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ARTICLE

Protein–ligand binding with the coarse-grained
Martini model
Paulo C. T. Souza 1,4✉, Sebastian Thallmair 1,4, Paolo Conflitti 2, Carlos Ramírez-Palacios 1,

Riccardo Alessandri 1, Stefano Raniolo 2, Vittorio Limongelli 2,3✉ & Siewert J. Marrink 1✉

The detailed understanding of the binding of small molecules to proteins is the key for

the development of novel drugs or to increase the acceptance of substrates by enzymes.

Nowadays, computer-aided design of protein–ligand binding is an important tool to accom-

plish this task. Current approaches typically rely on high-throughput docking essays or

computationally expensive atomistic molecular dynamics simulations. Here, we present an

approach to use the recently re-parametrized coarse-grained Martini model to perform

unbiased millisecond sampling of protein–ligand interactions of small drug-like molecules.

Remarkably, we achieve high accuracy without the need of any a priori knowledge of binding

pockets or pathways. Our approach is applied to a range of systems from the well-

characterized T4 lysozyme over members of the GPCR family and nuclear receptors to a

variety of enzymes. The presented results open the way to high-throughput screening of

ligand libraries or protein mutations using the coarse-grained Martini model.
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P
rotein–ligand binding interaction is fundamental to a large
variety of cellular functions, including enzymatic reactions,
catalysis, signal transduction, and regulation. The impor-

tance of protein–ligand interactions explains the ongoing interest
to redesign these interactions, conferring novel functions or
finding suitable drugs and molecular targets1. A typical binding
pocket consisting of 10 residues gives rise to 2010 possible
mutations; together with an estimated amount of 1060 potential
drug-like compounds, this composes a vast chemical space.
Therefore, the potential for rational design is enormous.
To harness this potential, a lot of progress has been made in the
development of high-throughput experimental screening techni-
ques together with computational methods2–5. In this process, a
significant increase of the drug design success rate arises out of
the development of novel computational strategies.

Current approaches typically rely on docking assays to either
predict or optimize the ligand-binding mode6–8. Although
docking-based methods allow for high-throughput screening of
large compound and/or protein mutant libraries, the accuracy of
the predictions is limited. The main sources of limitation are the
use of simplified energy (“scoring”) functions as well as the
limited treatment of protein and ligand flexibility and solvation
models. In the case of protein engineering studies, only local
mutations around the binding/catalytic site can benefit
of docking-based methods. To alleviate these shortcomings,
molecular dynamics (MD) simulation has become a popular tool
in the field of drug design and discovery9,10. The MD technique
is based on detailed interaction potentials (force fields) and, in
principle, includes relevant dynamics of protein, ligand, and
solvent provided that enough sampling can be achieved. In some
cases, a few direct binding events of ligands can be simulated
using brute force MD11–13, but typically sampling of the relevant
degrees of freedom is a limiting factor. A variety of enhanced
sampling methods, such as replica exchange, funnel-metady-
namics, or adaptive sampling, exist to improve the sampling and
to study the binding kinetics and pathways14–17. In addition,
when the binding mode is known, calculations can be performed
to obtain (relative) binding free energies18–21. In practice,
nowadays docking and MD are often combined to increase the
accuracy of the former method4,10,22,23. Fully atomistic MD
simulations, however, are computationally too expensive to allow
for high-throughput applications.

A potential solution is the use of coarse-grained (CG) force
fields, which reduce the computational cost by uniting groups of
atoms into effective interaction sites resulting in a substantial
computational speed-up24,25. The Martini model26 is among
the most popular CG force fields, and has been applied to study
a wide range of biomolecular processes including successful
prediction of protein–lipid binding modes27. In some cases,
binding of lipids to sites deeply buried inside the proteins were
recovered by brute force MD28,29. Examples of protein–ligand
binding with Martini are, however, still scarce30–32. The question
remains, therefore, whether such CG models can be applied to
capture protein–ligand binding in general, including small
organic compounds, such as enzyme substrates, receptor ligands,
drugs, or pesticides.

Here we show that the recently re-parameterized Martini
model33 can perform this task with high accuracy, based on
unbiased sampling. For all the simulations presented here, the
ligands (depicted together with the CG mapping in Supplemen-
tary Fig. 1) were initially positioned randomly in the solvent. We
use three different classes of examples to illustrate the potential
power of this approach. First, we show millisecond long sampling
of the reversible binding of seven different ligands (binders as well
as non-binders) to mutants of T4 lysozyme, a well-studied protein
for which ample experimental and all-atom MD simulation data

are available for comparison. Second, we show spontaneous
binding and unbinding of both agonist and antagonist ligands to
the adenosine A2A receptor (A2AR) and adrenergic β2 receptor
(β2AR), two different members of the membrane-embedded
protein family of G protein-coupled receptors (GPCRs), as well
as to the nuclear receptor farnesoid X receptor (FXR), all repre-
senting prominent pharmacological targets. Third, we demon-
strate the versatility of our approach by simulating ligand binding
to different enzymes, namely binding of a substrate to a complex
catalytic site of an aminotransferase, which is an important
representative of biocatalytic applications and binding of drugs
to two members of the kinase family, proto-oncogene tyrosine-
protein kinase (c-Src) and the AP2-associated protein kinase 1
(AAK1) involved in virus endocytosis and a potential target for
COVID-19 treatment34.

