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Abstract

Introduction The biological and molecular events that regulate
the invasiveness of breast tumour cells need to be further
revealed to develop effective therapies that stop breast cancer
from expanding and metastasising.

Methods Human tissue samples of invasive breast cancer and
normal breast, as well as breast cancer cell lines, were evaluated
for protein kinase D (PKD) expression, to test if altered
expression could serve as a marker for invasive breast cancer.
We further utilised specific PKD1-shRNA and a system to
inducibly-express PKD1 to analyse the role of PKD1 in the
invasive behaviour of breast cancer cell lines in two-dimensional
(2D) and three-dimensional (3D) culture. Invasive behaviour in
breast cancer cell lines has been linked to matrix
metalloproteinases (MMPs), so we also determined if PKD1
regulates the expression and activity of these enzymes.

Results We found that the serine/threonine kinase, PKD1, is
highly expressed in ductal epithelial cells of normal human
breast tissue, but is reduced in its expression in more than 95%
of all analysed samples of human invasive breast tumours.

Additionally, PKD1 is not expressed in highly invasive breast
cancer cell lines, whereas non-invasive or very low-invasive
breast cancer cell lines express PKD1. Our results further
implicate that in MDA-MB-231 cells PKD1 expression is
blocked by epigenetic silencing via DNA methylation. The re-
expression of constitutively-active PKD1 in MDA-MB-231 cells
drastically reduced their ability to invade in 2D and 3D cell
culture. Moreover, MCF-7 cells acquired the ability to invade in
2D and 3D cell culture when PKD1 expression was knocked-
down by shRNA. PKD1 also regulated the expression of breast
cancer cell MMPs, MMP-2, MMP-7, MMP-9, MMP-10, MMP-11,
MMP-13, MMP-14 and MMP-15, providing a potential
mechanism for PKD1 mediation of the invasive phenotype.

Conclusions Our results identify decreased expression of the
PKD1 as a marker for invasive breast cancer. They further
suggest that the loss of PKD1 expression increases the
malignant potential of breast cancer cells. This may be due to
the function of PKD1 as a negative regulator of MMP
expression. Our data suggest re-expression of PKD1 as a
potential therapeutic strategy.

Introduction
Protein kinase D (PKD) belongs to the calcium/calmodulin-

regulated kinase family of serine/threonine kinases [1]. The

PKD family consists of three members, PKD1/PKC, PKD2

and PKD3/PKC, which share a unique molecular architecture

[2]. Depending on the cancer cell type and the activation

mechanism, recent reports have revealed important functions

for PKD enzymes in the regulation of cell adhesion, vesicle

transport and cell survival [3-8]. There is also increasing evi-

dence that PKD enzymes are involved in pathways that inhibit

apoptosis in tumours of the pancreas and cervix [5,8].

A potential mechanism for PKD1 regulation of cell survival is

via activation of the anti-apoptotic transcription factor nuclear

2D: two-dimensional; 3D: three-dimensional; ATCC: American Type Culture Collection; BSA: bovine serum albumin; ECM: extracellular matrix; ER: 
oestrogen receptor; HDAC: histone deacetylase; HRP: horseradish peroxidase; MMP: matrix-metalloproteinase; MT: membrane type; NaCl: sodium 
chloride; NF-B: nuclear factor-B; PBS: phosphate buffered saline; PKC: protein kinase C; PKD: protein kinase D; PR: progesterone receptor; 
pTNM: pathological tumour-node-metastasis; RT-PCR: reverse transcription polymerase chain reaction; TIMP: tissue inhibitors of metalloproteinases; 
TMA: tissue microarray.
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factor (NF) B [8,9]. PKD1 was also recently implicated in the

inhibition of cell migration of pancreatic cancer cells [10]. In

line with its negative regulatory effects on cell motility, PKD1

can be activated by the RhoGTPase RhoA [11], which in its

active state has also been implicated in the inhibition of cell

migration [12,13]. PKD1 expression is downregulated in

androgen-independent prostate cancer [14] and the PKD1

promoter is epigenetically-silenced by methylation events in

gastric cancer [15]. To date, there was little known on the

expression and function of PKD1 in breast cancer. Breast can-

cer cells invade surrounding tissues by breaking through the

basal membrane using invadopodia, which participate in pro-

teolytic matrix degradation. In some breast cancer cells, PKD

forms a complex with cortactin and paxillin, which are both

associated with invadopodia membranes [4]. However, the

function and the activation status of PKD1 in this complex are

not known.

An important step in the complex regulation of tumour expan-

sion and metastasis is the degradation of extracellular matrix

(ECM) which allows cells to migrate and invade surrounding

areas and into peripheral tissues or enter the bloodstream

[16,17]. Matrix metalloproteinases (MMPs) are collagenases

(e.g. MMP-1, MMP-13), stromelysins (e.g. MMP-10, MMP-12),

gelatinases (e.g. MMP-2, MMP-9) or membrane-type enzymes

(e.g. MMP-14, MMP-16) and have been recognised as impor-

tant mediators of ECM degradation. In almost all human can-

cers the increased expression of certain MMPs correlates with

tumour expansion, increased invasiveness and poor prognosis

[16,18]. MMPs and MMP inhibitors have been extensively

investigated in human breast cancer clinical studies [19-22].

