC2 (Fig. 2a). Accordingly, we detected a significant

enrichment of FOXC2 occupancy on the p120-catenin

promoter in all cell lines representing either endocrine re-

sistant or basal A breast cancer subtypes, but not in

endocrine sensitive MCF7 (Fig. 5d). The interaction

between FOXC2 and p120-catenin seems to take place

within the +127 to +309 region of the p120-catenin pro-

moter, as we were not able to detect FOXC2 binding either

downstream or upstream from this region (Additional file 6:

Figure S6). Finally, we found that FOXC2 binding to p120-

catenin likely depends on PKCα expression because PKCα

knockdown significantly reduced FOXC2 enrichment on

p120-catenin (Fig. 5e). These findings cumulatively

support the hypothesis that PKCα is a novel regulator

Fig. 4 PKCα mediates transcriptional repression of p120-catenin and post-transcriptional repression of E-cadherin. a E-cadherin and p120-catenin

protein expression upon PKCα knockdown was determined by Western blots. Blots are representative of three independent replicates. β-actin

was used as the loading control. Densitometry analysis of E-cadherin and p120-catenin is shown. b E-cadherin (CDH1) and p120-catenin (CTNND1)

expression upon PKCα knockdown was measured by qRT-PCR. Experiments were done in endocrine resistant breast cancer (MCF7/PKCα) and

basal A TNBC cell lines (HCC1143, HCC1937). Graphs represent the SEM of at least three independent biological replicates. Significance was determined

by student t-tests. c Membrane localization of p120-catenin and E-cadherin upon PKCα knockdown in HCC1143 was assessed by immunofluorescent

staining according to Materials and Methods. Cells were treated with either negative siRNA (siC) or siRNA targeting PKCα (siP) and membrane

localization of p120-catenin and E-cadherin was evaluated at 72 and 96 h after transfection. Scale bar 10uM. Quantification of p120-catenin and E-cadherin

immunofluorescence intensity is shown. Significance was determined by one way ANOVA. *, P < 0.05, ** P < 0.01 ***, P < 0.001 ****, P < 0.0001
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of FOXC2-mediated repression of p120-catenin in

breast cancer. Specifically, PKCα down-regulates

p120-catenin by sustaining the expression and activity

of FOXC2, a p120-catenin repressor. By repressing

p120-catenin, PKCα promotes E-cadherin down-regu-

lation and dissolution of the AJ, which impairs inter-

cellular adhesion and promotes cellular migration.

Specifically we found that this signaling axis is rele-

vant in two breast cancer subtypes: endocrine resistant

ER+ and basal A TNBC. Endocrine sensitive ER+ and basal

B TNBC, despite being positive for PKCα and/or FOXC2,

do not rely on PKCα for the repression of p120-catenin:

PKCα knockdown in either MCF7 (endocrine sensitive) or

MDA-MB-231 (basal B TNBC) was not sufficient to re-

cover p120-catenin expression (Fig. 5c and Additional file

5: Figure S5).

Discussion
In the current study, we describe a novel signaling axis in

endocrine resistant breast cancer and basal ATNBC involv-

ing PKCα, FOXC2, and p120-catenin that promotes cancer

cell migration and invasion, which are considered integral

steps in EMT. The schematic diagram summarizing the

novel pathway is summarized in Fig. 6. E-cadherin is well-

recognized as a tumor suppressor since loss of E-cadherin

accelerates tumor formation and dissemination [44, 45].

Fig. 5 FOXC2 is a transcriptional repressor of p120-catenin. a Upon FOXC2 knockdown, p120-catenin expression at both the transcript and protein

level was determined by qRT-PCR and Western blot respectively. Densitometry analysis for p120-catenin is shown. b The effect of FOXC2 knockdown

on p120-catenin promoter activity was evaluated using a p120-catenin promoter luciferase reporter construct. c Expression of FOXC2 and p120-catenin

protein upon PKCα knockdown in MCF7 cells was determined by Western blots. d FOXC2 binding to the p120-catenin promoter was de-

termined by ChIP assay. e FOXC2 binding to the p120-catenin promoter with PKCα knockdown was determined by ChIP assay.