Results
Binding of ligands to T4 lysozyme. T4 lysozyme serves as a
benchmark system to investigate ligand binding18. Notably,
the L99A mutant is known to bind hydrophobic ligands into a
well-defined cavity in the core of the C-terminal domain35.
To investigate the ligand binding to the L99A mutant of T4
lysozyme, the protein is embedded in a cubic box with 10 nm
edge length containing ~8850 CG water beads (corresponding
to 35,400 water molecules) and one ligand molecule, as shown
in Fig. 1a. Thus, the ligand concentration is around 1.6 mM.
Figure 1b–e summarizes the results obtained for the seven
examined ligands benzene, phenol, indole, thieno-pyridine,
toluene, ethylbenzene, and n-propylbenzene with a sampling
time of 0.9 ms each (30 independent trajectories of 30 µs per
ligand). In addition, the binding of benzene and toluene to the
L99A/M102Q double mutant of T4 lysozyme was studied. The
additional M102Q mutation reduces the hydrophobic character
of the binding pocket36 which is expected to reduce the affinity
to benzene and toluene.

In case of benzene and the L99A T4 lysozyme, each individual
simulation of 30 µs shows between 2–9 binding and unbinding
events. In total, 156 binding and 147 unbinding events are
observed (Table 1). The crystal structure of L99A T4 lysozyme
including a bound benzene molecule (green) is depicted in
Fig. 1b. In addition, the figure contains several CG snapshots of
benzene taken from our binding simulations (red) and the
benzene density in the binding pocket (transparent red isosur-
face). A comparison of the benzene position in the crystal
structure with the CG snapshots as well as the averaged benzene
density clearly shows that the CG force field Martini properly
locates the buried hydrophobic binding pocket. The experimen-
tally observed binding pose of the ligand in the binding pocket is
excellently reproduced with a root mean square deviation
(RMSD) of 1.4 ± 0.2 Å, which is similar to the one from atomistic
studies37. Fig. 1c visualizes the benzene density around L99A T4
lysozyme. The blue, cyan, red, and violet isosurfaces represent
occupancies which are 10, 100, 1000, and 10,000 fold higher than
in water. A binding channel indicated by the blue isosurface leads
from the surface of the protein toward the buried binding pocket.
The density inside the binding pocket (red isosurface) is about
1000 fold higher compared to the bulk.

Figure 1d unravels the existence of more than just one binding/
unbinding path which could be already easily spotted by eye
based on the overall ligand densities shown in Fig. 1c. The
benzene density in the vicinity of the binding pocket as well as
snapshots of the benzene molecules show four binding/unbinding
paths in total. Note that compared to Fig. 1b, c the protein is
rotated to enable the distinction of the different paths. The high
density channel from Fig. 1c corresponds to path 1 which also has
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Fig. 1 Unbiased simulations of ligand binding to T4 lysozyme at the CG Martini level. a Simulation box containing the L99A mutant of T4 lysozyme and

one benzene molecule (red) solvated in water (transparent blue surface). b Crystal structure of the L99A T4 lysozyme with benzene (green) in its binding

pocket (pdb code: 181L43). In addition, several CG snapshots of benzene (red) and the benzene density in the binding pocket (transparent red isosurface)

are shown. The histogram of the RMSD of benzene and the contact protein beads is depicted on the lower right. c Benzene density around L99A T4

lysozyme obtained from averaging 0.9 ms of CG simulations. The blue, cyan, red, and violet isosurfaces correspond to a 10, 100, 1,000, and 10,000 fold

higher benzene density than in water. These densities translate to the free energy values shown at the color map. The experimental binding free energy of

benzene is between −21.7 kJ/mol98 and −17.7 kJ/mol99. d The benzene density and corresponding snapshots in the vicinity of the binding pocket reveal

four binding/unbinding pathways. e Binding free energies calculated from the 0.9ms of unbiased simulations for all ligands simulated here (blue) in

comparison with experimental data (red). The re-parametrized Martini force field can separate non-binders from binders (dashed line). The error bars of

the simulated data are <0.7 kJ/mol and not depicted here.

Table 1 Number of binding/unbinding events, binding free energies and binding poses.