The tissue levels of at least MMP-1, MMP-2, MMP-9, MMP-11,

membrane type (MT) 1-MMP, tissue inhibitors of metalloprotei-

nases (TIMP) 1 and TIMP-2 have been correlated with poor

outcome of breast cancer patients [20,23,24]. Furthermore,

MMP-1 and MMP-2 have been described as genes that selec-

tively mediate lung metastasis in the MDA-MB-231 xenograft

model of breast cancer [25] and are members of a lung metas-

tasis gene signature for human breast cancers [26]. Recent

data also show that tumour-derived, rather than stromal fibrob-

last-derived, MMP-13 correlates with aggressive breast

tumour types and is inversely correlated with the overall sur-

vival of breast cancer patients [22]. The regulation of MMP

expression is complex, involving a multitude of transcription

factors and histone deacetylases [27-31]; however, no infor-

mation is available regarding the negative regulation of MMP

genes in mechanisms that reduce ECM degradation.

Here we show that PKD1 expression is decreased in invasive

breast cancer tissue and that PKD1 expression is silenced in

invasive breast cancer cell lines. The re-expression of active

PKD1 in highly invasive breast cancer cells blocks cell inva-

sion and the reduction of PKD1 expression in very low-invasive

breast cancer cells increases the invasive ability of these cells.

We also identify PKD1 as an inhibitor of the expression of

matrix-metalloproteinases, such as MMP-2, MMP-7, MMP-9,

MMP-10, MMP-11, MMP-13, MMP-14 and MMP-15, all of

which have been implicated in the progression of breast can-

cer. Our findings show that PKD1 inhibits breast tumour cell

invasion and thus may influence tumour cell dissemination and

metastasis, the most lethal aspect of breast cancer.

Materials and methods
Cell lines, DNA constructs, reagents and antibodies

All cell lines were purchased from the American Type Culture

Collection (ATCC, Manassas, VA, USA) and were maintained

according to information provided by ATCC. pcDNA3-based

expression constructs for HA-tagged wildtype PKD1, kinase-

dead PKD1 (PKDinactive, PKD1.K612W) and constitutively-

active PKD1 (PKDactive, PKD1.Y463E) have been described

previously [8]. The doxycycline-regulated expression system

for mammalian cells was from Invitrogen (Carlsbad, CA, USA).

MDA-MB-231 cells were first stably transfected with

pcDNA6/TR and selected with blasticidin to generate a MDA-

MB-231-TR cell line. Constitutively-active PKD1 (PKD1active,

PKD1.Y463E) was cloned into pcDNA4/TO-B via BamHI and

XhoI sites and verified by DNA sequencing.

To generate stable cell lines which allow doxycycline-depend-

ent inducible expression of constitutively-active PKD1, the

pcDNA4/TO-B-PKD1.Y463E construct was stably trans-

fected into the MDA-MB-231-TR cells and selected with

Zeocin to generate the MDA-MB-231-TR-PKD1.Y463E cell

lines. All transfections were performed with Lipofectamine

2000 from Invitrogen (Carlsbad, CA, USA). MCF-7 cells were

infected with PKD1-shRNA lentivirus to generate the MCF-7-

PKD1.RNAi cell lines. Clonal selection for stably infected cells

was performed with puromycin. The rabbit polyclonal antibody

specific for PKD1 was raised against a H2N-MAECQNDS-

GEMQDP-amide peptide corresponding to amino acids 372–

385 in human PKD1 (21 Century Biochemicals, Marlboro,

MA). The rabbit polyclonal antibody for PKD2 was from

Upstate (Charlottesville, VA, USA), and the rabbit polyclonal

antibody for PKD3 was from Bethyl Laboratories (Mont-

gomery, TX, USA). All these antibodies were specific for the

respective PKD isoenzyme and were not cross-reactive with

other PKD family members (data not shown). Anti-FLAG, anti-

HA and anti-Actin were from Sigma (St. Louis, MO, USA).

Anti-MMP-9 was from BD Biosciences (San Jose, CA, USA)

and anti-MMP-2 from Epitomics (Burlingame, CA, USA). The

secondary horseradish peroxidase (HRP) linked anti-mouse or

anti-rabbit antibodies were from Roche (Indianapolis, IN,

USA). The DNA methyltransferase inhibitor RG108 (2-(1,3-

Dioxo-1.3-dihydro-2H-isoindol-2-yl)-3-(1H-indol-3-yl)propi-

onic acid) was from Sigma (St. Louis, MO, USA).
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Tissue samples, immunohistochemistry and statistical 

analysis

Tissue microarray (TMA) slides containing histologically-con-

firmed human breast cancer and normal human breast tissue

samples were purchased from Imgenex (San Diego, CA,

USA). The TMAs were deparaffinised (one hour at 60°C), de-

waxed in xylene (five times for four minutes) and gradually re-

hydrated with ethanol (100%, 95%, 75%, twice with each

concentration for three minutes). The rehydrated TMAs were

rinsed in water and subjected to antigen retrieval in citrate

buffer (pH 6.0) as described by the manufacturer (DAKO,

Carpinteria, CA, USA).

