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Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was appar-
ent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 
was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus 
malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it 
became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. 
As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented 
in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in 
its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target 
for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the 
present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
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Introduction

Protein kinases are profoundly important for post-trans-
lational modification of proteins, which concurs with the 
rather large portion of the translated human genome devoted 
to the protein kinase complement (referred to as the kinome) 
[1–3]. One of the protein kinases now known as CK2 (for-
merly casein kinase II or 2) was possibly the earliest recog-
nized protein kinase activity (e.g., [4]). Subsequent work in 
various laboratories over the past several decades has identi-
fied CK2 as a major regulator of cell function in normal and 
disease states (e.g., [5, 6]). Among the latter, its involvement 
in cancer has attracted extensive attention since deregulation 
of CK2 in cancers is a consistent occurrence (e.g., [7–10]). 
In the present article, we present a broad overview of CK2 
biology and function in cells with particular emphasis on 
nuclear and mitochondrial roles. Finally, we discuss its 
involvement and targeting in cancer biology focusing on 
three specific cancers which are under investigation in our 
laboratory (prostate, breast, head, and neck cancers).

Disclaimer: The views expressed in this article are those of the 
authors and do not necessarily reflect the position or policy of the 
U.S. Department of Veterans Affairs or the U.S. government.
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Basic aspects of CK2 biochemistry

Discovery and investigation into the protein kinase complex 
that we now call “CK2” began in the 1950s, with descrip-
tions of the enzymatic phosphorylation of proteins [4]. 
The initial identification of CK2 resulted in the misnomers 
“casein kinase II or 2” and phosvitin kinase; however, casein 
and phosvitin are not among the biological substrates for 
CK2. Over time, four human CK2 genes were identified, 
three of which encode the proteins enabling CK2 protein-
directed kinase activity. The catalytic subunit CK2α is 
encoded by CSNK2A1, located on Chr 20p13. The other 
catalytic subunit CK2α′ is encoded by CSNK2A2, located on 
Chr 16q21. CK2α (391 AA) and CK2α′ (359 AA) are highly 
similar proteins, with the majority of divergence contained 
in the carboxy-termini (81.4% identity, blastp of reference 
sequences NM_177559.3 and NM_001896.4, [11]). CK2β 
is the regulatory subunit encoded by CSNK2B, located on 
Chr 6p21. CSNK2A3 encodes an intronless “pseudogene” 
that has highest sequence homology with CSNK2A1 and is 
located at Chr 11p15 [12, 13]. CSNK2A3 is proposed to have 
roles in some cancer types as a protein or potentially as a 
non-coding RNA [14–17]; overall, investigation of this gene 
has been limited, and will not be part of further discussion 
in this review.

The heterotetrameric structure of the CK2 holoenzyme 
consists of two alpha subunits (molecular mass of α is 
45 kDa and of α´ is 41 kDa) linked via two dimerized β sub-
units (molecular mass is 25 kDa), forming α2β2, or αα′β2, or 
α′2β2 configurations depending on the cell type (Fig. 1). The 
presence of the β subunits influences enzyme stability, sub-
strate selectivity, and autophosphorylation [5, 18, 19]. The 
catalytic subunits are also active as monomers, although the 
activity is less than that of the tetrameric holoenzyme [20]. 
CK2 is primarily a S/T (serine/threonine) protein kinase but 
has been infrequently reported to phosphorylate Y (tyrosine) 

residues [18, 21, 22]. Notably, CK2 utilizes both ATP and 
GTP for catalyzing transfer of phosphate groups to its sub-
strates. Unlike most protein kinases, CK2 exhibits constitu-
tive activation as both a monomeric and tetrameric enzyme, 
requiring no modification of phosphorylation status or 
regulated binding of a cofactor [23]; however, as discussed 
subsequently, specific regulation of its functional activity in 
response to diverse signals occurs [5]. Several documented 
post-translational modifications positively and negatively 
influence CK2 activity. These modifications include phos-
phorylation, O-linked glycosylation, acetylation, stimulation 
of kinase activity by agents such as polyamines, and asso-
ciation with other proteins (e.g., [24–29]); aspects of these 
modifications and regulatory events are discussed in more 
detail in recent reviews [30, 31].

An important feature of CK2 functional biology relates 
to its requirement for survival during embryonic develop-
ment. Knockout of either CK2α or CK2β causes embryonic 
lethality [32–34]. In contrast, knockout of CK2α' results 
in viable mice with male infertility [35]. Further, reduced 
levels of CK2α through heterozygous knockout combined 
with complete loss of CK2α' results in developmental and 
growth abnormalities [36]. Recent work using myoblast cells 
has further demonstrated that activity from a CK2 catalytic 
subunit is necessary for cell survival. An attempt was made 
to generate CK2αα' knockout C2C12 cells using CRISPR/
Cas9 technology; however, it was later determined that sur-
viving cells expressed a truncated form of CK2α' [37]. There 
is interdependence among the CK2 subunits for expression 
levels within cells, including transcriptional feedback mech-
anisms [38, 39]. In cancer, it is observed that downregulation 
or knockout of just one of the catalytic subunits causes loss 
of the β subunit in cultured cells and in xenograft tumors 
[40–45]. Similarly, overexpression of the CK2α catalytic 
subunit promotes increased expression of the other subu-
nits in prostate cells [42]. The overall requirement for CK2 
expression in cells in conjunction with the consistent reli-
ance of cancer cells on elevated CK2 levels has prompted 
its consideration as a target for cancer therapy (discussed 
subsequently).

Much work over the past three decades on the functional 
biology of CK2 has culminated in the notion that CK2 
is a “master regulator” of diverse cellular functions (as 
reviewed in, e.g., [5–8, 46]. Protein kinase CK2 is ubiqui-
tously expressed at varying levels in tissues and cell types, 
as well as in the majority of intracellular compartments 
and organelles. There are close to one thousand substrate 
phosphosites identified for CK2 (phosphositeplus website 
[47]), and this wide range of CK2 substrates are localized 
throughout the cell where they engage in distinct functions 
[6, 48]. Phosphoproteomics studies have demonstrated the 
prevalence and malignant growth-promoting effects of CK2 
target proteins in cancer and cancer progression [49–52]. 

Fig. 1   Crystal structure of the full-length symmetric CK2 holoen-
zyme. PDB:4MD7 [311]
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The far-reaching role of CK2 in proliferative activity is 
highlighted by the large number of substrates identified in 
mitosis by quantitative phosphoproteomics; these authors 
identified 330 CK2 phosphorylation sites on 202 proteins 
[53]. Given that most cellular proteins harbor CK2 acido-
philic phosphorylation sites, it is not surprising that CK2 
plays a wide range of roles in normal and disease states; 
aspects of these functions are discussed subsequently with 
a primary focus on nuclear and mitochondrial roles for CK2 
and the involvement of CK2 in prostate, breast, and head and 
neck cancers. Other significant aspects of CK2 in cancer 
biology, such as roles in DNA synthesis and damage repair, 
immunological aspects, and hematological malignancies are 
discussed in other recent CK2 reviews [54–56].

Intracellular dynamic shuttling of CK2

The question of how cellular functions of CK2 are controlled 
has been perplexing due to the intrinsically active status 
of this kinase. However, this may be an overly simplistic 
view of the nature of its activity. Nearly 30 years ago, it was 
recognized that dynamic shuttling of CK2 to the nuclear 
compartment occurs in response to various growth signals 
[57–60]. It was noted that prostate cancer cells responsive 
to androgen presence (such as LNCaP cells) showed a loss 
of CK2 from the nuclear compartment on androgen depriva-
tion in the culture media; whereas, when androgen was re-
introduced to the culture media there was a rapid movement 
of CK2 from the cytoplasm to the nuclear compartment. 
Similar results were obtained when androgen was replaced 
with growth factors (such as EGF). On the other hand, pros-
tate cancer cells not responsive to androgens (such as PC-3 
cells) did not show changes in CK2 localization associated 
with presence or absence of androgen in the culture media. 
However, removal of growth factors such as EGF from the 
media of these cells resulted in loss of CK2 from the nuclear 
compartment which was again reversed on re-addition of 
growth factors. This shuttling of CK2 to the nuclear com-
partment in response to growth stimuli suggested involve-
ment of CK2 in regulation of transcriptional activity [61, 
62]. Within the nucleus, there is differential localization 
of CK2 in subnuclear compartments such as nucleoplasm, 
nuclear matrix, and nucleoli [59, 63–71].

CK2 dynamic localization to and within other intracel-
lular organelles and subdomains such as the Golgi appa-
ratus, endoplasmic reticulum, mitochondria, cytoskeleton, 
centrosomes, and plasma membrane also occurs in both 
non-transformed and malignant cells and tissues, hence, 
emphasizing the potential of its regulated involvement in 
numerous cellular activities [60, 72–74]. In mitochondria 
of rat liver, CK2 responds to stimuli by redistribution from 
the intermembrane space to the inner membrane [75]. CK2 

regulation of certain metal ion transport has been explored 
in both non-malignant and cancer model systems [76–78] 
and represents one facet of CK2 functions at the plasma 
membrane. CK2 recruitment, interactions and function at 
the plasma membrane also occur due to growth factor signal-
ing. As mentioned above, EGF acting via EGFR stimulated 
localization of CK2 to nuclear compartments in prostate 
cancer cells and numerous other reports have demonstrated 
EGF-mediated activation of malignant signaling involving 
CK2 at the plasma membrane. In one example, EGF-induced 
ERK2 phosphorylation of CK2α followed by CK2 phos-
phorylation of α-catenin, thus releasing β-catenin for trans-
activation to the nucleus [29]. In another example, CK2α 
colocalized with PAK1 via CKIP-1 at the plasma membrane 
in response to EGF treatment, whereupon CK2 phosphoryla-
tion of PAK1 activates PAK1 malignant functions [79, 80]. 
BMP2 signaling in non-transformed myoblast cells causes 
the release of CK2 from BMPR1A, activating SMAD signal-
ing and osteogenesis [81, 82]. This signaling pathway was 
recently found to be disrupted in osteoporosis [83]. In addi-
tion to its shuttling or localization, binding proteins (such 
as CKIP and Lamin A) may be involved in regulating CK2 
activity and function at specific loci, adding another layer 
of control [24, 84].