Ligandsa Non-binders Binders

Phenol Thieno-
pyridine

Benzene M102Q Benzene Indole Toluene M102Q Toluene Ethyl-
benzene

n-propyl-
benzene

Min./max. binding
events per 30 µs

0/4 0/3 2/15 2/9 0/5 2/10 1/8 1/5 1/5

Min./max. unbinding
events per 30 µs

0/4 0/3 2/15 2/9 0/5 1/10 0/8 0/5 0/4

Total number of
binding events

37 41 245 156 59 148 83 67 68

Total number of
unbinding events

37 29 238 147 43 132 60 44 43

ΔGCG
bind [kJ mol−1]b −15.6 −17.3 −17.0 −18.6 −20.2 −19.6 −21.2 −23.1 −25.4

ΔGexp
bind [kJ mol−1]c — — — −21.7/−17.7 −20.5/−19.7 −20.6 −23.1 −24.1 −27.4

RMSD [Å]d 1.6 ± 0.2 2.1 ± 0.2 1.4 ± 0.2 1.4 ± 0.2 2.0 ± 0.2 1.7 ± 0.3 1.7 ± 0.2 1.9 ± 0.3 1.9 ± 0.4
Reference pdb codee 1LI2 185 L 181 L 181 L 185 L 4I7K 4W53 4W54 4W55

aLigand names containing “M102Q” indicate the systems simulated with the L99A/M102Q double mutant of T4 lysozyme. The rest of the MD simulations were performed with the single mutant L99A.
bBinding free energies (ΔGCG

bind) are computed from radial ligand-receptor potentials of mean force obtained from unbiased MD simulations, as described in Methods.
cThe first experimental binding free energy (ΔGexp

bind) corresponds to calorimetric data taken from refs. 18,44,97,98. Where a second value is given, this is taken from NMR experiments99.
dThe RMSD is calculated for the binding pocket residues and ligand after aligning the binding pocket residues to the respective crystal structure (for details see Supplementary Methods).
eCrystal structures taken from ref. 43. (benzene, indole) and45 (toluene, ethylbenzene, and n-propylbenzene). Because no crystal structures are available for non-binders, the experimental binding mode
of phenol M102Q44, indole43, and benzene43 were used as references the structure to compute the RMSD for phenol, thieno-pyridine, and benzene M102Q, respectively.
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been found to be the dominant dissociation path in a weighted
ensemble approach38 and the second dominant dissociation
pathway in a biased MD study39, both at atomistic resolution.
The other three paths have been reported previously as well in
biased38–41 and unbiased37,42 atomistic MD studies. An example
of a binding event is provided in Supplementary Movie 1.

The ligand densities for the other ligands as well as the L99A/
M102Q double mutant are depicted in Supplementary Fig. 2. Also
in these eight cases, the hydrophobic binding pocket shows the
highest occupancy, in agreement with the crystal structures of T4
lysozyme with the respective ligands43–45. The binding channel
density representing path 1 is very similar to the one of benzene
for all ligands except phenol, for which this region is less
populated. The experimentally observed binding poses are well
reproduced with an average RMSD ≤ 2.1 Å for each of the eight
examples (see Table 1, Supplementary Fig. 3, and Supplementary
Table 1). In the case of thieno-pyridine, indole, toluene,
ethylbenzene, and n-propylbenzene, the RMSD distributions
show two binding modes (Supplementary Fig. 3).

Figure 1e compares the binding free energies obtained from our
simulations ΔGCG

bind with the available experimental binding free
energies ΔGexp

bind (see also Table 1). The ΔGCG
bind values are calculated

by integrating the one-dimensional potentials of mean force
depicted in Supplementary Fig. 4. Based on the simulated results,
it is possible to distinguish between non-binding (three) and
binding protein-ligand combinations (six). Moreover, ΔGCG

bind is in
very good agreement with the experimental values with a mean
absolute error of 1 kJ/mol and a maximum error of 2 kJ/mol. To the
best of our knowledge, no other study is available to date with such
a good agreement of theoretical and experimental binding free
energies for this range of T4 lysozyme ligands.

Our results for T4 lysozyme demonstrate the capability to
accurately predict the ligand-binding pocket as well as the diverse
binding pathways with the recently parametrized Martini 3 force
field. Remarkably, as the results were obtained using unbiased
simulations, no a priori knowledge of the binding pocket is
required. Moreover, a nearly quantitative agreement of the
binding free energy for all nine examined systems including
different ligands and protein mutants with experimental data is
achieved.

