
Send Orders of Reprints at reprints@benthamscience.net 

2296 Current Medicinal Chemistry, 2013, 20, 2296-2314 

 

Protein-Ligand Docking in the New Millennium – A Retrospective of 10 
Years in the Field 

S.F. Sousa, A.J.M. Ribeiro, J.T.S. Coimbra, R.P.P. Neves, S.A. Martins, N.S.H.N. Moorthy,  

P.A. Fernandes and M.J. Ramos* 

REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Cam-

po Alegre, s/n, 4169-007 Porto, Portugal 

Abstract: Protein-ligand docking is currently an important tool in drug discovery efforts and an active area of research 

that has been the subject of important developments over the last decade. These are well portrayed in the rising number of 

available protein-ligand docking software programs, increasing level of sophistication of its most recent applications, and 

growing number of users. While starting by summarizing the key concepts in protein-ligand docking, this article presents 

an analysis of the evolution of this important field of research over the past decade. Particular attention is given to the 

massive range of alternatives, in terms of protein-ligand docking software programs currently available. The emerging 

trends in this field are the subject of special attention, while old established docking alternatives are critically revisited. 

Current challenges in the field of protein-ligand docking such as the treatment of protein flexibility, the presence of struc-

tural water molecules and its effect in docking, and the entropy of binding are dissected and discussed, trying to anticipate 

the next years in the field. 
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INTRODUCTION 

Protein-ligand docking is a widely used computational 
tool that tries to predict the most favourable structure of the 
complex formed between a given protein-target (often an 
enzyme) and a small-molecule ligand. It can be regarded as 
part of the more general field of molecular docking, which 
aims to predict the most favourable structure of the intermo-
lecular complex formed between two or more generic con-
stituent molecules, a definition which also encompasses the 
field of protein-protein docking [1, 2]. 

Molecular recognition events are essential in many bio-
logical processes, including signal transduction, cell regula-
tion and other macromolecular association actions. These 
processes rely on a variety of atomic-level scale events in-
cluding enzyme-substrate, drug-protein, drug-nucleic acid 
and protein-protein recognition [3], that are of great thera-
peutic importance. Docking offers a relatively fast and eco-
nomic alternative to standard experimental techniques, al-
lowing the prediction in silico (i.e. computationally) of the 
binding modes and affinities for molecular recognition 
events such as the ones outlined above [4]. Within the mo-
lecular docking field, protein-ligand docking represents a 
particularly important and well-established methodology, 
and a relevant part of the current drug discovery process [1, 
2, 5, 6]. 
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From a functional point of view, docking involves the 
generation of an ensemble of 3D conformers of a complex 
starting from the known structures of its free components 
[7]. In protein-ligand docking this process involves the 
search through different ligand conformations and orienta-
tions (the pose) within a given target protein, and the meas-
ure of the binding affinity of the different alternatives (the 
scoring).  

Different poses are generated by a search algorithm, 
which ideally should sample the degrees of freedom of the 
protein-ligand complex adequately enough as to include the 
true binding modes. These different poses are evaluated 
through a scoring function. This should be able to rank them, 
and to identify the true binding mode(s) for a given ligand, 
and to estimate their binding affinity. Hence, a scoring func-
tion should be able not only to ensure a distinction between 
different similar alternatives and ranking them accordingly, 
but also to represent the thermodynamics of interaction of 
the protein-ligand system accurately.  

Over time different search algorithms have become 
available, based on quite different approaches. Naturally, the 
two critical elements in a search algorithm are speed and 
effectiveness in covering the relevant conformational space 
[1]. Efficiently dealing with the flexibility is a major chal-
lenge, as the computational time associated scales with the 
number of degrees of freedom included in the conforma-
tional search. Several approaches, at different levels of so-
phistication, have been devised to deal with this issue. These 
have traditionally been grouped in: rigid-body methods, 
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flexible-ligand docking methods, and flexible ligand - flexi-
ble target methods.  