The phenomenon of differential intracellular localiza-
tion of CK2 also varies with disease status. For example, 
whereas CK2 is diffusely localized in most non-malignant 
cells, a higher level is concentrated in the nuclear compart-
ment in cancer cells. In another example, after infection in 
cultured cells CK2 colocalized with the SARS-CoV-2 N 
protein in filopodial protrusions containing assembled viral 
particles [85]. Overall, intracellular localization appears to 
be an important aspect of CK2 functionality and response to 
cell disease status, and we will describe here information on 
CK2 activity in the nucleus and the mitochondria.

Nuclear roles for CK2 and connection 
with cancer

Investigations of the localization and abundance of CK2 in 
tumors demonstrated that CK2 was high in the proliferat-
ing edge of cancer tissue similar to the proliferation marker 
Ki-67; unlike Ki-67, CK2 levels were also elevated in other 
parts of the tumor section. These experiments also showed 
the remarkable increase of CK2 in the nuclear compartment 
of cancer cells compared with normal cells [86]. Elevated 
CK2 presence in the nucleus has been shown in numerous 
cancers, and information for breast, prostate and head and 
neck cancers are detailed in subsequent sections. Within 
the nucleus, CK2 is diversely associated with subnuclear 
sites such as the nucleolus, chromatin, and nuclear matrix 
where it performs distinct functions [57–59, 61, 64, 67, 68, 
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87–90]. Given the interactions of CK2 with all three DNA-
dependent RNA polymerases and their associated regulatory 
complexes, CK2 impacts production of all classes of RNA 
and thus both the structural organization and transcriptional 
activity of the nucleus [91]. Increased nuclear levels and 
subnuclear associations of CK2 have implications for several 
malignant cell characteristics and functions involved in sus-
taining proliferative signaling and growth, described next.

Various components of the core RNA polymerase II 
(RNAPII) machinery itself interact with and/or are phos-
phorylated by CK2 [92]. Dynamic modification of the car-
boxy-terminal domain (CTD) of the largest RNAPII subunit 
RPB1, primarily by phosphorylation, regulates the activity 
of the RNAPII complex according to the phase of the tran-
scriptional cycle and other signals received [93, 94]. CK2 
phosphorylates the CTD, and recent work demonstrated that 
CK2 participates in regulation of CTD phosphorylation sta-
tus in response to oxidative stress [95–97]. CK2 also influ-
ences the activities of TFIIA, TFIIF, and FCP1, among other 
examples [98–100].

Relating to gene expression, CK2 interacts with and 
phosphorylates a variety of transcription factors (see, e.g., 
[101–103]). The effects of these events range from altered 
localization, stability, activation state, or association with 
other binding partner molecules. Here we discuss a few 
examples from the cancer literature. In one example, CK2 
phosphorylates the proline rich homeodomain/ hematopoi-
etically expressed homeobox (PRH/HHex) protein, and in 
prostate cancer cells this was shown to support prolifera-
tion and to release a block on migration and invasion [104]. 
Several groups have also reported on intersection of CK2 
activity with the STAT3 and STAT5 transcription factors. 
Overall, the results demonstrate that inhibition of CK2 hin-
ders STAT3/5 signaling and decreases aggressive pheno-
types in multiple cancer types, including breast, glioblas-
toma, acute myeloid leukemia, multiple myeloma, mantle 
cell lymphoma, and non-small cell lung cancer [105–110]. 
CK2 was identified in a screen for molecules that can be 
targeted to induce senescence in cancer cells [111]. This 
work identified cross regulation between CK2 and STAT3 
in that it was determined that in a PTEN knockout model 
of prostate tumors, upregulation of CK2 expression occurs 
via transcriptional activation of the CK2 gene by phospho-
STAT3. CK2 involvement with the steroid hormone receptor 
transcription factors AR, ER, and PR is discussed later in 
this review in the prostate and breast cancer sections.

CK2 similarly interacts with and modifies numerous splic-
ing factors, as was highlighted in a publication where the 
authors used a global approach to identify CK2 substrates. 
The results showed enrichment for splicing machinery com-
ponent proteins as targets of CK2 [112]. Earlier research 
had identified specific examples of CK2 involvement with 
splicing. In the first publication, CK2 phosphorylation of 

the multi-functional splicing factor RNPS1 increased the 
formation of spliced mRNA in vivo and also stimulated the 
exon junction complex activity of RNPS1 [113]. In another 
publication, CK2 phosphorylated the splicing factor hPrp3p, 
involved with spliceosome assembly, to influence splicing 
activity [114]. Further, CK2 phosphorylated protein kinases 
involved in regulation of splicing, including CDK11 and 
SRPK1 [96, 115]. Given the oncogenic roles of transcrip-
tion and splicing factors, CK2 involvement with their func-
tions undoubtedly contributes to the proliferative status and 
deregulated cellular functions of cancer cells.

CK2 localizes to the nucleolus where it is involved in 
numerous activities related to the functions within this 
nuclear body. The nucleolus itself has sub-compartments, 
serves as the site of rRNA synthesis and ribosomal assem-
bly, and has roles in genome organization, cell cycle con-
trol, proliferation, and stress response [116, 117]. CK2 
interacts with RNA polymerase I and III complexes, which 
are responsible for the production of rRNA, tRNA, and 5S 
rRNA, phosphorylates various components of these machin-
eries, and influences their activity [69, 118–120]. For exam-
ple, transcriptional repression of RNAPIII due to DNA dam-
age required CK2 [121]. Several laboratories have reported 
on CK2 phosphorylation of B23/nucleophosmin, including 
androgenic regulation, cell cycle regulation, and the impact 
on genes related to protein synthesis, energetic metabolism, 
and ribosomal biogenesis [122–126]. It was also shown that 
CK2 and B23 modification status controls compartmentation 
of the nucleolar processing proteins in the granular compo-
nent of nucleoli [127]. Another CK2 nucleolar substrate is 
Nopp140. This protein is concentrated in nucleoli, and CK2 
phosphorylation of Nopp140 at numerous sites targets this 
protein to Cajal Bodies which are associated with nucleoli. 
Cajal body ribonucleoproteins modify spliceosomal small 
nuclear RNAs to support snRNP biogenesis and pre-mRNA 
splicing. CK2-facilitated Nopp140 presence in the Cajal 
Bodies helps ensure proper snRNA modifications and down-
stream splicing fidelity [128]. Given the roles nucleolar pro-
cesses play to support cell growth, increased CK2 presence 
in this nuclear body would serve to maintain these processes 
under the demands of transformed cell proliferation.

Epigenetic plasticity enables the development and endur-
ance of cells under the many stressors of malignant growth. 
Along these lines, numerous examples of CK2 involvement 
in epigenetic-related processes have emerged. As referenced 
in the introductory paragraph for this section, growth stimu-
lus in prostate cells resulted in translocation of CK2 to chro-
matin and nuclear matrix [58, 90]. Stress and death-inducing 
stimuli similarly cause CK2 movement to and away from 
nuclear matrix [65, 129, 130]. Chromatin and nuclear matrix 
are the functional and structural underpinnings of RNA 
polymerase activity, and the detection and impact of signal 
responsive movement of CK2 within these components has 
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been investigated on numerous fronts. Abundant pieces of 
evidence exist to connect CK2 to chromatin structure modu-
lation via histone and histone-interacting protein regulation, 
as detailed in the next several paragraphs.

In initial work from our laboratory, CK2 association with 
and phosphorylation of nucleosomal proteins was shown 
to vary with transcriptional activity and nucleosomal sta-
tus; overall, there was higher CK2 activity associated with 
active compared to non-active nucleosomes from rat liver 
and prostate [61, 64]. In other work, CK2 co-purified in a 
complex with SSRP1 and hSpt16 in response to UV irra-
diation; later, CK2 was found to phosphorylate SSRP1 in 
multiple domains and alter its DNA binding affinity under 
different contexts [131–133]. SSRP1 and hSpt16 form the 
“facilitates chromatin transcription” (FACT) complex that 
was initially described as a transcriptional elongation factor 
and is now considered a histone chaperone [134]. Direct 
CK2 phosphorylation of histone H2A affects transcriptional 
elongation [21]. Two cancer publications link CK2 with the 
proto-oncogene BMI1, which is implicated in transcriptional 
repression, stem cell regulation, and DNA damage repair 
[135]. As a member of the polycomb repressor complex 1 
(PRC1), BMI-1 participates in mono-ubiquitination of his-
tone H2A resulting in chromatin remodeling. CK2 stabi-
lizes BMI-1 through phosphorylation, and these two proteins 
positively correlate with significantly higher expression in 
high grade serous ovarian cancer [136]. Further, inhibition 
of CK2 in AML caused downregulation of BMI-1 levels 
[105]. Finally, CK2 phosphorylation of Che-1 (an RNA pol-
ymerase II binding protein involved in maintenance of global 
histone acetylation) promotes its interaction with histone H3, 
thereby supporting cell proliferation [137].

Dynamic methylation of histones and DNA is a critical 
aspect of the shifting spectrum of epigenetic gene expres-
sion repression and activation, and its dysregulation con-
tributes to oncogenesis. Interaction of CK2 with methyl 
group transfer enzymes in cancer cells is a relatively recent 
area of investigation in the CK2 literature. CK2 phos-
phorylation of the DNA methyltransferase DNMT3A in 
osteosarcoma cells reduces its DNA methylation activity, 
alters CpG methylation patterns, and localizes DNMT3A 
to heterochromatin [138]. CK2 also phosphorylates lysine-
specific demethylase-1 (LSD1, also known as KDM1A), 
as identified using neuroblastoma cell extracts [139]. In a 
signal responsive manner, LSD1 promotes demethylation 
of histone H3 at K3 and K9, resulting in both repressor and 
activator impact on gene expression; in addition, LSD1 
also demethylates non-histone proteins and is involved 
with DNA damage repair [140]. In this regard, CK2-
mediated phospho-LSD1 promotes recruitment of RNF168 
and 53BP1 for DNA damage repair [141]. The methyl-
cytosine dioxygenase enzyme TET1 participates in DNA 
demethylation, and its high expression levels in epithelial 

ovarian carcinoma in conjunction with high CK2α levels 
are associated with poor outcomes for patient survival. 
These authors demonstrated that TET1-expressing epithe-
lial ovarian cancer cells were sensitive to CK2 inhibition 
and suggest that inhibition of CK2 activity could represent 
a promising treatment strategy to block epigenetic repro-
gramming in early ovarian carcinogenesis [142].