Slides were treated with 3% hydrogen peroxide (five minutes)

to reduce endogenous peroxidase activity and washed with

PBS containing 0.5% Tween 20. PKD1, PKD2 and PKD3

were detected using specific antibodies at a dilution of

1:2000, 1:1000 and 1:200, respectively, in PBS/Tween and

visualised using the Envision Plus Dual Labeled Polymer Kit

following the manufacturer's instructions (DAKO, Carpinteria,

CA, USA). Images were captured using ImagePro software

(Media Cybernetics, Bethesda, MD, USA). The TMAs were

scored independently by three different experienced scien-

tists. Uniform pre-established criteria were used.

Immunoreactivity was graded semiquantitatively by consider-

ing the intensity of the staining of the ductal cells. A histologi-

cal score was obtained from each sample, which ranged from

0 (no immunoreaction) to 5 (maximum immunoreactivity as

seen in normal ductal tissue). All normals were scored

between 4 and 5, with an average of all samples at 4.57.

Immunostaining was assessed by considering the percentage

of positive cells because the positivity was homogeneous in

each sample. Reproducibility of the scoring method between

three observers was greater than 90%. In the remaining cases,

in which discrepancies had been noted, differences were set-

tled by consensus review of corresponding slides. Statistical

analysis (student's t-test) was performed with GraphPad Soft-

ware (GraphPad Software, La Jolla, CA, USA).

Reverse transcription PCR

Cellular mRNA isolation was performed using RNA-Bee (TEL-

TEST, Friendswood, TX, USA) according to the manufac-

turer's instructions and was transcribed into cDNA using

Superscript II (Invitrogen, Carlsbad, CA, USA). For the tran-

scription reaction, 1 g Oligo dT(18) primer (New England

Biolabs, Beverly, MA, USA) and 1 g RNA were incubated in

a total volume of 10 l water at 70°C for 10 minutes. Then, 5×

buffer, 40 U RNAsin (Roche, Mannheim, Germany), 200 M

dNTP (New England Biolabs, Beverly, MA, USA), 10 mM DTT,

300 U Superscript II reverse transcriptase were then added to

a total volume of 20 l. The reaction was carried out at 45°C

for 60 minutes and then heat inactivated at 95°C for five min-

utes. The resulting cDNA pool was subjected to PCR analysis

using specific primer sets. Primers for human PKD1 were

TTCTCCCACCTCAGGTCATC and TGCCAGAGCACAT-

AACGAAG, PKD2 were CAACCCACACTGCTTTGAGA and

CACACAGCTTCACCTGAGGA, and PKD3 were TCATT-

GACAAACTGCGCTTC and GTACATGAT-

CACGCCCACTG. Primers for human MMPs and TIMPs are

described elsewhere [32]. The primers for actin were

CCTCGCCTTTGCCGATCC and GGATCTTCATGAGG-

TAGTCAGTC. Reaction conditions for the PCR reaction

were: one minute annealing at 55°C, one minute amplification

at 72°C, with 20, 35 and 40 cycles.

Lentiviral shRNA expression

The Lentiviral shRNA expression system to knock-down PKD1

expression is commercially available from Sigma (SHDNA

MISSION® shRNA Plasmid DNA; St. Louis, MO, USA). The

chosen sequences for siRNA were specific, as judged by

BLASTn searches of the all GenBank+RefSeq Nucle-
otides+EMBL+DDBJ+PDB sequences and the human sub-
set of GenBank+EMBL+DDBJ sequences. Sequences are

available from Sigma (NM_002742.x-2498s1c1 and

NM_002742.x-2978s1c1; St. Louis, MO, USA). The ViraP-

ower Lentiviral Expression System (Invitrogen, Carlsbad, CA,

USA) was used for an optimised mix of packaging plasmids

which supplies the structural and replication proteins that

were required to produce Lentivirus in 293FT cells.

Cell lysates, immunoprecipitation and immunostaining

Cells were lysed in lysis buffer (50 mM Tris/HCl pH 7.4, 1%

TritonX-100, 150 mM sodium chloride (NaCl), 5 mM EDTA)

plus Protease Inhibitor Cocktail (Sigma, St. Louis, MO, USA)

and either lysates were used for immunoblot analysis or pro-

teins of interest were immunoprecipitated by a one-hour incu-

bation with the respective antibody (2 g) followed by a 30

minute incubation with protein A/G-agarose (Santa Cruz Bio-

technology, Santa Cruz, CA, USA). Immune complexes were

washed five times with TBS (50 mM Tris/HCl pH 7.4, 150 mM

NaCl), resolved by SDS-PAGE, transferred to nitrocellulose

and analysed by immunostaining.