Binding to membrane and nuclear receptors. As a second
showcase, we present the binding of two small organic molecules
to a pharmacologically relevant membrane protein, namely the
adenosine A2A receptor (A2AR). It belongs to the class A of the
GPCRs. The GPCR superfamily is a major therapeutic target
whose functioning regulates several physiological processes such
as vision, smell, taste, cardiovascular, neurological, and repro-
ductive mechanisms, and A2AR in particular has been recognized
as a drug target for the treatment of many diseases, including
cancer, Parkinson’s and Alzheimer’s disease46,47. Here, we
examine the ability of the Martini 3 force field to identify the
crystallographic binding poses of the endogenous agonist ade-
nosine and the natural antagonist caffeine. The recognition of the
A2AR binding site by the ligands is challenging, since the access to
the binding pocket is narrow and regulated by the extracellular
loops like extracellular loop 2 (ECL2). In A2AR, ECL2 contains a
small helix that is partially folded over the ligand entry site48.
Furthermore, interaction of the ligands with either ECL1, ECL2,
or ECL3 is relevant to the binding kinetics as proved in different
experimental and computational studies13,49. In addition to the
molecular details of the pocket entrance, the protein environment
is more complex, because A2AR is a transmembrane protein.
Thus, the ligand can also be sorted to the lipid bilayer.

For each system (A2AR—adenosine and A2AR—caffeine) we
performed 12 simulations with variable number of ligands,
spanning from 7 to 13, in a cubic box with 12 nm edge length
(Fig. 2a). The binding poses of adenosine and caffeine, after back-
mapping to all-atom resolution50, are compared with the ones in
the crystal structures 2YDO51 and 3RFM52, respectively. Figure 2b
shows all binding poses of adenosine with an RMSD < 2.6 Å. The
RMSD distribution of all observed binding poses is depicted in
Fig. 2c (top) and has an average of 3.3 ± 0.5 Å. The best binding
pose obtained from the simulations has an RMSD of 2.2 Å
(Fig. 2d). Comparing this pose to the crystal structure51, we note
that adenosine is shifted toward the transmembrane helix 7
(TM7), with a slight tilt of 14°. Notably, the best binding mode
closely resembles the experimental one, engaging all the
interactions observed in the crystallographic structure (for details
see Supplementary Discussion)51. In the case of the A2AR—
caffeine system, we observe 142 binding events, which lead to a
well-characterized binding mode. Figure 2c (bottom) shows the
RMSD distribution of all binding poses, which has an average of
3.4 ± 0.5 Å. Figure 2e depicts the best binding mode which has a
RMSD of 1.9 Å and is remarkably similar to the crystallographic
one, being shifted by only 1.4 Å toward TM3 and tilted by 4°
(for details see Supplementary Discussion)52. The larger number
of binding events observed for caffeine with respect to adenosine
can be attributed to the planar geometry of the former that better
inserts into the gorge forming the entry of the A2AR binding site.
Moreover, the two ligands show a different way to approach to
A2AR from the environment. Caffeine demonstrates a preference
to interact with the glycerol and phosphate beads of the lipid
bilayer, which is in agreement with experiments and atomistic
simulations53. On the other hand, this behavior was not observed
for adenosine. As a result, caffeine interacts with lipids prior to
binding in 87% of the cases, whereas in the case of adenosine this
happens in only 40% of the binding events.

A more detailed analysis of our simulations provides
structural insight into the ligand-binding mechanism. In the
majority of cases—all 15 for adenosine and 89 out of 142 for
caffeine—the ligand firstly interacts with either ECL2 or ECL3
before reaching the binding pocket through the passage made
by TM3, TM6, and TM7 (Fig. 2d, e). While adenosine directly
interacts with ECL2 or ECL3 to approach A2AR from the water
phase, caffeine is also able to establish contacts with the
transmembrane helices in the initial binding phase. In such a
case, caffeine interacts with ECL3 and TM6 (Fig. 2e, green solid
line, 57/142 binding events) or with TM1 and TM7 entering
into the cleft formed by the latter two helices (Fig. 2e, black
solid line, 51/142 binding events). In 32/142 cases the ligand
binds A2AR through ECL2 (Fig. 2e, red solid line). More details
about the adenosine and caffeine binding mechanism to A2AR
are provided in the Supplementary Discussion. An example of
an adenosine binding/unbinding event to A2AR is provided in
the Supplementary Movie 2.

As a third showcase, we studied another pharmacologically
prominent member of the GPCR superfamily, the adrenergic β2
receptor (β2AR)54. We successfully simulated the binding to
β2AR of one natural agonist, adrenaline, and one inverse agonist,
propranolol. More details about the β2AR results are given in
Supplementary Fig. 5 and Supplementary Discussion.

The fourth case study is the farnesoid X receptor (FXR), a type
II nuclear receptor involved in the control of bile acids,
triglyceride, cholesterol, and glucose metabolism55–57. After
activation, FXR in complex with the retinoid X receptor (RXR)
binds to DNA regulating the expression of proteins involved in
bile acid synthesis, triglyceride clearance, cholesterol reduction
and modulating insulin sensitivity56,57. Therefore, in recent years
FXR has become a prominent target for treatment of metabolic
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disorders, primary biliary cirrhosis, and non-alcoholic steatohe-
patitis syndrome58,59. Here, we investigate the binding of the
potent agonist 6-ethyl-chenodeoxycholic acid (also known as
obeticholic acid) to FXR. Obeticholic acid is a steroid acid with a
specifically bent shape, containing a hydroxyl group and a
charged carboxylate in the opposite extremities of the molecule
(Fig. 3a). These characteristics make obeticholic acid a challen-
ging ligand for binding studies.