Rigid-body algorithms comprise the most basic approach 
to sample the conformational space resulting from a ligand-
target association. These methods treat both the ligand and 
the target as rigid and explore only the six degrees of transla-
tion and rotational freedom. For flexible-ligand docking 
some quite different approaches exist, including systematic, 
random and stochastic algorithms. Flexible ligand – flexible 
target methods represent the high-end approach and intro-
duce flexibility in the protein target, in addition to the ligand. 
As the potential number of degrees of freedom in such a 
complex is virtually untreatable, several ingenious schemes 
able to include at least partially, flexibility into the descrip-
tion of the target protein have been developed [8-14]. This 
topic will be the subject of particular detail in this review. 

In terms of scoring functions the number of available al-
ternatives is also quite vast, even though the availability of 
some scoring functions is sometimes restricted to specific 
software packages. The most common scoring functions 
normally applied can be divided into three major classes: 
force-field-based, empirical, and knowledge-based scoring 
functions. In addition to good accuracy, an important condi-
tion for scoring functions is that they should be fast enough 
to allow their application to a large number of potential solu-
tions, a feature that implies a number of simplifications that 
tend to reduce the complexity and computational cost of the 
scoring functions at the cost of accuracy. Popular examples 
of scoring functions include ChemScore [15], DrugScore 
[16, 17], D-Score [18], Fresno [19], F-Score [20], G-Score 
[18], GoldScore [21], SMoG score [22], and X-SCORE [23].  

The best logical solution would seem to be that of com-
paring the best searching algorithm with the best scoring 
function. The answer is, however, not so easy, as the per-
formance of most docking tools can be highly dependent on 
the particular characteristics of the binding site and of the 
ligands to be investigated. Given the vast number of possible 
search algorithm/scoring function combinations, establishing 
which method would be more suitable in a specific context is 
almost impossible [24-30]. Even though some strategies 
have been devised to deal with these problems, such as con-
sensus scoring [31], the user’s experience continues to be 
one of the most critical features for the success of a docking 
study.  

The other big factor to take into account is the one thing 
that connects the user knowledge and experience, the scoring 
function, the search algorithm, the target, and the ligand(s), 
and that ideally should be able to get the most out of these 
components: the protein-ligand docking software program. 
Over time several studies have tried to evaluate the accuracy 
of different protein-ligand docking programs. Historically, 
most of these comparisons have been made in terms of their 
ability to reproduce the X-ray pose of selected ligands [8, 18, 
21, 32-50], their capability to predict binding free energies 
from the best-scored pose [16, 21, 24, 27, 28, 35, 51-56], or 
their ability to identify known binders from randomly chosen 
molecules [21, 24, 27, 29, 47, 48, 50, 56-58]. However, gen-
eralizing these partial results in terms of the docking pro-
grams themselves is very difficult and often misleading. It is 
also important to take into consideration that the perform-

ance of most docking tools can significantly vary with the 
particular target under study, and with the particular docking 
protocol and variables chosen by the user [24, 27-30]. Time 
is also an important variable to consider, with different soft-
ware packages working in quite different time-scales. For 
these reasons establishing a rigorous comparison of protein-
ligand docking programs is a daunting task, as it is difficult 
to draw conclusions of general applicability [59]. 

CHALLENGES FOR PROTEIN-LIGAND DOCKING 

Despite the significant progress that has characterized the 
past 10 years in the field of protein-ligand docking, several 
aspects have remained important challenges, with significant 
margin for improvement. In this section, we review three 
critical issues for protein-ligand docking: the treatment of 
protein flexibility, the presence of structural water molecules 
and its effect in docking, and the entropy of binding. 