There is also a body of evidence linking CK2 to his-
tone deacetylase activity in cancer. Histone deacetylases 
(HDACs) remove acetyl modifications from lysine resi-
dues on both histone and non-histone proteins. Just over 
twenty years ago it was first identified that phosphoryla-
tion of HDAC1 by CK2 modified its enzymatic activity 
[143]. Shortly thereafter, HDAC2 was also identified as 
a substrate for CK2 that promoted enzymatic activity and 
regulated complex formation such as with Sp1 or Sp3 
[144, 145]. Notably, CK2 phosphorylation of HDAC1 and 
HDAC2 was found to be essential for their dissociation 
during mitosis [146]. Specific to cancer, CK2 was shown 
to be a key activator of HDACs in hypoxia-associated 
tumors [147]. In hepatocellular carcinoma, high CK2α 
levels in patient tumors were associated with worse over-
all survival; further, in a subset of these tumors HDAC2 
and CK2α were positively correlated. In mechanistic stud-
ies, these authors showed that EGF treatment induced 
increased CK2α, phospho-Akt and HDAC2 levels, and 
HDAC2 elevation was blocked by expression of domi-
nant negative CK2α [148]. These observations suggest 
an important link between CK2 and histone deacetylase 
regulation in cancer.

The DNA binding zinc finger protein called Ikaros is 
a transcriptional regulator that functions as a tumor sup-
pressor in leukemia by controlling chromatin accessibility 
and globally regulating formation of enhancers and super-
enhancers in gene promoter regions [149]. CK2 directly 
phosphorylates Ikaros at multiple evolutionarily-conserved 
sites, impairing its function. Importantly, CK2 inhibition 
restores Ikaros functionality as evidenced by repression 
of BCL2L1 (Bcl-XL) levels and induction of cell death 
in B-cell acute lymphoblastic leukemia (ALL) cells [150, 
151]. It was further demonstrated in T-cell ALL that eleva-
tion of CK2 activity contributes to PI3K signaling path-
way upregulation in part through impaired Ikaros function 
[152]. The ability of CK2 levels to subvert the functions 
of this tumor suppressing epigenetic regulator in leukemia 
cells emphasizes the impact of elevated CK2 levels in the 
nucleus of malignant cells.

Together, the data suggest involvement of CK2 with regu-
lation of chromatin structure and expression programs which 
are key to proliferative and malignant status, ultimately con-
tributing to numerous nuclear-related established and pro-
posed hallmarks and enabling characteristics of cancer cells 
[153]. CK2 nuclear roles are highlighted in Fig. 2.
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CK2 roles involving mitochondria

The mitochondria are key loci for cancer cell resistance 
to death and strongly influence cancer cell proliferation 
and signaling [154]. These organelles produce ATP, host 
intrinsic apoptosis, manage redox homeostasis, and pro-
duce metabolites for biosynthetic processes. Although 
nuclear DNA encodes the majority of mitochondrial pro-
teins, mitochondria also transcribe and translate numerous 
genes encoded by mitochondrial DNA. CK2 is localized 
to mitochondria in mammalian cells but not in yeast. CK2 
roles within mitochondria are likely to be numerous, and we 
are still in the infancy of defining these roles. As described 
subsequently, studies suggest dynamic shuttling of CK2 to 
and within mitochondrial compartments and manipulation 
of cellular CK2 activity produces a marked effect on mito-
chondrial-related activities.

CK2 was first isolated as a constituent of bovine kidney 
mitochondria extracts as a kinase activated by spermine or 
by chromatography on DEAE cellulose or poly(L-lysine)-
agarose [155]. It was shown using rat liver mitochondria 
preparations that CK2 was located in the inner membrane 
space of quiescent mitochondria, and that spermine treat-
ment mediated the translocation of CK2 to the inner mem-
brane of energized mitochondria [75, 156]. We have demon-
strated detection of all three CK2 subunits in mitochondria 
of multiple human prostate cancer cells [157]. Phospho-
proteome analysis using mitochondria from resting human 
muscle determined 77 phosphoproteins, and bioinformatics 

analysis of kinase motifs revealed CK2 as responsible for 
more than 20% of the activity [158]. Identification of specific 
mitochondrial CK2 substrates include glycerol-3-phosphate 
acyltransferase in rat liver, carnitine palmitoyltransferase-I 
in rat liver, PGC-1- and ERR-induced regulator in muscle 
1 (PERM1) in mouse heart, and FUNDC1 in human cervi-
cal cancer cells [159–162]. Defined cellular substrates of 
CK2 are also localized in mitochondria (e.g., AKT-1, NFκB 
p65), but it is not currently known whether these proteins 
serve as CK2 regulated substrates in this organelle [163, 
164]. Overall, specific targets of CK2 phosphorylation and 
the functional impact in the mitochondria as related to onco-
genic growth remain an under-studied area.

CK2 regulation of cell death involves numerous mecha-
nisms, and original work from this laboratory first demon-
strated CK2 impact on the process of cell death mediated by 
diverse stimuli and machinery [165–169]. The specific con-
nections between CK2 and mitochondrial-orchestrated can-
cer cell survival and death involve several pathways which 
continue to be elucidated. Bid, a BH3 domain-only pro-
apoptotic protein, is cleaved by caspase 8 following death 
receptor activation to form truncated Bid (tBid). tBid ampli-
fies apoptotic signaling via Bax/Bak, ultimately mediating 
mitochondrial outer membrane permeabilization (MOMP) 
[170]. CK2 phosphorylation of Bid blocks its proteolytic 
cleavage and blocking CK2 activity accelerates Bid cleavage 
and apoptosis [171–173].

In further work on death receptor signaling, an impor-
tant series of observations from multiple laboratories 

Fig. 2   Summary depiction of 
the nuclear domains and roles 
of CK2. Created with BioRen-
der.com
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documented CK2 activity as a suppressor of tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL/Apo2-L)-
mediated cell death in cancer cells. In prostate cancer cells, 
treatment with the CK2 inhibitor TBB prior to the addition 
of TRAIL upregulated the pro-apoptotic Bax protein with 
simultaneous down-regulation of anti-apoptotic proteins 
Bcl-2 and Bcl-XL. Increased expression of cytochrome c in 
the cytosol coincided with these changes, indicating engage-
ment of the mitochondrial circuitry and sensitization of cells 
to TRAIL as a result of CK2 inhibition. Conversely, in the 
same experimental model, TRAIL-induced down-regulation 
of Bcl-2 and Bcl-XL expression and release of cytochrome 
c in the cytoplasm was blocked by overexpression of CK2α 
[168]. A protective role for CK2 against TRAIL-induced cell 
death was subsequently observed in colon carcinoma, rhab-
domyosarcoma, and hepatocellular carcinoma [174–176]. 
Thus, the response of mitochondrial death circuitry to recep-
tor mediated death signaling was impeded in multiple mod-
els due to elevated CK2.

Successive studies in our laboratory identified a strik-
ing impact of CK2 activity on mitochondrial viability and 
intracellular Ca2+ pools. The importance of intracellular 
Ca2+ homeostasis in relation to cell viability and mitochon-
drial/endoplasmic reticulum dynamics has been extensively 
described (see e.g., [177–180]). In studies using cultured 
prostate cancer cells, we found that treatment with CK2 
inhibitors caused a rapid loss in mitochondrial membrane 
potential (Δψm) apparent as early as 2 h. Further investiga-
tion suggested that the change in Δψm was due to inhibi-
tion of the mitochondrial-localized CK2 and that changes 
in mitochondrial Ca2+ levels were a possible early mediator 
of disrupted Δψm [157]. To pinpoint the underlying cause 
for Δψm loss after blocking CK2 activity, we examined Ca2+ 
status in various fractions of cells treated with CK2 inhibi-
tors [181]. Our results revealed that following CK2 inhi-
bition there was a rapid dose-dependent loss in cytosolic 
Ca2+ levels starting within 2 min and reaching a maximal 
effect at 5–10 min. We observed a concomitant increased 
detection of Ca2+ in the ER and mitochondrial compart-
ments. These results suggested that the rapid change in Δψm 
likely resulted from increased mitochondrial Ca2+ levels, 
thus providing the initial trigger for the unleashing of the 
mitochondrial apoptotic machinery and uncovering a new 
mechanism by which CK2 protects cancer cells from cell 
death [157, 181].

CK2 exerts cancer-supportive roles related to mitochon-
dria via two further potential mechanisms: protein import 
and mitophagy. In yeast, cytosolic localized CK2 plays a 
role in mitochondrial protein import. CK2 phosphorylates 
the precursor forms of translocase of the outer membrane 
(TOM) protein Tom22 and the import protein Mim1, and 
CK2 inhibition decreased the abundance of the TOM protein 
import complex and the Mim1 protein [182]. Mitophagy is 

a catabolic process that degrades mitochondria, and CK2 is 
essential for mitophagy in yeast [183]. Using a conditional 
mouse skeletal muscle Csnk2b knockout model, CK2 phos-
phorylation of TOMM22 was reduced and was shown to 
regulate the binding affinity of TOMM22 for mitochondrial 
precursor proteins. Accumulation of the sensor protein PINK 
within muscle fibers in the Csnk2b knockout model indicated 
abnormal mitochondria destined for mitophagy. Introduc-
tion of a CK2 phosphomimetic form of TOMM22 into the 
Csnk2b knockout muscle cells in vitro and in vivo restored 
the balance of mitophagy and the function of the mitochon-
dria [184]. In human cervical cancer cells, CK2 phosphoryl-
ation of the mitochondrial cargo receptor FUNDC1 reverses 
induction of mitophagy by the phosphatase PGAM5 [162]. 
Thus, CK2 appears to play an important role in mitochon-
drial protein import and overall health in non-transformed 
cells. It remains to be determined whether elevated CK2 
in cancer cells protects mitochondrial viability and/or ena-
bles malignant cells to adapt to stress through these protein 
import and mitophagy pathways.

Here we have described CK2 localization in mitochon-
dria and participation in multiple pathways of mitochondrial 
homeostasis. These pathways include suppression of death 
signaling, maintenance of membrane potential, calcium 
redistribution, participation in protein import, and roles in 
mitophagy. Much remains to be determined in our under-
standing of the different functions for CK2 in mitochondria, 
and how these roles are exploited in malignancy. Of note, 
it has recently been described that CK2 has a specific role 
in ER-phagy through phosphorylation mediated interaction 
of ER-phagy receptor TEX264 and ATG8 proteins, which 
further points to the diverse nature of CK2 cellular func-
tions [185]. An overview of CK2 functions pertaining to 
mitochondria are illustrated in Fig. 3.