In detail, we simulated 20 µs for 72 replicas of FXR in presence
of 4 ligand molecules (Fig. 3a). Overall, we observe 622 binding
events. The best bound pose has an RMSD of 1.2 Å and it is
remarkably similar to the crystallographic one, being shifted
toward helix 12 by only 1.0 Å (Fig. 3b). Figure 3c shows the
RMSD values distribution of the identified binding poses
computed relative to the crystal ligand-binding mode (pdb code:
1OSV)60. Three peaks corresponding to different conformational
families are detected at 3.6 Å, 2.7 Å, and 2.0 Å, hereinafter defined
as peaks 1, 2, and 3, respectively. The centroid of each family is
depicted in Fig. 3d. The presence of three peaks indicates a multi-
step ligand-binding mechanism. We observe that obeticholic acid
first approaches FXR through the loop connecting helices 5 and 6
assuming an external binding conformation (ligand at peak 1
represented as yellow sticks in Fig. 3c), and then upon the
receptor rearrangement it reaches an inner binding pose (ligand
at peak 2 and 3 represented as ice-blue and orange sticks,

respectively, in Fig. 3c). In all the observed binding events,
obeticholic acid approaches the binding pocket contacting the
loop connecting helices 5 and 6 either from the bottom, passing
over helices 2 and 6 (Fig. 3b black and red arrow), or from the top
through helix 1 (Fig. 3b green arrow). Such pathways resemble
the so-called paths III, observed for other type II nuclear
receptors61. In all cases, the ligand points the inner steroidal
scaffold toward the binding pocket and the outer carboxylate side
chain toward the solvent. This orientation is favored by the salt
bridge interaction engaged by the negatively charged carboxylic
group of obeticholic acid with several positively charged residues
placed around the cleft, namely Arg261, Lys272, Arg328, Lys336,
and Arg348 (numbering from pdb code: 1OSV), which are
known to be involved in the binding of FXR agonists62,63. It is
also interesting to note that the loop connecting helices 5 and 6
changes its conformation passing from the apo (unbound) to the
holo form (ligand bound) (Fig. 3e). This leads to a reduced
solvent accessible surface area (SASA) of the binding pocket
computed for the apo FXR if compared with that of the holo form
(Supplementary Fig. 6, blue solid line). The conformational
change of the protein is further quantified by the change in the
RMSD values of its backbone beads if compared with those of
the crystal structure. In particular, the RMSD changes from 4.1 ±
1.0 Å in the unbound conformation to 6.9 ± 0.9 Å during ligand
binding and to 5.9 ± 0.8 Å in the final bound state (blue line in
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Fig. 3e). This finding together with the different SASA values of
FXR in the holo and apo form, suggests an induced fit binding
mechanism of obeticholic acid. Previous studies with FXR64,65

and other type II nuclear receptors66,67 also indicate stabilization
upon ligand binding of the region around the binding site,
including helices 2, 5, and 6.

Together, our results demonstrate the ability of the re-
parametrized Martini CG model to reproduce experimental binding
modes for a variety of receptors, even in challenging cases as GPCRs
where ligand binding occurs in environments of different polarity
and the nuclear receptor FXR where moderate conformational
rearrangement of the binding pocket is induced by ligand binding.

Binding to enzymes. As a fifth showcase, we consider the human
proto-oncogene tyrosine-protein kinase (c-Src) which regulates
signal transduction in cells68. Tyrosine kinase dysfunction is
linked to many diseases, and is of particular interest for cancer
treatment. Regulation of tyrosine kinases is known to be governed
by the presence of multiple allosteric binding sites, which have
become the target of many pharmaceuticals69. Here, we investi-
gate the binding of the antileukemia drug dasatinib (Fig. 4a) of
which the experimental binding mode is known and its binding
has been previously simulated at atomistic level11. Furthermore,
dasatinib as a larger organic molecule compared to the previously
investigated ligands, is endowed with four rings with high relative