Transwell assay

Migration and invasion assays were performed as previously

described [33] using Transwell chambers. Transwell cham-

bers were coated with standard Matrigel (2 g/well,) from

Fisher (Pittsburgh, PA, USA). For assays with transient trans-

fected cells, cells were co-transfected with the constructs of

interest and a -Gal reporter plasmid (pCS2-(n)-gal) at a ratio

of 5:1 for 24 hours. Inserts of transwell plates were coated,

dried over night and re-hydrated for one hour with 40 l of tis-

sue culture media. Cells were harvested, washed once with

media containing 1% BSA, re-suspended in media containing

0.1% BSA (106 cells/ml) and seeded on the Transwells (105

cells). NIH-3T3 conditioned medium served as a chemoat-

tractant in the lower chamber. Remaining cells were used to

analyse the transfection efficiency and/or the expression of

proteins of interest. After 16 hours, cells on top of the transwell
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insert were removed and cells that had migrated to the lower

surface of the filters were fixed in 4% paraformaldehyde and

stained with X-Gal staining solution. Cells which stained posi-

tive for -Galactosidase expression were counted. The mean

of triplicate assays for each experimental condition was used

as percentage relative invasion.

Multicellular spheroids/3D cell culture assay

Three-dimensional (3D) analysis of morphology was per-

formed as described previously [12]. In brief, cell culture

dishes (24-well plates) were precoated with undiluted phenol

red-free Matrigel (10 mg/ml). In 200 l PBS, 104 cells (per well

of a 24-well plate) were suspended and then mixed with 100

l of cold Matrigel (10 mg/ml). The cell suspension was added

dropwise over the bottom layer to cover it. After the cell layer

was set complete, culture media was added over the top.

Media was changed every two days, without disturbing the

cell/matrix layer. Photos were taken after indicated days using

a 10× magnification for an overview and 40× to document

structure.

Cell proliferation assays

Cells were seeded at a density of 2500 cells/well in clear bot-

tom black 96-well tissue culture plates. After adhesion over-

night, the respective t = 0 plate was washed once with 1 ×

PBS, tapped dry and then frozen at -80°C. The same proce-

dure was used to process the respective t = 24 hour and t =

48 hour time-point plates. After all plates had been acquired,

cell proliferation was measured using a CytoQuant cell prolif-

eration assay kit (Invitrogen, Carlsbad, CA, USA). Cells were

lysed with 200 l 1× cell-lysis buffer with CyQuant GR dye

(1:400 dilution) per well. CytoQuant GR fluorescence was

measured using a SpectraMAX M5 plate reader (Molecular

Devices/MDS, Toronto, Canada) by exiting the dye at 485 nm

and reading emission at 538 nm.

Zymography

Zymography was performed as previously described [34].

Briefly, 48 hours after transfection culture media was har-

vested. Samples were mixed with 2 × loading buffer (50 mM

Tris-HCl pH 6.8, 10% (v/v) glycerol, 1% (w/v) SDS, 0.01%

(w/v) bromophenol blue) and resolved on an SDS-PAGE con-

taining 0.12 mg/ml gelatin (porcine skin type A, bloom 300).

Gels were soaked for one hour in 2.5% Triton X-100, then

washed twice with collagenase buffer (50 mM Tris-HCl pH

7.6, 0.2 M NaCl, 5 mM calcium chloride, 0.2% Brij-35) and

incubated at 37°C for 18 hours. Gels were then washed with

distilled water and incubated in Coomassie brilliant blue stain-

ing solution (40% methanol, 10% acetic acid/0.025%

Coomassie Brilliant Blue R-250) at room temperature for two

hours. Gels were then washed for 24 hours in distilled water

and scanned using an Agfa Duoscan T1200 Scanner (Agfa-

Gevaert, Mortsel, Belgium).

Results
PKD1 expression is reduced in invasive ductal carcinoma

We analysed TMAs including 10 normal breast tissue sam-

ples, 40 invasive ductal carcinoma of the breast and 10 meta-

static invasive ductal carcinoma samples from lymph nodes for

the expression of the PKD family kinases, PKD1, PKD2 and

PKD3. We found that PKD1 is highly expressed in epithelial

ductal tissue of human normal breast samples, but is reduced

in its expression in more than 95% of invasive human breast

tumour samples (representative pictures of normal and tumour

tissue are in Figures 1a1 to 1a4). When compared with normal

breast tissue the tumour samples revealed an approximate

60% reduction in PKD1 expression in both, invasive ductal

carcinoma and metastatic invasive ductal carcinoma (Figure

1b). PKD1 may have functions in both the cytosol and the

nucleus [35]. PKD1 staining was observed in normal breast

tissue in the nuclei, as well as in the cytosol. Breast cancer

samples of invasive ductal carcinoma and metastatic invasive

ductal carcinoma showed both a decrease of cytosolic stain-

ing and nuclear staining. Interestingly, the two other PKD fam-

ily members, PKD2 and PKD3, showed no significant

difference in their expression or localisation in infiltrating ductal

carcinoma and normal breast tissue (Figures 1c1 to 1d2), indi-

cating a potential function for PKD1 in invasive breast cancer.

For all samples, sex, age, diagnosis, pathological tumour-

node-metastasis (pTNM), stage, lymph node (positive lymph

nodes/examined lymph nodes) as well as progesterone recep-

tor (PR) and oestrogen receptor (ER) expression status were

available. In all 50 samples of invasive ductal cancer we

observed a significant reduction of PKD1 expression as com-

pared with the normal ductal tissue – regardless of stage, ER,

PR or other above markers. A similar downregulation of PKD1

was also recently described for other cancers such as pros-

tate [14] and gastric cancer [15].