Overview of CK2 role in oncogenesis 
and expression in human cancer

As mentioned earlier, elevation of CK2 in a variety of can-
cers has been observed in numerous studies and appears to 
be an almost universally consistent feature (see, e.g., [5, 
7, 9]). A large part of this observation has been based on 
immunohistochemical analysis of CK2 proteins in numerous 
cancer types. Early empirical evidence for a potential onco-
genic function of CK2 was produced in studies into the role 
of this kinase in lymphoproliferation. Transgenic mice were 
produced expressing CSNK2A1 in lymphocytes, and from 6 
to 15% of mice developed T-cell lymphoma at 6.5 months 
of age or later [186]. CK2 expression was required for pro-
liferation of these tumor cells, but no increase in CK2α pro-
tein or activity was found. These results led to the historical 
conclusion that transformation required other oncogenic 
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events, and further studies ensued to test this supposition. 
Doubly transgenic mice for CSNK2A1 and MYC expression 
in lymphocytes which are bi-transgenic die by postnatal day 
3 with acute lymphocytic leukemia [186]. In another study, 
combination of partial or complete TP53 deficiency with 
CSNK2A1 in lymphocytes caused development of thymic 
lymphomas significantly faster than in p53-deficient mice 
alone [187]. Loss of p53 expression appeared to be neces-
sary for the transformation process, and high levels of MYC 
RNA were observed. Finally, transgenic co-expression of 
CSNK2A1 and the transcription factor TAL1 increases the 
rate of lymphoblastic leukemia development in mice [188]. 
This body of work demonstrated the acceleration of the 
oncogenic process by elevated CK2 expression in the lym-
phoid compartment.

A correlation between CK2 expression level and patient 
survival has also been documented in a variety of cancers 
[15, 189–191]. Whereas in non-malignant cells CK2 is dif-
fusely located in nuclear and cytoplasmic compartments, 
its level in the nuclear compartment in cancer cells is dis-
tinctly elevated and often associated with poor prognosis 
[86, 192–196]. As discussed above, the elevation of nuclear 
CK2 levels may reflect critical survival functions in can-
cer cells. Alteration in the balance of CK2 subunit expres-
sion can also have prognostic implications in cancer [197, 
198]. Historically, protein levels and activity measurements 
formed the foundation for a role for elevated CK2 in cancer. 
However, the accumulation of microarray and RNA-seq data 
into publicly available databases has facilitated the deter-
mination of CK2 RNA levels in numerous tumor tissues, 
documenting a widespread though variable expression of 

CK2 genes [14, 15]. Generally, significant elevation of CK2 
gene expression is observed in malignant compared to non-
malignant tissues. However, there are rare instances where 
significantly decreased CK2 RNA levels are observed, such 
as in testicular cancer [14].

Therapeutic targeting of CK2 in cancer

Considerable evidence suggests the potential of CK2 as a tar-
get for cancer therapy [5, 199–201]. A number of approaches 
to target CK2 have been explored and include use of small 
molecule inhibitors of CK2, peptide-based therapy and use 
of CK2 antisense and RNAi to achieve molecular down-
regulation of CK2. Since CK2 is a ubiquitous signal in all 
cells and is essential for survival, its targeting poses chal-
lenges with regard to host toxicity, and so its targeting in a 
cancer cell specific manner would be ideal; however, some 
preliminary success has been achieved using approaches not 
selective for malignant cells.

Over the years, the development of numerous small mole-
cule CK2 inhibitors have been useful in studies of CK2 func-
tion in various experimental models (see e.g., [202–208]). 
Despite the development of numerous highly specific inhibi-
tors, thus far only one agent (CX-4945/Silmitasertib) has 
entered clinical trials [204] (further information on these 
clinical trials is available at ClinicalTrials.gov). In patients 
with advanced solid tumors, Phase 1 trials of oral CX-4945/
Silmitasertib reported reversible toxicities of diarrhea and 
hypokalemia and 15% of patients with stable disease for 
at least 6  months; CX-4945/Silmitasertib was deemed 

Fig. 3   Illustration of mitochon-
drial functions of CK2. Solid 
arrow lines indicate direct role. 
Dashed arrow lines indicate 
unknown or not depicted steps 
in mechanism. Created with 
BioRender.com
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generally well-tolerated [209, 210]. An inhibitor scaffold 
was employed to develop a CK2-specific probe called SGC-
CK2-1 [211]. This probe was found to be effective in induc-
ing cell death in only a small number of cancer cells which 
prompted questioning of the “broad cancer essentiality of 
CK2” [212]. It is surprising that these authors ignored sev-
eral important points before arriving at such a disingenuous 
conclusion; this opinion was also shared in a recent publica-
tion [213]. The argument that the CK2 probe/inhibitor was 
not effective in all of the cancer cells tested ignored that 
the probe was effective in a subset of the cancer cells. That 
loss of cell viability was not seen in other cancer cells could 
imply that the inhibitor may not have reached a specific criti-
cal location in the cell. It is to be emphasized that a modest 
loss of CK2 in the nuclear compartment results in induction 
of cell death even when the cytosolic CK2 level is unaltered 
[130, 214]. This work indicated that non-cancer cells were 
more resistant to induction of cell death on downregulation 
of CK2 levels, which is also the basis of safely using the 
oral chemical inhibitor CX-4945/Silmitasertib. Other spe-
cific potent inhibitors possibly do not afford this type of dif-
ferentiation, thus engendering toxicity in the host. Further-
more, as discussed subsequently, the remark about CK2 and 
cancer [212] ignored a large body of work documenting the 
induction of cell death in diverse cancers (in cell culture and 
in vivo models) by various non-pharmacological approaches 
such as RNA interference strategies against CK2. We discuss 
both pharmacological and non-pharmacological CK2 target-
ing data for prostate, breast, and head and neck cancer in the 
next sections of this review.

Another currently active approach to targeting CK2 in 
cancer employs the use of a peptide to block CK2 phos-
phorylation of substrates; the peptide has shown efficacy 
in tumors in vivo although there are possible limitations 
to its systemic delivery in patients [50, 215–217]. In the 
early efforts to target CK2 for cancer therapy, a peptide P15 
was identified that abrogated phosphorylation sites in CK2 
substrates and caused apoptosis. This peptide was conju-
gated with the cell penetrating peptide Tat and the resulting 
compound P15-Tat (subsequently named CIGB-300) was 
found to be active in inducing apoptosis in vitro as well as 
in vivo [218]. It was later found that CIGB-300 localized 
to the nuclear compartment in vivo and had a significant 
effect on the phosphorylation of nucleolar protein B23. 
Since B23 is a specific substrate of CK2, inhibition of B23 
phosphorylation was proposed as a mechanism of CIGB-300 
apoptosis-inducing activity; the potential of CIGB-300 in 
clinical translation originally studied in cervical cancer has 
been documented in several other cancers [124, 219–222].

A potent and specific means of inducing cancer cell death 
based on targeting CK2 has relied on the utility of antisense 
and RNAi against the catalytic subunits of CK2. This has 
been a focus of studies in our lab for multiple cancer types. 

One of the first such studies was to demonstrate induction 
of apoptosis in prostate cancer cells using antisense oligo-
nucleotides to CK2α [214]. Subsequently, the utility of this 
approach was also demonstrated in a xenograft model of 
PCa [130]. Next, a novel nano-encapsulation approach to 
delivery of CK2 targeting oligonucleotides in a malignant 
cell-specific manner was developed. This nanoparticle tech-
nology utilized incorporation of the oligonucleotides into 
a tenfibgen-coated nanocapsule. These nanocapsules were 
less than 50 nm in size and entered the cancer cells via 
lipid rafts; the specificity was imparted by the presence of 
elevated tenascin receptors in cancer cells which recognize 
the tenfibgen subdomain of tenascin. The nanocapsules car-
rying the oligonucleotide cargo (antisense, double stranded 
siRNA, or single stranded antisense/siRNA hybrid) targeting 
CK2 (both α and α′ subunits) were shown to be delivered 
to the nuclear periphery where the cargo was released. The 
efficacy of this therapeutic approach was demonstrated in 
several cancer models [40, 43, 199, 200, 223–230]. Further, 
a phase I type trial in a large animal model of head and neck 
cancer (feline oral squamous cell carcinoma) demonstrated 
the potential applicability of this therapeutic approach for 
clinical translation warranting further expansion of this line 
of investigation [231].

In the following is an overview of CK2 involvement 
in prostate, breast and head and neck cancers. This is not 
intended to be comprehensive coverage of what is known 
about CK2 roles and signaling in cancer, as there are more 
than 1500 papers in this field of research. Other reviews have 
discussed CK2 in the context of hematological malignancies 
and solid tumors and potential combination therapy strate-
gies co-targeting CK2 in cancer [232–234].

Prostate cancer

Androgens play a fundamental role in the development of 
normal prostate, and prostate cancer development is also 
initially reliant on the continued presence of androgens [235, 
236]. One of the earliest observations of CK2 regulation by 
androgens was observed in prostatic tissue [237–239], and 
subsequently in prostate cancer and benign neoplasia [192, 
240]. These studies suggested that elevated nuclear locali-
zation of CK2α was a poor prognostic factor. Additionally, 
elevated nuclear CK2α was related to higher Gleason score 
and invasive nature of the disease [192, 240]. It has been 
observed that pro-survival roles for CK2 in prostate cancer 
are mediated via maintenance and promotion of androgen 
receptor (AR) and NF-κB p65 expression; in fact, inhibition 
of CK2 leads to downregulation of AR-dependent transcrip-
tional activity [42, 241, 242]. It is worth noting that dys-
regulation of CK2 in prostate cancer is apparent regardless 
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of AR status or the presence of its variants (see e.g., [42, 
201, 243]).