flexibility. It represents a differently challenging system where the
ligand not only needs to find the binding site but also orient itself
correctly in a specific conformation. The protein was solvated in
~14,500 CG water beads, and one dasatinib molecule was added
in the box, resulting in a substrate concentration of 0.96 mM
(Fig. 4a). The chlorobenzene part of dasatinib binds deeply inside
the highly conserved ATP pocket, while the piperazine ring
remains in the outer part in contact with the solvent. Inverse
binding poses, i.e. poses where the piperazine ring is buried in the
active site whereas the chlorobenzene ring stays in the solvent,
were rarely observed. Using a higher dasatinib concentration (i.e.,
five dasatinib molecules per box) lead to strong aggregation
around the hinge region between the two kinase domain lobules
(Supplementary Fig. 7), although binding to the ATP pocket still
occurred. We found an excellent agreement in the RMSD of the
bound ligand compared to the crystallographic binding pose (pdb
code: 1Y5770), with an average RMSD of 3.0 Å (Fig. 4b), while the
RMSD of the atomistic simulation was 2.0 Å11. 5 out of 10
independent 30 µs replicas resulted in dasatinib binding with a
total of 11 individual binding events observed in the aggregate
300 µs simulation time. The binding events lasted anywhere from
a few hundreds of nanoseconds to 5 µs, adding up to 8% of time
spent in the bound state. Figure 4b depicts the high-density
regions or dasatinib around the protein. One binding pathway
was found to be coming from the region between the two protein
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lobules (Fig. 4b green arrow), in accordance with the sole dasa-
tinib binding path identified in an atomistic simulation11.
However, in 7 out of 11 binding events dasatinib reached the
catalytic site directly from the solvent (Fig. 4b blue arrow). We
estimate a kon of 40 s−1 µM−1, which can be compared to the
kon of 1.9 s−1 µM−1 calculated from atomistic simulations11 and
5 s−1 µM−1 from experiments71. Considering the temporal speed-
up of the Martini model due to the smoother energy landscape

(see discussion), our estimate is well in line with the expected
values.

As a sixth showcase, we studied the S-selective aminotransfer-
ase of Vibrio fluvialis which stereoselectively catalyzes the transfer
of an amino group from a donor to an acceptor ketone72. Using
unbiased simulations we obtain good agreement of the binding
pose of the substrate acetophenone. More details are provided in
the Supplementary Fig. 8 and Supplementary Discussion.
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The seventh and last case study presented here targets a
serine/threonine kinase involved in the regulation of cellular
virus endocytosis, namely the AP2-associated protein kinase 1
(AAK1)73,74. Targeting AAK1 has been shown to successfully
prevent viral infection of cells74 and the compound baricitinib was
recently suggested as potential drug to prevent endocytosis of
SARS-CoV-2 by inhibiting AAK134. Baricitinib is a known
inhibitor of the Janus kinases 1 and 2 JAK1/2 and is applied e.g.
against rheumatoid arthritis75. Due to the lack of a crystal structure
of AAK1 in complex with baricitinib, we used the crystal structure
of AAK1 bound to the inhibitor LKB1 (pdb code: 5L4Q76) to
generate the CG protein model, while the structure of the homolog
BMP-2-inducible kinase bound to baricitinib (pdb code: 4W9X77)
was employed as reference model for the baricitinib binding mode.
Overall, the BMP-2-inducible kinase has 72% of identity with
AAK1. Moreover, the catalytic site is fully conserved (100%
identity), thus representing a good reference for the baricitinb
binding mode to AAK1.

Figure 4c shows the simulation box containing AAK1 and one
molecule of baricitinib. We performed 30 simulations of 30 µs
each and observed 4 binding events to the buried catalytic site
(red surface, Fig. 4d). During one of these binding events, the
ligand stayed for the last 15 µs of the replica in the catalytic site.
Despite the complexity of the system, we obtain an RMSD for the
main binding mode of 2.6 Å with respect to the crystal pose
(Fig. 4d). Two additional binding conformations are also found at
farther distance from the binding site. Moreover, the ligand
exhibits a tendency to bind to a more external site next to the
catalytic pocket that seems to be involved in the association
pathway. This pathway seems to resemble one of the pathways
observed for c-Src, which may be a common feature for kinases.
Several additional low-affinity pockets (gray surfaces) on the
protein surface are identified, which might be relevant for the
activity of baricitinib.

Together, the results presented on binding of drugs and
substrates to different classes of enzymes further show the
potential of our approach to predict accurate binding modes and
pathways for large, flexible, and complex ligands.

Discussion
Applications such as structure-based drug design are particularly
challenging for CG modeling because of several requirements: (1)
high chemical specificity of pocket-ligand interactions; (2) cap-
ability to represent all possible components of the system (as
proteins, cofactors, drug candidates, solvent, lipids, etc.) in a
coherent way; (3) realistic representation of conformational
flexibility of each molecule in the system; (4) accurate thermo-
dynamics and kinetics of binding. Currently, none of the CG
force fields available fulfills all the requirements listed above. The
examples showed in this work indicate that the current state of
the Martini model seems to finally achieve most of these
requirements with reasonable accuracy in relation to atomistic
models. The key improvement in Martini 333 to enable such
applications is the enhanced packing of the CG beads, achieved
by re-balancing of the cross-interactions of different bead sizes78,
as well as by the re-parametrization of bonded distances based on
molecular volume and shape. As a result, protein cavities are
represented more realistically and ligands can fit better. Besides,
the expansion of bead chemical type options in Martini 3 allows
for a better coverage of the chemical space, facilitating CG
modeling of rather complex small molecules such as baricitinib
and dasatinib.