PKD1 is not expressed in invasive breast cancer cell lines

We next determined the PKD1 expression status in a subset

of breast cancer cell lines. We found that PKD1 expression at

the mRNA level is absent in the highly invasive breast cancer

cell lines SKBR3, T47D and MDA-MB-231 (Figure 2a). Non-

invasive or very low-invasive breast cancer cell lines such as

BT-474 and MCF-7 and a normal breast cell line MCF-10A

showed moderate PKD1 expression. No distinct pattern was

detectable for PKD2 and PKD3 expression when cells with

high invasive potential were compared with cell lines with low

invasive capacity (Figure 2a). We also analysed the 1-HMT-

3522 cell progression model, in which the subclone S1

retains a more benign phenotype, and the subclone T4/2 has

a more invasive character [36]. T4/2 cells showed less PKD1

mRNA expression as compared with S1 cells, whereas PKD2,

PKD3 and actin mRNA levels were similar (Figure 2b). These

data suggest that PKD1 expression is decreased when cells

achieve a more aggressive state.
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Further, as expected, loss of PKD1 mRNA correlated with a

lack of PKD1 protein expression in highly invasive cells lines

(Figure 2c). In gastric cancer it was recently shown that PKD1

is downregulated in its expression by DNA methyltransferases

[15]. Epigenetic silencing of genes by DNA methylation is also

a common mechanism involved in gene silencing in breast

cancer. We found that in MDA-MB-231 cells the PKD1 gene

is also epigenetically silenced by DNA methylation, because

treatment of these cells with agents that inhibit DNA methyl-

transferases such as RG108 (Figure 2d) or Decitabine (data

not shown) led to the re-expression of PKD1.

Knockdown of PKD1 increases cell invasion

We next analysed if the decreased expression of PKD1 is one

of the means by which breast tumour cells may increase their

invasive potential. To test this we utilised the very low-invasive

breast cancer cell line MCF-7 which we have shown moder-

ately expresses PKD1 (Figures 2a,c). We transfected MCF-7

cells stably with control shRNA or two different PKD1-specific

shRNA sequences to knockdown PKD1 expression (Figure

3a). Both shRNA sequences led to an approximate 80%

reduction of PKD1 expression. The knockdown of PKD1

expression had no effect on cell proliferation because all three

cell lines showed similar proliferation rates (Figure 3b). We

next analysed if the knockdown of PKD1 had an impact on the

invasiveness of the cells. Interestingly, cellular invasion in

Matrigel Transwell assays was increased three to four-fold

when PKD1 was knocked down (Figure 3c). Finally, we ana-

lysed the invasive potential of control and PKD1-shRNA MCF-

7 cells in 3D cell culture. Cells were embedded in Matrigel and

invasive growth was monitored over a period of 60 days. We

observed that the multicellular MCF-7 spheroids showed a

more invasive phenotype when PKD1 expression was reduced

(Figure 3d). These results clearly indicate that the loss of

PKD1 in very low-invasive tumour cells increases their invasive

potential in two-dimensional (2D) and 3D culture systems.

Active PKD1 inhibits breast tumour cell invasion

We next determined if the re-expression of constitutively-

active PKD1 impairs the invasive phenotype of the highly-inva-

sive MDA-MB-231 cells. First, we transiently-transfected

MDA-MB-231 cells with wildtype, constitutively-active

Figure 1

PKD1 expression is reduced in invasive ductal carcinomaPKD1 expression is reduced in invasive ductal carcinoma. (a to d) Tissue microarrays (TMAs) including 10 normal breast tissue samples, 40 inva-
sive ductal carcinoma of the breast and 10 metastatic invasive ductal carcinoma samples from lymph nodes were analysed for the expression of the 
protein kinase D (PKD) family kinases PKD1, PKD2 and PKD3, using isoform specific antibodies. Representative pictures of normal and tumour tis-
sue are depicted. (b) Statistical analysis of the normal and tumour samples. Error bars shown represent standard deviation. P values were acquired 
with the student's t-test using Graph Pad software. P values indicate extreme statistical significance. IDC = invasive ductal carcinoma; mIDC = met-
astatic invasive ductal carcinoma.
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(PKD1active, PKD1.Y463E mutant) or kinase-inactive

(PKD1inactive, PKD1.K610W mutant) PKD1 alleles and

measured their invasiveness in Matrigel Transwell assays. We

found that the expression of constitutively-active PKD1 signif-

icantly inhibited cell invasion through Matrigel (Figure 4a).

Wildtype PKD1 moderately decreased and kinase-inactive

PKD1 slightly increased cell invasiveness (Figure 4a). To test

long-term effects of expression of active PKD1 on cell invasion

in the same cell line, we then generated a MDA-MB-231 cell

line that allowed inducible expression of a constitutively-active

PKD1 via doxycyclin. Doxycyclin induced the expression of

constitutively-active PKD1 (PKD1active) within 24 hours (Fig-

ure 4b) and we did not see any leakage of this system. In

Matrigel Transwell assays, the induction of constitutively-

active PKD1 inhibited tumour cell invasion in a similar way

shown for cells transiently-transfected with active PKD1 (data

not shown).