CK2 influences numerous survival pathways in pros-
tate cancer. Inhibition of CK2 has been shown to reduce 
CYP24A1 expression which enhances 1,25-Dihydroxyvita-
min D3 anti-tumor activity in prostate cancer cells [244]. 
A noteworthy observation relates to the regulation of the 
tumor suppressor PML by CK2 originally described in lung 
cancer [245]. Degradation of PML via the ubiquitin/protea-
some-mediated pathway depends on direct CK2 phospho-
rylation of PML S517. PML mutants that are resistant to 
CK2 phosphorylation exhibit increased tumor suppressive 
functions, and inhibition of CK2 enhances the PML tumor 
suppressive property [246]. Similar observations on PML 
function and regulation by CK2 in PCa have been reported 
[247]; these investigators documented that inactivation 
and nuclear exclusion of tumor suppressor FOXO3a with 
concurrent reduction of active nuclear AKT (pAKT-S473) 
follow the CK2-mediated disruption of the PML-PHLPP2 
signaling axis [247]. Angiogenesis is an important process in 
cancer, and an earlier observation showed that downregula-
tion of CK2 influenced the microvasculature as indicated by 
a marked reduction in CD31 signal [199]; more evidence has 
now accumulated on the involvement of CK2 in angiogen-
esis (see, e.g., [248]).

Recently, considerable effort has been directed toward the 
involvement of CK2 in protein networks in prostate cancer. 
In this regard, an initial study suggested that protein network 
modeling of prostate gene signatures revealed essential path-
ways in disease recurrence [249]; these authors followed the 
multipronged approach of incorporating the gene expres-
sion data and protein interactions network which resulted 
in identifying signature protein pathways in prostate can-
cer progression. Dissecting posttranslational modifications 
and their regulation by protein/protein kinase pathways is a 
key component of prostate cancer research. In this regard, 
work utilizing biopsy materials identified various protein 
kinases including CK2 in prostate cancer as drivers of pro-
teomic/phosphoproteomic composition variability in rela-
tion to disease progression and patient-based heterogeneity 
[52, 250, 251]. Recent studies using clinical specimens and 
database analysis have provided further evidence on the 
involvement of CK2 in the context of prostate cancer. A 
phosphoproteomics study using metastatic castrate resistant 
prostate cancer (CRPC) specimens found CK2 to be among 
the top seven enriched kinase activities by kinase substrate 
enrichment analysis (KSEA) [52]. Of note, comparison of 
patient mRNA levels in metastatic CRPC to mRNA levels 
from localized PCa using TCGA data identified CSNK2A1 
(CK2α) as an inferred activated kinase [252]. Several of the 
observed (potentially actionable) signals are also down-
stream targets of CK2 [49, 52, 250] which further empha-
sizes the significance of elevated CK2 in cancer.

Examination of CK2 kinase activity in prostate chroma-
tin fractionated and pooled from 6 normal prostate glands, 
16 samples of benign prostatic hyperplasia (BPH), and 51 
samples of prostatic carcinoma gave an early indication that 
CK2 levels were elevated in human prostate cancer. Kinase 
activity was threefold higher in carcinoma relative to nor-
mal tissue, and 25-fold higher in BPH tissue [240]. Immu-
nostaining for CK2 in normal, BPH and adenocarcinoma 
prostate tissue overall matched the kinase activity levels, 
especially in the nucleus. The pathophysiology of BPH 
is still incompletely understood, but proposed underlying 
mechanisms include inflammation and cellular proliferation 
which are pathways of high CK2 involvement [253]. In a 
later study of CK2α staining in BPH (n = 31) and prostate 
cancer (n = 30) tissues, CK2α nuclear levels were found 
to be significantly higher in the tumors compared to BPH 
[254]. A retrospective cohort of 131 prostate adenocarci-
noma biopsy tissues were examined by immunohistochem-
istry for CK2α localization and levels. It was determined that 
CK2α staining scores were elevated by 2.4-fold in malignant 
compared to normal prostate glandular cells [192]. Moreo-
ver, nuclear CK2α was significantly correlated with more 
advanced disease characteristics, such as higher Gleason 
score, locally advanced disease, and invasion into lymphatic 
and perineural spaces. Human prostate cancer datasets were 
evaluated using the Oncomine database [15]. This analysis 
revealed that CK2α RNAs were significantly overexpressed 
in prostatic carcinoma, adenocarcinoma, and intraepithelial 
neoplasia. CK2α´ was elevated in in prostatic intraepithelial 
neoplasia and CK2β was increased in prostate carcinoma.

Several approaches have been applied to molecular down-
regulation of CK2 expression in prostate cancer xenograft 
studies. In the first study, antisense (AS) oligodeoxynucleo-
tides (ODN) designed to hybridize with the CK2α-encoding 
mRNA from the initiating codon through the eighth amino 
acid were injected directly into PC3-LN4 flank tumors car-
ried by nude mice [130]. Mice received one injection of 5, 
10 or 20 μg of AS-CK2α ODN or 20 μg of control ODN. 
Inhibition of tumor growth was observed over 8 days and 
directly corresponded with the dose of AS-CK2α ODN 
injected, and the highest dose completely eliminated the 
tumor by 7 days post-injection. In AS-CK2α-treated tumors 
there was evidence for apoptosis and for downregulation of 
CK2α mRNA and kinase activity. The next study used AS 
ODN designed to target both CK2α and CK2α´ in a bispe-
cific manner due to concerns over potential compensatory 
upregulation of CK2α´ after loss of CK2α [229]. Multiple 
doses and dosing schedules were tested in this study; here 
we describe the effects of delivering a cumulative dose of 
66 μg/kg via 1, 2, or 4 intraperitoneal (ip) injections into 
mice carrying orthotopic PC3-LN3 tumors. Three of the 4 
dosing schedules resulted in significant tumor weight reduc-
tion relative to the control AS ODN. CK2αα´ and NFκB 
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protein levels were decreased in the nuclear matrix, whereas 
loss of AKT-1 protein was variable at the different dosing 
schedules.

Subsequent studies used malignant cell-specific tenfib-
gen (TBG) nanoencapsulated delivery of a chimeric single 
stranded RNA/DNA oligomer targeting the same bispecific 
region of CK2αα´ (TBG-RNA-CK2). Mice with orthotopic 
PC3-LN3 tumors were injected ip with 33 or 330 ng/kg 
TBG-RNAi-CK2 twice with a 24 h interval [226]. Thir-
teen days after initiation of treatment for both dose levels, 
decreased weights and reduced levels for CK2αα´ proteins 
were observed in primary tumors. Further, reduced distant 
metastases, retroperitoneal lymph node tumor volumes, and 
pAKT-1 S129 and NF-kB p65 lymph node tumor signals 
were found. A dose response study was carried out in flank 
models of PC3-LN4 and 22Rv1 prostate cancer. In the PC3-
LN4 model, dose response comparison was made between 
TBG nanocapsule intravenous (iv) delivery of single 
stranded chimeric oligomers versus classic double stranded 
siRNA oligomers [224]. Both versions of the anti-CK2 
nanocapsule significantly reduced tumor volumes. How-
ever, the TBG-RNAi-CK2 results were more straightforward 
and this form of the anti-CK2 nanocapsule was used in the 
22Rv1 model where moderate reduction in tumor volumes 
were achieved. Time course analysis of tumors collected 5, 
6, and 7 days post-treatment with TBG-RNAi-CK2 showed 
early downregulation of CK2αα´β and pNF-kB p65 S529 at 
day 5 compared to detection of cell death markers such as 
loss of survivin, Bcl-xL, NF-kB p65, and full length cas-
pase 3 at day 7. In a separate study of an orthotopic 22Rv1 
model, TBG-RNAi-CK2 treatment reduced tumor weights, 
increased the percent of dead tumor tissue, and caused 
reduced CK2αα´β, NF-kB p65, and AR expression [42]. 
These studies provide the proof of concept that specifically 
targeting CK2 in a malignant cell-specific manner is feasible 
for cancer therapy.

Three studies report on the effects of CK2 small molecule 
inhibitors on xenograft tumor growth. In the first publica-
tion, the ability of CX-4945 to inhibit PC3 xenograft tumor 
growth was assessed. The authors observed dose responsive 
tumor growth inhibition along with decreased expression 
of p21 phosphorylated at T145 and decreased microves-
sel density [255]. In the second publication, the CK2 small 
molecule inhibitor TBBz (4,5,6,7-tetrabromo-1H-benzimi-
dazole) was identified in a screen for molecules that regulate 
CYP24A1 expression. Inhibition of CYP24A1, a member of 
the cytochrome p450 family, is known to enhance the anti-
proliferative effects of 1,25-dihydroxyvitamin D3 (1,25D3), 
a physiologically active form of vitamin D3 [244]. This 
group evaluated the ability of TBBz alone and in combi-
nation with 1,25D3 to block the growth of PC3 xenograft 
tumors. TBBZ treatment reduced expression of CYP24A1 
protein in the tumors and was similarly effective at reducing 

tumor growth compared to 1,25D3 alone. Combined treat-
ment with TBBz and 1,25D3 significantly improved tumor 
growth reduction over either agent alone [244]. Interestingly, 
in a prospective study, higher hydroxyvitamin D3 concen-
tration in plasma was found to be associated with decreased 
risk of prostate cancer [256]. The third study used tenfibgen 
nanoencapsulated DMAT (2-dimethylamino-4,5,6,7-tetra-
bromo-1H-benzimidazole) in the PC3-LN4 xenograft model.

Data for treatment of prostate cancer xenograft tumors 
using various anti-CK2 strategies is summarized in Table 1

Breast cancer

A series of publications contributed essential knowledge 
on functions of CK2 in breast. The Wnt pathway is active 
during embryogenesis and developmental processes, and 
reactivation of this pathway is found in numerous cancers 
including breast cancer. Participation of CK2 in canonical 
Wnt/β-catenin signaling was described for mouse mammary 
epithelial cells stably expressing Wnt1 [257]. Expression of 
Wnt-1 caused increased cellular proliferation, elevation of 
CK2α and β-catenin proteins, and increased CK2 kinase 
activity. CK2 was shown to phosphorylate components of 
Wnt signaling, including β-catenin, Dv1-2, and Dvl-3 [257, 
258]. In mouse and rat mammary tumors induced by the 
carcinogen DMBA, CK2 was highly expressed relative to 
normal mammary glands [259–261]. Direct transgenic over-
expression of CK2α in the mammary gland caused abnor-
malities in mammary gland histology in 50% of the female 
mice, with observations of slowed gland development, 
incomplete gland regression after pregnancy, and inflamma-
tory and preneoplastic lesions. Thirty percent of CK2α trans-
genic female mice developed mammary adenocarcinomas 
(median age 23 months), and elevated β-catenin levels were 
observed in 55% of tumors tested [259]. Data from CK2α 
transgenic mice mammary tumors also suggested activation 
of the NFκB pathway as well as cMYC upregulation [259]. 
Roles for CK2α in promoting aberrant activation of NFκB 
were further confirmed in various breast cancer cell lines 
and CK2α transgenic mouse mammary tumors, including 
participation in Her2/EGFR2 signaling [262–264]. These 
studies established a tumorigenic role for increased CK2 
expression in breast epithelial cells.