Given the improvements in accuracy in Martini 3, another
key advantage of CG models in general is their computational
performance. For instance, Martini CG based docking of

biomolecular complexes can be around one order of magnitude
faster compared to atomistic models, as recently demonstrated for
the Haddock program79,80. Benchmarks tests performed with the
program package Gromacs (version 2018)81 showed that Martini
based MD simulations of protein-ligand systems can be 110–350
times faster than all-atom simulations, with the performance
gain increasing with growing system size (see Supplementary
Discussion and Supplementary Table 2). Considering diffusion-
controlled processes such as ligand binding, the smoother
potential landscape of Martini can also provide 2–3 times faster
association/dissociation to the proteins (Supplementary Table 3).
In addition, faster protein dynamics can play an important role in
induced-fit processes, as exemplified by the binding of the obe-
ticholic acid to FXR and the dasatinib binding to c-Src kinase.
The latter shows a ~8 times speed-up in association rate constant
compared to atomistic simulations. Another performance
advantage can be achieved by coarse-graining in the chemical
space, as recently demonstrated by Menichetti et al.82. Because
certain Martini CG moieties can represent more than one
chemical fragment at the same time, virtual screening using
fragment-based strategies could lead to an improvement in per-
formance of three to four orders of magnitude. The combination
of increased performance, smother potential surfaces, and coarse-
graining of the chemical space can bring virtual screening pro-
tocols to speed-ups in the order of 105–107 in comparison to
approaches based on atomistic models.

The main limitation to achieve such a high-throughput
screening pipeline is the currently limited set of available ligand
parameters for Martini. The development of a curated and vali-
dated database for Martini CG ligands is therefore of paramount
importance. Such ligand databases in combination with auto-
mated tools to generate CG models83,84 (https://github.com/
marrink-lab/cartographer) can expand the accessible chemical
space of Martini to millions of compounds. Other aspects that
can limit the accuracy of the model in certain applications, and
that should be kept in mind, are: (1) the poor representation of
protein flexibility by elastic network models; (2) the hydration of
pockets by water molecules that cannot be represented by CG
water models; (3) limited accuracy at the CG level to differentiate
enantiomers or to fully represent directionality in binding poses;
(4) the approximate nature of binding kinetics. Most of these
issues are inherent to the process of coarse-graining, but some
of these problems can be alleviated at least to some extent. For
instance, protein flexibility can be greatly improved by the
combination of Martini and Gō-like models85,86. Hydration of
pockets can be modeled by the usage of smaller water beads, as it
was already applied here in the A2AR and β2AR case (see Sup-
plementary Methods). Polarizable Martini models87,88 can be
applied to cases for which directionally of hydrogen bonds or an
improved description of the electrostatic interactions are neces-
sary. Differentiation of enantiomers is a clear challenge for CG
models, and might require two-state CG models89 or the use of
multi-resolution tools to couple Martini to all-atom models90,91.
Further refinement of the ligand pose and the binding pocket can
be achieved by back-mapping to atomistic resolution50 as it was
already used in the present study in the case of the GPCRs and
FXR. Concerning kinetics, the reduction of friction from the
missing atomistic degrees of freedom causes a natural speed-up of
the dynamics (Supplementary Table 3). This implies that only
order of magnitude estimates can be provided when using a CG
model such as Martini. However, trends for ligands with the same
level of resolutions can be expected to be captured well. In the
case of binding, diffusional encounter between the ligand and the
binding pocket entrance largely determines the binding kinetics.
Because the molecular shape of the ligand, the protein, and the
binding pocket entrance are represented well in Martini 3, trends
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in binding kinetics are expected to be represented reasonably.
Moreover, realizing that in particular unbinding rates of ligands
from proteins often involve large free energy barriers, the overall
accuracy of kinetic estimates for unbinding will mostly rely on a
careful representation of the barrier energetics. Here, Martini is
expected to perform well as the model heavily relies on repro-
ducing free energy data and the correct kinetics rates might be
retrieved from a rigorous estimate of the friction reduction92.