We then utilised this inducible system to determine if active

PKD1 affects the invasive behaviour of MDA-MB-231 cells

growing in 3D cell culture. MDA-MB-231 cells growing in 3D

culture in Matrigel within 12 days form multicellular spheroids

with a size of approximately 80 m (Figure 4c1). We found

that from approximately day 18 this phenotype changes to a

more stellate morphology, with projections of invasive cells

emanating from a central multicellular spheroid (Figure 4c2).

However, when spheroids were treated with doxycyclin at day

12 to induce the expression of active PKD1, the outgrowth of

these invasive projections was blocked until day 18 (Figure

4c3). This indicates that the expression of PKD1 indeed

blocks the invasive phenotype. The effect of PKD1 expression

on cell invasiveness became even more apparent when cells

were cultivated without doxycyclin for 24 days, where massive

invasion from the spheroid into the surrounding ECM was

observed (Figure 4c4). On the other hand, when cells were

Figure 2

PKD1 is not expressed in invasive breast cancer cell linesPKD1 is not expressed in invasive breast cancer cell lines. (a,b) MCF-10A cells and BT-474, MCF-7, SKBR3, T47D, MDA-MB-231, 1-HMT-3522-
S1 or 1-HMT-3522-T4/2 breast cancer cell lines were cultivated under normal growth conditions. mRNA was isolated and the expression of protein 
kinase D (PKD) 1, PKD2, PKD3 and actin was detected by RT-PCR. (c) MCF-10A cells and BT-474, MCF-7, SKBR3, T47D, MDA-MB-231, 1-HMT-
3522-S1 or 1-HMT-3522-T4/2 breast cancer cell lines were cultivated under normal growth conditions. Cells were lysed and lysates were analysed 
for PKD1 expression by western blotting. Actin served as loading control. (d) MDA-MB-231 cells were either left untreated or treated with RG108 
(250 nM, for 24 hours). PKD1 was immunoprecipitated (-PKD1 antibody) and immunoprecipitates were analysed for PKD1 expression. Western 
blotting of lysates for actin (-actin antibody) served as a control.
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cultivated without doxycyclin for 12 days and then treated with

doxycyclin to induce the expression of active PKD1 (12 days

without and 12 days with doxycyclin), we observed signifi-

cantly less cell invasion into the surrounding matrix (Figure

4c5). These results indicate that active PKD1 inhibits the inva-

sion of breast cancer cells.

Active PKD1 regulates the expression and activity of 

invasion-relevant MMPs

It is known that breast tumour cells actively produce MMPs to

facilitate tumour cell invasion. We therefore aimed to find out

if PKD1 regulates the expression of a panel of MMPs. MDA-

MB-231 cells are an established model for malignant human

breast cancer cell invasion in vitro, and it has been shown that

multiple MMPs, including MMP-1, MMP-2, MMP-7, MMP-9,

MMP-11, MMP-12, MMP-13, MMP-14 and MMP-17, enhance

cell invasiveness [37-39]. To test whether PKD1 impacts the

expression of MMPs in MDA-MB-231 cells, we transfected

them with constitutively-active PKD1 (PKD1active) and ana-

lysed the expression of multiple MMPs and TIMP. Using

reverse transcription (RT) PCR, we analysed the expression of

MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10,

MMP-11, MMP12, MMP-13, MMP-14, MMP-15, MMP-16,

TIMP1 and TIMP2, as well as actin which served as a loading

control (Figure 5a). We found that the expression of constitu-

tively-active PKD1 downregulated mRNA transcripts of MMP-

2, MMP-7, MMP-9, MMP-10, MMP-11, MMP-13, MMP-14

and MMP-15. Of these MMPs, all but MMP-15 are known to

enhance the invasiveness of MDA-MB-231 cells [37-39]. We

did not observe differences in the expression of MMP-1, MMP-

8, MMP-16, TIMP1, TIMP2 or actin. Further, the expression of

MMP-3 was increased by active PKD1. This is interesting,

because MMP-3 was previously shown to inhibit cell invasion

of MDA-MB-231 [40].

We then performed gelatin zymographic analysis to test if the

decreased expression of MMPs can relay to decreased MMP

activity. Therefore, MDA-MB-231 cells were either transfected

with vector control or with constitutively-active PKD1. We

observed a significant decrease in MMP activity when consti-

Figure 3

The knockdown of PKD1 increases cell invasionThe knockdown of PKD1 increases cell invasion. (a) MCF-7 cells were stably transduced with lentivirus coding for two different human shRNA 
sequences for protein kinase D (PKD) 1 (PKD1-RNAi Seq.1 and Seq.2) or for a non-target sequence which served as control. Cells were lysed and 
analysed for PKD1 expression by western blotting. Immunostaining for PKD2 and actin expression served as controls. (b) MCF-7 control and PKD1-
RNAi clones were subjected to a cell proliferation assay using the CyQuant cell proliferation assay kit. (c) MCF-7 control and PKD1-RNAi clones 
were seeded on Matrigel-coated Transwell filters and Transwell invasion assays were performed over a time period of 16 hours. (d) MCF-7 cells sta-
bly-transfected with control RNAi or PKD1-RNAi were grown in 3D/Matrigel cell culture over a period of 60 days. Cells were photographed at day 
60. Bars indicate the size of the spheroids. For experiments shown in b and c, error bars represent standard deviation. P values were acquired with 
the student's t-test using Graph Pad software. All P values indicate statistical significance.
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Figure 4