A strong link of CK2 to estrogen signaling has also 
emerged. In 1985, a report demonstrated characteriza-
tion of CK2 activity in MCF-7 and MDA-MB-231 breast 
cancer cells hetero-transplanted into athymic mice [265]. 
CK2 phosphorylates ERα at several sites, and modification 
at these amino acids modulates ERα activity [266, 267]. 
CK2α and ERα or CK2α and pAKT-1 S129 (CK2 site for 
activation of AKT-1) levels were positively correlated in 
breast cancer tissues [268]. This group showed that CK2α 
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expression and activity were upregulated by estrogen treat-
ment in ERα-positive breast cancer cells, and ERα binds to 
the CSNK2A1 promoter to activate gene expression in an 
estrogen-inducible manner. Further data in rodent models 
demonstrated increased CK2α expression in 4T1 mouse syn-
geneic breast tumors stably overexpressing ERα and eleva-
tion of both ERα and CK2α levels in rat mammary tumors 
induced by the carcinogen DMBA. These authors proposed 
that ERα signaling promotes breast tumor growth through 
increased CK2α expression, resulting in AKT activation 

and loss of the tumor suppressor promyelocytic leukemia 
protein (PML) [268]. A separate group published that inhi-
bition of CK2 activity using the small molecule inhibitor 
TBCA induced ERα expression in both an ERα-positive and 
a triple negative breast cancer cell line [269]. The relation-
ship between CK2 and estrogen or ERα-related signaling in 
breast cancer appears to be complex.

Several other signaling proteins and mechanisms in 
breast cancer have been identified as pertaining to CK2 
function, and here we describe a few examples. The 

Table 1   CK2 targeting in prostate cancer human xenograft models

AR, androgen receptor; AS, antisense oligodeoxynucleotide; bid, twice per day; bs-AS, bispecific antisense oligonucleotide targeting CK2αα´; 
CX-4945, Silmitasertib 5-(3-chlorophenylamino) benzo[c][2,6]naphthyridine-8-carboxylic acid CK2 inhibitor; d, days; h, hours; ip, intraperito-
neal; iv, intravenous; TBBz, 4,5,6,7-tetrabromo-1H-benzimidazole CK2 inhibitor; TBG, tenfibgen subdomain of tenascin; TBG-DMAT, nanoen-
capsulated CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole; TBG-RNAi, single stranded DNA/RNA chimeric oligonucle-
otide targeting CK2αα´; TBG-siCK2, nanoencapsulated double stranded siRNA targeting CK2αα´; TGI, tumor growth inhibition; TN, tenascin; 
1,25D3, 1,25-dihydroxyvitamin D3

Model Treatment Tumor Effects Reference

PC3-LN4 flank AS-CK2α, intra-tumoral, 5 / 10 / 20 μg, once, 
elapsed treatment time 7 to 10 d

Dose-dependent TGI (85% at 8 days post-treatment 
at 10 μg)

[130]

Decreased CK2α protein & CK2 activity in nuclear 
matrix

Apoptosis (TUNEL)
PC3-LN4 orthotopic bs-AS-CK2, ip, 66 μg/kg cumulative scheduled as 1 

to 4 injections, elapsed treatment time 13 d
Decreased tumor weight (26% of control for 4 dose 

schedule)
[229]

Decreased CK2α RNA
Decreased CK2αα´β & NFκB p65 protein in 

nuclear matrix
PC3 flank CX-4945, oral bid, 25 / 50 / 75 mg/kg for 32 d Dose-dependent TGI (86% at 75 mg/kg) [255]

Decreased p-p21 T145 & microvessel density
PC3 flank TBBz, ip, 15 mg/kg, 3 times weekly, for 2 weeks Reduced tumor growth & Ki-67 level [244]

Suppression of CYP24A1 RNA levels
PC3 flank TBBz, ip, 15 mg/kg, + 1,25D3, 15.5 mg/kg, 3 times 

weekly, for 2 weeks
Significantly reduced tumor growth & Ki-67 level [244]
Apoptosis (TUNEL, caspase 3)

PC3 flank TBB, unknown dose and regimen Reduced tumor growth & weight [309]
Induction of interferon-γ-inducible
protein 10 (IP-10) mRNA

PC3-LN4 orthotopic TBG-RNAi-CK2, ip, 33 / 330 ng/kg, twice with 
24 h interval, elapsed treatment time 13 d

Decreased primary tumor weight & lymph node 
tumor volume

[226]

Decreased CK2αα´ protein in primary tumors
Decreased NFκB p65 & pAKT S129 protein in 

lymph node tumors
Decreased distant metastasis

PC3-LN4 flank TBG-DMAT, iv & ip, 20 μg/kg, 6 times with 24 h 
intervals, elapsed treatment time 7 d

Decreased Ki-67 proliferation marker in tumors [310]
Decreased CK2αα´ & NFκB p65 protein in tumors

PC3-LN4 & 22Rv1 flank TBG-RNAi-CK2 & TBG-siCK2, iv, 0.0001 to 
1.0 mg/kg, 3 times with 72 h intervals, elapsed 
treatment time 10 & 11 d

Reduced tumor volume at multiple doses [224]
Reduced CK2αα´β, NFκB p65, pNFκB p65 S529,
caspase 3 full length, Bcl-xL, & survivin protein in 

4,5,6 d time course tumors
22Rv1 orthotopic TBG-RNAi-CK2, iv, 0.02 mg/kg, 3 times with 72 h 

intervals, elapsed treatment time 8 d
Reduced tumor weight [42]
Reduced CK2αα´β, NFκB p65, & AR protein in
tumors
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progesterone receptor B (PR-B) is phosphorylated by CK2, 
and it was demonstrated that CK2-dependent PR-B phos-
phorylation influences proliferative transcriptional pro-
grams in breast cancer cells [270–272]. CK2 also phospho-
rylates the BRCA1 tumor suppressor protein [273]. SIRT6 
is phosphorylated by CK2α, and multivariate analysis of 
nuclear CK2α and nuclear SIRT6 indicated significantly 
shorter overall survival and relapse free survival (RFS) in 
breast cancer patients [274]. Finally, miR-125b was iden-
tified to function as a tumor suppressor in breast cancer 
cells in part through targeting the CK2α transcript caus-
ing reduction of CK2α protein levels [275]. These authors 
reported that CK2α protein and miR-125b levels demon-
strated inverse correlation in breast cancer patient tumors.

Both RNA and protein data from human tumor tissues 
have established elevated CK2 levels in malignant breast 
cells and the potential prognostic implications of CK2 
dysregulation in breast cancer. An early report showed 
strong nuclear staining for CK2 protein in breast cancer 
tissue relative to benign tissue, providing an indication 
that CK2 expression was altered in human breast tumors 
[276]. Further studies validated elevation of mRNA and 
protein levels in breast cancer patient samples for the CK2 
genes, with decreased survival associated with high lev-
els of CSNK2A1 and CSNK2B [15, 43, 106, 259]. Using 
microarray data, high CSNK2A1 RNA levels were asso-
ciated with moderately decreased relapse free survival 
(RFS) in estrogen receptor alpha- (ERα) positive disease 
[269]. In ER-negative tumors, high CSNK2A1 expression 
trended toward shorter RFS. Overexpression of CK2α pro-
tein correlated with poor prognosis and metastatic risk in 
breast cancer patients [277], and the intensity of nucleolar 
localization of CK2α in breast cancer tumors has been 
proposed to serve as a marker of poor prognosis [278].

Information gained from the above described studies 
using clinical samples indicate the potential for therapeu-
tic strategies aimed to block CK2 expression or activity. 
Data from cultured cells and xenograft studies highlight 
the efficacy of targeting CK2 in breast cancer model sys-
tems. Using both siRNA and small molecule inhibitor 
approaches, CK2 was shown to be essential for survival 
of breast cancer cells [43, 106]. Preclinical efficacy studies 
of intravenous CIGB-300, a peptide that blocks phospho-
rylation of CK2 target sites, in the mouse F311 syngeneic 
breast cancer model suggest that it is effective in block-
ing breast cancer metastatic colonization, and the effects 
of this therapeutic approach are proposed to be mediated 
via changes in the CK2-mediated phosphoproteome [50, 
279]. Malignant cell-specific molecular downregulation 
of CK2 using nanoparticle delivery of siRNAs resulted in 
significant reduction in MDA-MB-231 tumor volume and 
induction of tumor cell death in a triple negative breast 
cancer xenograft study [43]. In these tumors, survivin and 

CDK11 proteins were significantly reduced due to down-
regulation of CK2 expression.

Two in vivo studies are published evaluating oral use 
of the CK2 inhibitor CX-4945/Silmitasertib to treat breast 
cancer tumors. CX-4945/Silmitasertib treatment at 2 dose 
levels reduced BT-474 xenograft tumor growth by 88–97% 
in a HER2-overexpressing breast cancer model [206]. This 
original determination of CX-4945/Silmitasertib efficacy in 
breast cancer was performed using a human xenograft tumor 
in athymic mice. A recent study of CX-4945/Silmitasertib 
utilized mouse breast cancer models in both immune-com-
promised and immune-competent mice [280]. First, experi-
ments in multiple cancer-type cell lines and dendritic cells 
determined that CK2 phosphorylation of programmed death-
ligand 1 (PD-L1) prevented PD-L1 proteasomal degrada-
tion by disrupting its binding to speckle-type POZ protein 
(SPOP). Conversely, CK2 inhibition reduced PD-L1 abun-
dance and promoted T-cell activation; moreover, The Cancer 
Genome Atlas (TCGA) analysis indicated mRNA expres-
sion of CK2α was negatively correlated with molecules 
involved in T-cell activation. Using B16F10 melanoma and 
EMT6 breast cancer syngeneic tumor models, treatment with 
CX-4945/Silmitasertib significantly reduced tumor growth 
in immune-competent mice. The authors also demonstrated 
that CK2 inhibition activated and expanded tumor-associated 
dendritic cells in both tumor types. In contrast to the original 
human xenograft results, mono-therapy with CX-4945/Sil-
mitasertib against the mouse EMT6 tumor in athymic mice 
did not significantly reduce tumor growth. This group went 
on to evaluate CX-4945/Silmitasertib in combination with 
an antibody against T-cell immunoglobulin mucin-3 (Tim-
3), which is highly expressed in tumor dendritic cells. Using 
the syngeneic 4T1 breast cancer model, CX-4945/Silmita-
sertib plus anti-Tim3 induced more tumor growth inhibition 
than either single treatment alone; combined treatment also 
resulted in longer survival.