In summary, we have demonstrated that the Martini 3 force
field can be used to simulate protein-ligand binding in a brute
force approach. We have illustrated its capability by spanning a
range of systems from the well-characterized model system T4
lysozyme over pharmacologically relevant receptors such as the
A2AR, β2AR, and FXR, to a number of different enzymes, namely
the aminotransferase Vf-ATA and the kinases c-Src and AAK1.
In the future, the computational performance can be straight-
forwardly increased by optimizing the ligand concentration as
well as by employing enhanced sampling techniques. Moreover,
our results pave the way to an efficient computational approach
to quantitatively predict binding thermodynamics and potentially
capture trends in kinetics. Because no a priori knowledge of the
binding pocket is required and a known pocket does not influence
our approach in any way, it entails the possibility of finding new
additional pockets. In this view, we could envision computational
competitive binding assays. Together with ongoing developments
of an automated topology builder for Martini, the presented
results open the way to a high-throughput screening pipeline,
potentially screening millions of drugs and protein mutants.

Methods
General setup for CG MD simulations. All simulations were performed with the
program package GROMACS81 (version 2016.x or 2018.x) using the open-beta
or more recent development versions of Martini 3. The beta-release of the
Martini 3 model is available online at the Martini web portal33. Here, also the
changes of the model with respect to the previous version are documented,
together with the main parameter set, validation, and instruction how to use the
model. More technical details about the system setups, simulation settings, and
analysis are given in the Supplementary Methods and in Supplementary
Tables 4–7.

Protein CG models. The bonded parameters of the protein models were slightly
adapted from the standard Martini 2.2 settings including the recently suggested
side-chain corrections93, applied not only for β-strands but to all loops and sec-
ondary structure elements. An elastic network comparable to the one of the Martini
2.2 protein model88 was used to maintain the secondary and ternary protein
structure without exclusions of the non-bonded interactions between the backbone
beads connected by the elastic network78. See more details about the protein
models in the Supplementary Methods.

Generic ligand parametrization. Models for the ligands were parametrized
according to the Martini (3.0) procedure: First, mappings were designed based on
the following principles: (i) minimize number of CG beads used and use regular-
(R-), small- (S-), and tiny- (T-) beads for 4-to-1, 3-to-1, and 2-to-1 (non-hydrogen)
atoms-to-CG-site mappings; (ii) describe aromatic rings by T-beads; (iii) take into
account the symmetry of the molecule. Secondly, Martini bead types were assigned
based on the chemical building block they are taken to represent. Bonded inter-
actions are then obtained based on atomistic models. Note that we used center of
geometry (COG)-based mapping taking into account also the hydrogen atoms.
COG-based mapping leads to better molecular (e.g., solvent accessible surface area,
SASA) and bulk (e.g., mass densities) properties for the models33,94. Finally, models
are validated using partitioning free energy data and comparison to atomistic SASA
values. More details about the ligands models are given in the Supplementary
Methods.

RMSD calculation. To calculate the RMSD between the simulated binding poses
and the crystal structure, the binding pocket was aligned to the CG crystal struc-
ture. The list of residues used for the alignment of the various systems is given in
the Supplementary Methods. Finally, before the RMSD calculation, the CG ligand
in the crystal structure, which was obtained by transforming the bound atomistic
ligand to its CG resolution, was minimized for one step to account for slight
changes in the bonded parameters. Note that in case of ligands with high symmetry
like benzene, all possible orientations have to be taken into account. The lowest

RMSD of all possible orientations is the correct value because all other values are
too high due to flipping or rotation of the structure which does not change the
chemical structure of the binding pose.

Binding free energy calculation. Supplementary Fig. 4 shows the radial ligand-
receptor potentials of mean force (PMFs) obtained from unbiased MD simulations.
One dimensional PMFs were computed based on normalized distance distributions
(p(r)) between the center of geometry of the pocket and of the ligand, including
volumetric (also called entropic) correction 2 × ln(r)95,96.

PMFðrÞ ¼ �RTln pðrÞð Þ þ 2 ´ lnðrÞ ð1Þ

The distance r was shifted 0.25 nm to take into account the average radial
volume of the ligands, which was estimated based on their average SASA values.
Besides, the entire PMF was shifted to zero at 4.5 nm distance. The binding free
energies (displayed in Table 1) were estimated by integrating the PMF over the
distance r in terms of

Kbind ¼

Z rc

0
4πr2e�

PMFðrÞ
RT dr ¼

Z rc

0
4πr2pðrÞdr ð2Þ

ΔG0
bind ¼ �RTlnðKbindC

0Þ ð3Þ

with the standard concentration C0 equals to (1/1.66) nm−3. The chosen cutoff (rc)
was 4.0 nm, which includes binding not only in the buried pocket but also
contributions from the whole protein. Based on the comparison of the number of
binding and unbinding events observed in the simulations, it is possible that ΔG0

bind
obtained for systems such as ethylbenzene and n-propylbenzene are slightly
underestimated, because around 35% of the simulations did not show any
unbinding by the end of the trajectories.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this paper are available from the corresponding authors
upon reasonable request.

Code availability
Force-field parameters and procedures (e.g. tutorials) are publicly available at http://
cgmartini.nl.
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