Active PKD1 inhibits breast tumour cell invasionActive PKD1 inhibits breast tumour cell invasion. (a) MDA-MB-231 cells were transiently transfected with wildtype protein kinase D (PKD) 1, kinase-
dead PKD1 (PKD1inactive) or constitutively-active PKD1 (PKD1active). After 24 hours cells were seeded on Matrigel-coated Transwell filters and 
Transwell invasion assays were performed over a time period of 16 hours. (b) Inducible expression of active PKD1 in MDA-MB-231-TR-PKD1active 
(PKD1.Y463E mutant) cells. Cells were treated with doxycyclin (DOX) for 16 hours. Cells were lysed and lysates were analysed by western blotting 
for expression of constitutively-active PKD1 (anti-FLAG) or actin (loading control). (c) MDA-MB-231-TR-PKD1.Y463E cells were seeded in 3D cul-
ture and were either left untreated for 12 (c1), 18 (c2) and 24 days (c4), or were treated with doxycyclin after 12 days of normal growth to induce 
the expression of active PKD1 (c3 and c5). Cells were photographed at day 12 (c1), day 18 (c2 and c3) or day 24 (c4 and c5). Arrows in c2 indi-
cate cells invading from the spheroid into the extracellular matrix. Bars indicate the size of the spheroids.
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tutively-active PKD1 is expressed. This is most likely to be

because of decreased MMP-2 (p72) and MMP-9 (p68) activity

as the MMP activity was detected at a molecular weight of

approximately 70 kDa (Figure 5b). Western blotting analysis

for MMP-9 and MMP-2 showed that MMP-2 is not detectable

in supernatants of MDA-MB-231 cells (data not shown), but

that MMP-9 is decreased in cells expressing active PKD1 (Fig-

ure 5c). This suggests that MMP-9 is the mainly expressed

MMP in MDA-MB-231 and that its expression is negatively-

regulated by PKD1, which directly translates to decreased

activity. Therefore, PKD1 mediates breast cancer cell invasion

through regulation of the expression of invasion-relevant

MMPs.

Figure 5

Active PKD1 regulates the expression of invasion-relevant MMPsActive PKD1 regulates the expression of invasion-relevant MMPs. (a) MDA-MB-231 cells were transfected with vector control or constitutively-active 
protein kinase D (PKD) 1 (PKD1active, PKD1.Y463E mutant). After 16 hours mRNA was isolated and the expression of the matrix mettaloprotein-
ases (MMP) MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15 and MMP-16, tissue 
inhibitors of metalloproteinases (TIMP) TIMP1 and TIMP2 and actin (control) was analysed by RT-PCR (shown as a PCR reaction with 35 cycles; 
PCR reaction with 20 and 40 cycles showed similar results). (b,c) MDA-MB-231 cells were transfected with vector control or constitutively-active 
PKD1 (PKD1active, PKD1.Y463E mutant). After 48 hours supernatants were collected and used for (b) zymographic analysis or (c) western blot 
analysis for MMP-9 expression.
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Discussion
To develop effective therapies that stop breast cancer from

metastasising, the underlying biological and molecular events

need to be understood in further detail. We show here that the

PKD family members PKD1, PKD2 and PKD3 are all

expressed in ductal epithelial cells of the normal breast (Figure

1). We further show that decreased expression of PKD1 can

serve as a marker for invasive breast cancer, whereas PKD2

and PKD3 expression remain unchanged in normal breast and

invasive breast tumour tissue (Figure 1). However, all three

PKD enzymes are markers for breast epithelial cells (normal

and tumour) and may be utilised as markers to identify breast

epithelia-derived metastases. PKD1 expression was downreg-

ulated by approximately 60% in more than 95% of the ana-

lysed samples of invasive ductal carcinoma and distant lymph

node metastases (Figure 1b). All 50 analysed tumours were

assessed by pathologists and stages were at a range from 0,

IIA, IIB, IIIA, IIIB, IIIC. Further, additional information such as

sex, age, diagnosis, pTNM, lymph node stage (positive lymph

nodes/examined lymph nodes), as well as expression of the

PR, or the more-aggressive ER-negative, basal sub-type of

breast cancer were available. Downregulation of PKD1

expression occurred in more than 95% of the analysed cases

of invasive ductal cancer and no correlation was observed with

stage, ER, PR or other markers. Our results on PKD1 in inva-

sive breast cancer are in consensus with data obtained for

gastric cancer and prostate cancer, where decreased expres-

sion of PKD1 was described in most of the cases analysed

[14,15].

Our data showing reduced PKD1 protein expression in inva-

sive breast cancer is also in consensus with published tran-

scriptional microarray data profiling over 350 surgically

excised, advanced breast tumour tissues. In these arrays

PRKD1 gene expression was drastically reduced in most

cases analysed [41-44]. Our data show that reduced gene

expression invariably translates to decreased protein levels.