Bristol Myers Squibb developed selective ATP-compet-
itive CK2 inhibitors [281]. Two of these inhibitors called 
BMS-211 and BMS-595 were tested by oral administration 
in multiple mouse-derived tumor models, including the 4T1 
breast cancer cell line [282]. Using immune-compromised 
NOD Skid Gamma (NSG) mice, either BMS-211 or BMS-
595 was tested (it is not clear which inhibitor was used) 
and no significant reduction in tumor growth was observed. 
Again using the 4T1 model but in immune-competent mice, 
BMS-211 was tested in combination with the immune 
checkpoint inhibitor anti-CTLA4-mIgG2a and complete 
“rejection” was observed in 6 of 8 tumor-inoculated mice 
followed for more than 30 days. Further in vivo and ex vivo 
characterization of the effects of BMS-595 using the Lewis 
lung carcinoma allograft model demonstrated multiple 
changes in immune cell populations, including blocked dif-
ferentiation of myeloid cells. The data from different orally 
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available CK2 inhibitors combined with different immuno-
therapy drugs support the notion that targeting CK2 and the 
immune checkpoint pathway appears to be highly effective 
as a treatment strategy in cancer [280, 282]. The disparities 
in the data from these two publications as to how different 
immune cell populations, especially the myeloid lineage, 
are altered and whether this is due to differences in the bio-
logical effects of the CK2 inhibitors, remains to be clarified.

Data for treatment of breast cancer xenograft and allo-
graft tumors using various anti-CK2 strategies are summa-
rized in Table 2.

Head and neck cancer

Our investigations into CK2 in head neck cancer began with 
characterization of kinase activity levels in patient head and 
neck squamous cell carcinoma (HNSCC) tumor samples. 
First, CK2 kinase activity was measured in cytosolic and 
nuclear sub-fractions of tumors derived from the larynx, 

pyriform sinus, oral cavity, and oropharynx [189]. Compar-
ison of activity in twenty tumors was made to six surgical 
specimens of normal upper aerodigestive tract mucosa, and 
significantly higher CK2 activity was found in both nuclear 
and cytosolic tumor lysates. Cytosolic CK2 activity was 
associated with aggressive behavior of the disease and sig-
nificantly worse survival outcome [189]. In a similar study, 
CK2 kinase activity was measured in nuclear chromatin and 
cytosol sub-fractions in seven HNSCC tumors compared to 
six non-malignant oropharyngeal tissue specimens; again, 
CK2 kinase was significantly higher in chromatin and cyto-
solic fractions compared to non-cancer tissue [283]. Finally, 
we examined the immunohistochemical staining pattern of 
CK2 in HNSCC tumors and normal upper aerodigestive tract 
tissue and found the CK2 signal concentrated in the nucleus 
of tumor cells with focal or punctate sub-nuclear sites in 
contrast to varied staining patterns in other non-malignant 
tissue cell types [86]. Moreover, CK2 stain co-localized in 
tumor cells with the marker Ki-67 at the proliferating front 
of tumors but was also prominent in the nuclei of tumor 

Table 2   CK2 targeting in breast cancer human xenograft and mouse syngeneic models

*mouse cell lines; bid, twice per day; CIGB-300, peptide that blocks phosphorylation of CK2 target sites; CX-4945, Silmitasertib small mol-
ecule inhibitor targeting CK2; d, days h, hours; ip, intraperitoneal; iv, intravenous; TBG, tenfibgen subdomain of tenascin used to coat nanocap-
sule; TBG-siCK2, nanoencapsulated double stranded siRNA targeting CK2αα´; TGI, tumor growth inhibition; Tim3, T-cell immunoglobulin 
mucin 3; TAM, tumor-associated macrophages

Model Treatment Tumor Effects Reference

BT-474 orthotopic CX-4945, oral bid, 25 / 75 mg/kg for 31 d TGI (88% at 25 mg/kg; 97% at 75 mg/kg) [206]
MDA-MB-231 flank TBG-siCK2, iv, 0.01 mg/kg, 3 times every 72 h over 

10 d
Reduced tumor volume & weight [43]
Reduced CK2αα´, survivin & CDK11 protein in 

tumors
4T1* flank BMS-211 or BMS-595, oral, 20 or 60 mg/kg, elapsed 

treatment ~ 19 d
No significant reduction in tumor growth in immune-

compromised (NSG) mice
[282]

4T1* flank BMS-211, oral, 20 mg/kg; CTLA4-2a antibody, ip, 
20 μg, 3 treatments; elapsed treatment time 21 d

Complete rejection of tumor in 6 of 8 immune-com-
petent mice with combined BMS-211/CTLA4-2a 
antibody

[282]

Reduced TAM in tumor
F311* Tail vein CIGB-300, iv, 10 mg/kg, 5 times with 24 h intervals, 

elapsed treatment time 21 d
Reduced lung lesions by 45% [279]

F311* orthotopic 
with incomplete 
resection

CIGB-300, iv, 10 mg/kg, 2 cycles of 5 injections with 
24 h intervals post-resection, elapsed treatment time 
35 d

Reduced lung metastasis by 60% [279]

F311* orthotopic CIGB-300, iv, 10 mg/kg, 2 cycles of 5 injections with 
24 h intervals, elapsed treatment time 25 d

Reduced lung metastasis by 40% [279]

EMT6* orthotopic CX-4945, oral bid, 75 mg/kg, elapsed treatment 
time ~ 7 d

Significant tumor volume reduction in immune-
competent model but not in immune-compromised 
(athymic) model

[280]

Expansion of dendritic cells in tumor
4T1* orthotopic CX-4945, oral bid, 75 mg/kg;Tim3 antibody, ip, 

100 μg, 3 treatments; elapsed treatment time 21 d, 
survival time 110 d

Significant tumor volume reduction for CX-4945 
alone

[280]

Combined CX-4945 and Tim3 antibody treatment 
significantly better than CX-4945 alone

Significantly improved survival for CX-4945 alone 
and combined treatment
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cells with little or no Ki-67 stain. CK2 kinase activity in 
these tumors was higher than activity in non-malignant tis-
sue, consistent with previous determinations. Three other 
publications have shown that CK2 levels and activity are 
increased in head and neck cancer patient tumors. A study of 
CK2 kinase activity showed a 3.7-fold increase in neoplas-
tic squamous epithelial tissue (n = 14) compared to normal 
epithelia (n = 11) [284]. CK2α and CK2β immunohisto-
chemical staining levels were found to be higher in laryngeal 
squamous cell carcinoma tissues relative to non-malignant 
or pre-cancerous tissues [285]. Finally, gain of CK2 gene 
expression at the mRNA level was documented using RNA-
seq data from The Cancer Genome Atlas [286]. Overall, 
these publications demonstrate that CK2 levels and activity 
are high in HNSCC tumor cells.

In an initial effort to demonstrate whether downregulation 
of CK2 kills HNSCC cells, antisense oligonucleotides tar-
geting CK2α were introduced into a gingival squamous cell 
carcinoma cell line, resulting in reduced CK2 kinase activity 
and dose-dependent cell growth inhibition [287]. In follow-
up work, the antisense oligonucleotide targeting CK2 was 
packaged into sub-50 nm tenascin coated nanocapsules and 
delivered topically to mice carrying HNSCC flank tumors. 
Treatment with antisense to CK2 slowed tumor volume 
tripling to 17 ± 2.5 days relative to mice receiving control 
nanocapsules or untreated (8.3 ± 0.7 days and 11.3 ± 1.3, 
respectively) [169]. The CK2α signal in antisense nanocap-
sule treated tumors was greatly reduced in the nucleus and 
overall. Pre-clinical research focused on potential therapeu-
tic targets to selectively downregulate NFκB activation in 
HNSCC identified CK2 [288]. In follow-up research, it was 
shown that CK2 subunits are highly expressed in multiple 
HNSCC cell lines and in tumor sections derived from mul-
tiple sites [223]. Knock-down of CK2 in HNSCC cells sup-
pressed NFκB activity and modified expression of numer-
ous NFκB target genes with increased expression of tumor 
suppressor genes and decreased expression of pro-survival 
genes. Further, mouse studies were performed using malig-
nant cell-directed tenfibgen-mediated delivery of nanoen-
capsulated single stranded chimeric RNA interference oligo-
nucleotides targeting CK2α and CK2α´. Using two xenograft 
HNSCC models, treatment of mice with the anti-CK2 
nanocapsules reduced tumor size and induced markers of 
apoptosis. The treated tumors showed reduction in CK2αα´, 
NFκB p65, pNFκB p65 S529, cyclin D1, Bcl-XL, and Bcl-
2. Increased p53 and p63 were also observed. In another 
study using the RNAi-CK2 nanocapsule delivery approach, 
significantly reduced tumor volumes and improved survival 
compared to control treatments was observed out to 200 days 
in two HNSCC xenograft models [230]. Finally, in a mouse 
xenograft study using a single model of HNSCC, treatment 
with the CK2 inhibitor CX-4945 caused very moderate 
reduction in tumor growth with no improvement in survival, 

despite promising results in cultured cells [286]. Based on 
tumor signaling results, the authors concluded that activation 
of the MEK/ERK/AP1 pathway was occurring. A combina-
tion treatment xenograft study was performed with CX-4945 
and the MEK inhibitor PD-0325901, and the results showed 
significant reduction in tumor volume by PD-0325901 alone 
which was slightly improved in the combination treatment. 
Data for treatment of head and neck cancer xenograft tumors 
in mice using various anti-CK2 strategies is summarized in 
Table 3.

Research was also carried out in a naturally occurring 
large animal model of head and neck cancer. First, CK2 gene 
and protein expression was characterized in feline oral squa-
mous cell carcinoma [289]. It was demonstrated that siRNA-
mediated downregulation of CK2 in a feline oral squamous 
cell carcinoma cell line reduced viability and induced apop-
tosis. Having established CK2 as a target in feline oral can-
cer, a small trial was carried out in which nine cats with 
naturally occurring treatment-naive oral squamous cell car-
cinoma were treated with a feline-specific version of the 
RNAi-CK2 tenfibgen nanocapsule [231]. Of the evaluable 
post-treatment tumors, one third showed decreased CK2α 
score by immunohistochemical analysis. There was some 
evidence of efficacy in that three cats had stable disease and 
one cat had a partial response (Table 3).