Experiments were done in two representative cell lines in MCF7/PKCα (endocrine resistant) and HCC1937 (basal A TNBC). All blot images

are representative of at least three independent biological replicates. β-actin was used as the loading control. Graphs represent the SEM

of at least three independent biological replicates. Significance was determined by student t-test (a, b, d) and two-way ANOVA, followed

by Tukey’s test (e). *, P < 0.05 **, P < 0.01 ****, P < 0.0001
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Induction of E-cadherin in the aggressive, highly metastatic

MDA-MB-231 breast cancer cells reduces their invasive

ability in vitro [43] and in vivo [46]. The ability of p120-

catenin to stabilize and maintain the expression of E-cad-

herin at the cell membrane suggests that p120-catenin itself

may also be a tumor and metastasis suppressor [13–15]. In

patients with invasive lobular carcinoma, partial or complete

loss of membrane p120-catenin was associated with disease

progression [47–50]. Down-regulation of p120-catenin is

correlated with an increased risk of breast cancer-related

death [49]. However, regulators of p120-catenin expression

and modulators of its interaction with E-cadherin in breast

cancer remain largely unknown. For the first time, we

provide evidence to support the hypothesis that PKCα

negatively impacts the AJ through FOXC2-mediated

transcriptional repression of p120-catenin and subsequent

destabilization and degradation of E-cadherin. Our re-

ported findings strongly suggest that inhibition of either

PKCα or FOXC2 could potentially reduce metastatic

events in these two subtypes of breast cancer. As migra-

tion and invasion assays do not fully reflect the complex-

ities of the in vivo microenvironment, future animal work

is needed to evaluate the contribution of this pathway in

tumor progression and metastasis.

One novel aspect of this pathway is that it occurs inde-

pendently of E-cadherin transcriptional down-regulation.

PKCα and/or FOXC2 can initiate EMT independently of

previously described EMT core regulators such as SNAIL,

SLUG, and ZEB. As previously reported, PKCα can collabor-

ate with these factors to maintain mesenchymal features of

post-EMT stem-like cells [30]. In this report, we demonstrate

the role of PKCα in breast cancer cells that still retain epithe-

lial morphology. This is particularly interesting as the con-

cept of collective migration, a process whereby cells do not

undergo EMT and therefore do not possess post-EMT fea-

tures, has become increasingly described as a prominent in-

vasion mechanism for low-grade tumors [51]. A recent

report by Westcott and colleagues suggested cells participat-

ing in collective invasion are not necessarily more mesenchy-

mal than non-invading cells [52]. In fact, leading tumor cells

that pave the migration path for follower cells were shown to

be indeed less epithelial, evidenced by lower expression of

epithelial cytokeratins (KRT8 and/or KRT18) but are not

more mesenchymal, a conclusion based on the expression

levels of basal cytokeratins (KRT5 and KRT14) and EMT

related genes (e.g. SNAI1) [52]. These findings and our own

together do not negate the contribution of EMT in cancer

metastasis but imply that subpopulations of cells in a tumor

mass can utilize different mechanisms for directed migration

and invasion.

The two TNBC cell lines chosen in our study, HCC1143

and HCC1937, belong to the basal A subgroup under

TNBC [32]. Their gene expression profiles are enriched for

ETS pathway genes, a pathway associated with tumor inva-

sion and metastasis [53]. Compared to the basal B sub-

group, which includes the commonly used cell lines MDA-

MB-231 and BT-549, gene expression profiles of basal A

are more similar to the clinical basal-like tumors [31], sug-

gesting that they may represent a more relevant model to

study this particular tumor type. In basal B cell lines, both

PKCα and FOXC2 are required for the maintenance of

breast cancer stem cells and their in vivo tumorigenicity

[21, 30]. However, we found no evidence of the PKCα -

FOXC2 - p120-catenin signaling pathway in MDA-MB-231

(Additional file 5: Figure S5). Similar observations were

seen in MCF7, an endocrine sensitive ER+ that expresses

both PKCα and FOXC2. These observations suggest that

endocrine sensitive and basal B TNBC may rely on other

signaling pathways to control for the expression and func-

tion of AJ. As a result, targeting PKCα - FOXC2 - p120-

catenin signaling pathway may be more meaningful for

endocrine resistant and basal A TNBC subtypes.