Investigation of other publicly available microarray datasets on

the NCBI Gene Expression Omnibus (GEO) showed that

PRKD1 is detected at appreciable levels in normal lobular and

ductal breast cells [GEO:GDS2635] [45], in atypical hyper-

plasia [GEO:GDS1250] [46] and in the cancerous lesions

invasive ductal and lobular carcinomas [GEO:GDS2635]

[45], suggesting that PKD1 expression is indeed decreased

with increased invasiveness of the tumours.

Little is known about the role of PKD1 in regulating tumour cell

migration and invasion, important processes that regulate both

tumour expansion and metastasis. In order to investigate a

potential role for PKD1 in cell invasion, we first compared

PKD1 expression in very low-invasive and highly invasive

breast cancer cell lines (Figures 2a,c) and found that from the

three PKD family members only PKD1 showed a significant

expression pattern associated with the invasive phenotype.

PKD1 expression was absent in highly invasive breast cancer

cell lines including MDA-MB-231, T47D and SKBR3 (Figure

2). This is most likely because of epigenetic silencing medi-

ated by DNA methyltransferases (Figure 2d). Non-invasive or

very low-invasive breast cancer cell lines such as BT-474 or

MCF-7 and the normal breast cancer cell line MCF-10A mod-

erately expressed PKD1. Moreover, by analysing PKD1

expression in the 1-HMT-3522 breast cancer cell progression

model, we found that the T4/2 clone which shows increased

invasiveness as compared with the S1 clone also expressed

less PKD1 (Figure 2b).

We utilised two breast cancer model cell lines, MCF-7 and

MDA-MB-231, to investigate the role of PKD1 in cell invasion.

MCF-7 and MDA-MB-231 cells express comparable amounts

of PKD2 and PKD3, but differ in their expression of PKD1 (Fig-

ure 2). The depletion of PKD1 in MCF-7 cells resulted in

increased cell invasion in both 2D and 3D cell culture systems

(Figure 3).

On the other hand, the re-introduction of active PKD-1 in

MDA-MB-231 cells impaired their invasive behaviour in 2D

and 3D cell culture (Figure 4). Notably, the knockdown of

PKD1 in MCF-7 cells (Figure 3B) and the induction of consti-

tutively active PKD1 in MDA-MB-231 cells had no significant

effects on cell proliferation or cell death (data not shown). This

is interesting, because one of the PKD family members, PKD3,

was recently linked to increased tumour cell proliferation in

prostate cancer [47]. This implies that in different cancers the

three PKD family members may have different functions. A sim-

ilar phenomenon was recently demonstrated for the kinase

Akt, which, depending on the isoenzyme expressed, contrib-

utes to breast tumour cell survival and proliferation, or blocks

cell migration and invasion [48]. Cell proliferation, survival and

cell motility are not necessarily linked in cancer cells, and it is

generally accepted in the field that proliferation and invasive-

ness are independent of each other.

Our data further suggest that PKD1 inhibits breast cancer cell

invasion by regulating the expression of factors involved in the

degradation of ECM. The invasion of MDA-MB-231 cells in

Matrigel is dependent on MMPs. For example, MMP-2, MMP-

7, MMP-9, MMP-11, MMP-13 and MMP-14 are known to

enhance the invasiveness of MDA-MB-231 cells [37-39]. We

found that the expression of active PKD1 in MDA-MB-231

cells downregulated mRNA transcripts of MMP-2, MMP-7,

MMP-9, MMP-10, MMP-11, MMP-13, MMP-14 and MMP-15

(Figure 5a). Thus, PKD1 decreased the expression of all

MMPs so far implicated in the invasive phenotype of this cell

line. The mechanism of how PKD1 regulates such a multitude

of genes is not known yet. One explanation is that PKD1 may

regulate a common element in the promoter of these MMPs. In

this context histone deacetylases (HDACs) have been shown

to regulate the expression of MMPs [30,31]. PKD1 is known

to be a negative regulator of HDACs [49] and it is possible
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that PKD1 exerts its effects on all the MMPs via regulation of

HDACs.

We did not observe any differences in the expression of MMP-

1, MMP-8, MMP-16, TIMP1 or TIMP2 by PKD1. Further, the

expression of MMP-3 was slightly increased by active PKD1.

This is interesting, because MMP-3 has been previously

shown to inhibit cell invasion of MDA-MB-231 [40]. MMP-3

expression was associated with benign and early stage breast

tumours but is frequently lost in advanced stage, aggressive

breast disease [40]. The events leading to the transition from

a benign to a metastatic tumour are not fully understood, but

are linked to ECM degradation and increased motility of cells.

It is possible that loss of PKD1 expression and the resulting

change in the expression of MMPs is part of the switch driving

the progression from a benign to an invasive, malignant

tumour.

Conclusions
Our results show that decreased PKD1 expression can serve

as a marker for invasive and metastatic breast cancer. They fur-

ther suggest that the loss of PKD1 expression increases the

malignant potential of breast cancer cells. This may be

because of the function of PKD1 as a negative regulator of

MMP expression. This knowledge can be applied to develop

new therapeutic avenues such as the re-expression of PKD1

as one potential strategy to ameliorate breast cancer

metastasis.
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