Interestingly, it has been shown that CK2 phosphoryl-
ates and inhibits the function of p73, a member of the TP53 
tumor suppressor family. In this study, inhibition of CK2 
caused loss of cancer stem cell-related side population, clo-
nogenic survival, and spheroid formation in HNSCC [290]. 
Tumor cell motility and invasion are highly linked to dys-
regulation of the actin cytoskeleton in cancer. The actin-
related protein (Arp) 2/3 complex nucleates branched actin 
networks, and altered activity can drive increased migra-
tion, extracellular matrix (ECM) degradation, and cancer 
progression [291]. CK2 phosphorylation of the actin bind-
ing protein cortactin impairs the ability of cortactin to bind 
Arp2/3 and activate actin nucleation [292]. These authors 
observed that loss of CK2-mediated cortactin phosphoryla-
tion caused decreased invadopodia activity in HNSCC cells. 
Further, CX-4945/Silmitasertib treatment reduced charac-
teristics of invasion in multiple HNSCC spheroid models 
and in an orthotopic tongue xenograft tumor mouse model. 
CK2 is known to interact with the JAK/STAT pathways, and 
studies of angiogenesis and immunosuppression in HNSCC 
revealed a connection between JAK2/STAT3 inhibition 
and CK2. Using an inducible transgenic mouse model for 
HNSCC, treatment with the JAK2/STAT3 inhibitor AG490 
suppressed angiogenesis and decreased the presence of 
myeloid derived suppressor cells (MDSCs) in the tumor 
microenvironment. In these tumors and stroma, decreased 
staining for p-STAT3 was detected as well as decreased CK2 
and VEGFA levels, although it is not clear which subunit 
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of CK2 was examined [293]. Downregulation of CK2 was 
also demonstrated to induce apoptosis and inhibit migration 
and invasion of a laryngeal squamous cell carcinoma cell 
line [294].

It is now well accepted that human papilloma virus 
(HPV) is a contributory factor in certain subtypes of head 
and neck cancer, and HPV + and HPV − cancers have distinct 
biological and clinical aspects [295]. Several attributes of 
HPV biology are influenced by CK2. The HPV-16 E7 pro-
tein inactivates the tumor suppressor pRb and is a substrate 
of CK2 [296–298]. E7 also binds with the core component 
of TFIID, the TATA Box Binding Protein (TBP). Phospho-
rylation of TBP by cellular CK2 increases the affinity with 
which E7 binds TBP [299, 300]. Further HPV proteins iden-
tified as CK2 substrates also include the replication factors 
E1 and E2 [301, 302]. HPV proteins E2, E4, and E5 are 
proposed as an alternate oncogenic pathway to that of E6 
and E7 expression [303]. CK2 phosphorylation promotes E2 

association with the cellular protein DNA Topoisomerase II 
Binding Protein 1 (TopBP1) and stabilization of E2 during 
mitosis [302]. In another example of CK2 interaction with 
HPV activities, phosphorylation of the chromatin-associated 
bromodomain-containing protein 4 (Brd4) by CK2 has an 
effect on transcriptional activity of both HPV and the host 
cell [304, 305]. Noteworthy is a recent demonstration that 
activity of CK2α but not CK2α´ is required for efficient rep-
lication of certain HPV types [301]. We recently showed that 
interfering with CK2 activity in both HPV( +) and HPV(−) 
HNSCC cell lines reduced cell viability and induced expres-
sion of the tumor suppressor proteins p21 and PDCD4 [41]. 
In addition, blocking CK2 activity also improved cisplatin 
response in these two types of HNSCC cells.

As summarized in the initial paragraph for this section, 
much of what we know about CK2 levels in HNSCC tumors 
and the association with clinical outcomes derives from data 
in which HPV status was not determined [86, 189, 283]. 

Table 3   CK2 targeting in head and neck cancer human xenograft models

AS, antisense oligonucleotide; bid, twice per day; CX-4945, Silmitasertib small molecule inhibitor targeting CK2; d, days; h, hours; ip, intraperi-
toneal; iv, intravenous; PD-0325901, small molecule inhibitor to MEK; SCC, squamous cell carcinoma; TBG, tenfibgen subdomain of tenascin 
used to coat nanocapsule; TBG-RNAi, single stranded DNA/RNA chimeric oligonucleotide targeting CK2αα´; TBG-fRNAi- CK2αα´, feline-
specific form of TBG-RNAi- CK2; TBG-siCK2, nanoencapsulated double stranded siRNA targeting CK2αα´; TBG-DMAT, nanoencapsulated 
CK2 small molecule inhibitor; TGI, tumor growth inhibition; TGI, tumor growth inhibition; TN, tenascin

Model Treatment Tumor Effects Reference

SCC-15 flank TN-AS, topical, 200 μg, once, elapsed treat-
ment time 15 d

Reduced tumor volume tripling time by 
twofold

[169]

Loss of CK2α signal in tumor cell nuclei
UM-SCC-11A flank TBG-RNAi-CK2, ip, 10 μg/kg, 3 times with 

72 h intervals, elapsed treatment time 8 d
Reduced tumor size [223]
Apoptosis (TUNEL, Caspase 3)
Decreased CK2αα´, total NFκB p65, pNFκB 

p65 S529 & S536, cyclin D1, Bcl-xL, Bcl2 
proteins in tumor

Increased TP53 and p63 proteins in tumor
Fadu intradermal TBG-RNAi-CK2, iv, 10 μg/kg, 2 times with 

48 h intervals, elapsed treatment time 7 d
Reduced tumor size [223]

SCC-15, UM-11B, Fadu intradermal TBG-RNAi-CK2, iv/ip, various doses from 
0.01 to 50 mg/kg, 1 or 2 injections total, 
time elapsed after treatment 6 mo

Increased survival over controls [230]
Decreased metastasis over controls

UM-SCC-1 CX-4945, oral bid, 25 / 75 mg/kg for 35 d, 
elapsed treatment time 41 to 48 d

Moderate TGI at 75 mg/kg [286]
At 33 d & 75 mg/kg:
Reduced pAKT S129 & S308 & S473, pS6 

S235/236, pNFκB p65 S529 & S536
Apoptosis (TUNEL)
Increased Ki-67 and MEK pathways signals

UM-SCC-1 CX-4945, oral bid, 75 mg/kg + PD-0325901, 
oral qd, 1.5 mg/kg, for 21 d, elapsed treat-
ment time 40 d

Reduced tumor growth [286]
Median survival improvement of 12 d
Reduced AKT and MEK signaling
Apoptosis (TUNEL)

Oral SCC Naturally occurring, 9 cats TBG-fRNAi- CK2αα´, iv, 2 / 20 μg/kg, 6 
times total twice weekly, elapsed treatment 
time 21 d

Reduced CK2α in 2 of 6 evaluable tumors [231]
3 cats with stable disease
1 cat with partial response
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Due to the prevalence of HPV infection in head and neck 
cancers, especially oropharyngeal squamous cell carcinoma 
(OPSCC), we undertook studies to examine CK2α levels 
in OPSCC patient tumors with incorporation of the HPV 
status into our analysis. We found that high levels of CK2α 
protein are detected in HPV( +) tumors [306]. Unexpectedly, 
high CK2α levels associated with better overall survival in 
our patient cohort which was 70.6% HPV( +). Better overall 
survival for patients with HPV( +) OPSCC disease was also 
determined, which aligned with other studies [307, 308]. 
Because the number of HPV( −) patient tumors was small 
in our study, we turned to publicly available RNA-seq data 
from The Cancer Genome Atlas (TCGA) to more robustly 
analyze the possible association of CSNK2A1 abundance 
with survival. In HPV( −) patients, the results of the TCGA 
analysis confirmed previous findings that higher CSNK2A1 
expression levels associate with significantly worse survival 
outcomes [14, 86, 189, 283, 306]. However, it is worth not-
ing that all HNSCC cell lines evaluated and subjected to cis-
platin treatment demonstrated additional cytotoxic response 
to further treatment with CX-4945 and CK2-siRNA regard-
less of the HPV status [41].

Overall, it appears that targeting of CK2 for treatment of 
head and neck cancers is promising. Evidence based on the 
animal models demonstrates that downregulation of CK2 
reduces canonical NFκB-associated signaling, decreases 
tumor growth, and improves survival. Further investigation 
is needed to understand differential functions for CK2 in 

HPV( +) compared to HPV( −) disease and how this might 
inform therapeutic approaches.

In Fig. 4 we provide an example of some shared response 
pathways observed in breast, prostate and head and neck 
xenograft tumors following CK2 downregulation or phar-
macologic inhibition. We would like to emphasize that the 
proteins depicted represent only a few of the proteins and 
pathways regulated by CK2 in cancer. Further, this diagram 
does not include immunological responses observed using 
immune-competent models.

Concluding remarks

The wide array of functions performed by CK2 in cancer 
cells sum to numerous avenues by which these malignant 
cells are dependent upon sustained CK2 signaling for sur-
vival. We described in this review how roles for CK2 in 
the nucleus and in the mitochondria likely contribute to this 
dependency. Further, data gleaned from numerous studies of 
solid and blood-based cancers have underpinned the promise 
for therapeutic targeting of CK2 via both single and com-
bined treatment strategies. Here we focused particularly on 
the cumulative information in prostate, breast, and head and 
neck cancers. We described three approaches to blocking 
CK2 function that have been evaluated in model systems and 
in human and animal clinical studies: small molecule inhibi-
tion by predominantly CX-4945/Silmitasertib, peptide-based 

Fig. 4   Depiction of response 
pathways observed in prostate, 
breast and head & neck tumors 
following CK2 downregulation 
or pharmacologic inhibition. 
We reiterate that the proteins 
depicted represent only a few 
of the proteins / pathways regu-
lated by CK2 in cancer. Created 
with BioRender.com
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inhibition by CIGB-300, and molecular downregulation 
using RNAi delivered via nanoparticles. The diverse roles 
of CK2 in cancer biology continue to grow, emphasizing 
the need to further evaluate anti-CK2 treatment effects and 
refine strategies for informed combination therapies, thus 
optimizing approaches for this promising target.
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