Our data indicate that PKCα can regulate FOXC2 at

the mRNA level (Fig. 3b). The exact underlying

Fig. 6 Signaling axis mediated by PKCα enhances cellular migration and

invasion. In cells without PKCα expression (left), p120-catenin binds to

the cytoplasmic domain of E-cadherin and stabilizes the AJs. In endocrine

resistant ER+ breast cancer and basal A TNBC (right), PKCα increases

FOXC2 expression and promotes its repression of p120-catenin transcrip-

tion. As a result, E-cadherin is destabilized and prone to degradation,

leading to dissociation of the AJ and intercellular connections

Table 3 ChIP primers used in this study

Forward primer (5′-3′) Reverse primer (5′-3′)

p120 ChIP (+127 to +309) GATCCCGAAAGGAGGAAGAG CGACTTGCTTATCCTCCTTTTCCC

p120 non-specific 1 (−34 to +126) GTACTTTGGCGGGGGAGATT AGCAGGGCTGAAACCGATAC

p120 non-specific 2 (+407 to +481) GGCTGACATCACTTAGGAAAGC CTCTTCCTCCTTTCGGGATC
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mechanism for this phenomenon is currently unknown.

Interestingly, while examining PKCα localization following

TPA treatment, strong nuclear punctates were observed

in both MCF7 and MCF7/PKCα (Additional file 4: Figure

S4), indicating that a nuclear function of PKCα is possible.

Notably, nuclear translocation and functions of PKCα

have already been reported in thyroid cancer [54].

Future studies that examine these possibilities in

breast cancer are of great interest.

Conclusions

In summary, we show evidence that PKCα is a key regula-

tor of migration and invasion in endocrine resistant ER+

breast cancer and basal A TNBC, but not in other sub-

types such as endocrine sensitive ER+. In both subtypes,

PKCα acts as an upstream regulator of FOXC2, which in

turn represses the expression of p120-catenin, an important

component of AJ that acts as the anchor for E-cadherin.

Our data suggest an alternative pathway for E-cadherin loss

that is not a result of the classical well-described transcrip-

tional repression involving EMT transcription factors. Des-

pite the fact that we did not observe a clear EMT in our

cell lines, we showed that the loss of E-cadherin is associ-

ated with enhanced motility and invasion. This new mech-

anism can be further examined to determine whether post-

translational loss of E-cadherin is sufficient to instigate an

EMT in other systems. Our finding does not dispute the

well-established EMT pathway; instead, it is highly possible

that both mechanisms can work in parallel to pro-

mote cancer cell migration and metastasis. Future

attempts that focus on disrupting the interactions

between PKCα and downstream targets may have

important therapeutic implications.

Endnotes
1Prior to STR testing, previous publications incorrectly

identified these cell lines as T47D instead of MCF7

Additional files

Additional file 1: Figure S1. Expression of various PKC isoforms in

MCF7/PKCα cells upon PKCα siRNA transfection was examined by

Western blot. Graph represents densitometry of three independent

experiments with error bars representing SEM. (TIFF 716 kb)

Additional file 2: Figure S2. Four independent studies from

Oncomine™ were used to assess expression levels of PRKCA (PKCα) and

FOXC2 transcripts in TNBC samples. (TIFF 2869 kb)

Additional file 3: Figure S3. (a) Migratory property was evaluated and

compared between T47D:A18 and T47D:C42. (b) Expression of EMT

markers in the two cell lines was examined by Western blot. (c) Basal

p120-catenin promoter activity was evaluated in T47D:A18 and T47D:C42

using a p120-catenin promoter luciferase reporter construct. (TIFF 968 kb)

Additional file 4: Figure S4. MCF7 and MCF7/PKCα cells were treated with

100 nM TPA for 2 h and PKCα localization was assessed by confocal microscopy

as described in Materials and Methods. Scale bar 10uM. (TIFF 5758 kb)

Additional file 5: Figure S5. (a) Expression of PKCα and FOXC2 in the

three TNBC cell lines (basal A: HCC1937 and HCC1143; basal B: MDA-MB-

231) was examined by Western blot. (b) MDA-MB-231 cells were treated

with TPA (100 nM, 2 h) and expression levels of FOXC2 mRNA were examined

by qRT-PCR. (c) Following PKCα knockdown, expression of FOXC2 and p120-

catenin in MDA-MB-231 was examined by Western blot. (TIFF 1695 kb)

Additional file 6: Figure S6. FOXC2 binding on the p120-catenin

promoter at three different segments was evaluated by ChIP assay.

qRT-PCR primer sequences are provided in Table 3. Data obtained

from HCC1937 cell lines. (TIFF 544 kb)
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