Treatment of Protein Flexibility 

Protein flexibility, including side-chain reorientations 
and backbone motions, can significantly modulate the ge-
ometry and characteristics of the ligand binding site. How-
ever, even though most currently available docking methods 
already treat ligands as flexible, the inclusion of protein 
flexibility is still a challenging task, remaining one of the 
most important topics in development within the field of 
protein ligand docking [60-69]. In fact, although some 
analogies exist, most of the methods used in the context of 
ligand flexibility cannot be directly transferred to the protein 
due to the huge number of degrees of freedom associated 
[66]. Several strategies to circumvent this problem and to 
account for protein flexibility, at least at a partial level, have 
been described in the literature and have gained considerable 
momentum over the past few years. Most of the strategies 
already implemented in protein-ligand docking programs 
account for side chain flexibility only, with the inclusion of 
backbone flexibility being still in its infancy [62]. Soft dock-
ing applications, rotamer exploration approaches, multiple 
protein structure protocols and molecular dynamics simula-
tion methods represent the main strategies to include some 
level of protein flexibility into protein-ligand docking.  

Soft Docking 

Soft docking is a simplistic way to partially introduce re-
ceptor flexibility and ligand-induced fit effects. Soft docking 
methods typically work by allowing a certain overlap be-
tween receptor and ligand, normally by tolerant scoring func-
tions, called “soft core potentials”. Soft docking methods can 
efficiently detect subtle conformational changes on the re-
ceptor, often not easily perceived through other more sophis-
ticated approaches and do not normally involve an increase 
in the computational time associated. However, their scope is 
rather limited to small scale rearrangements associated to 
side-chain plasticity, without the corresponding backbone 
adjustment [62, 68]. 

Rotamer Exploration 

Methods based on a systematic exploration of rotamers 
ensure an effective consideration of side-chain flexibility 
[62]. Such approaches are typically based on rotamer librar-
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ies that try to represent the protein conformational space as a 
set of experimentally observed and preferred rotameric states 
for each side chain [10, 70]. Naturally, the application of 
these methods is in general limited to only a few active site 
amino acid residues, normally selected by the user. The 
computational cost associated depends not only on the num-
ber of residues subject to rotamer exploration, but also on the 
size and completeness of the corresponding rotamer libraries. 
Such approaches present a very useful alternative when tack-
ling receptors for which there is a good structural knowledge 
on both unbound and bound receptor forms for similar 
ligands, with such structures suggesting limited structural 
changes involving only active-site residues. However, focus-
ing on the side chains neglects any real change in the back-
bone of the receptor, and therefore to give a reasonable ac-
count of protein flexibility going beyond simple-side chain 
reorientation is often required. 

Multiple Protein Structures 

An alternative way to implicitly introduce flexibility into 
protein-ligand docking involves the use of an ensemble of 
protein conformations as a target for docking instead of a 
single structure. Some different approaches have explored 
this basic idea [12, 60, 71-76], with alternatives differing on 
the sources employed to generate multiple protein structures 
(X-ray crystallographic structures, NMR, molecular dynam-
ics, monte carlo simulations, or elastic network normal mode 
analysis techniques) and on how information obtained from 
the several conformations is combined [60, 62, 74-76]. Such 
approaches typically have a high computational cost, which 
depends on the number of multiple target structures consid-
ered. In addition, they do not enable the generation of novel 
protein conformations as a result of ligand binding and its 
exploration of the target conformational space is highly bi-
ased and dependent on the set of structures considered as 
input. Nevertheless such approaches are currently regarded 
as the most promising routes of future progress [62]. 

Molecular Dynamics Simulations 

The application of molecular dynamics simulations en-
ables an evaluation of side-chain and backbone movement 
within protein-ligand docking, allowing in principle the gen-
eration of novel protein-ligand conformations. However, the 
practical success of such approaches is still quite small, 
mainly due to the limited extent of the corresponding MD 
simulations. In fact, the computational cost required to guar-
antee a reasonable exploration of the conformational sam-
pling through molecular dynamics simulations is extremely 
high.  

Several studies have applied enhanced sampling tech-
niques to render the application of MD simulations in pro-
tein-ligand docking more efficient, involving for example the 
application of implicit solvent models or the use of geomet-
ric constrains on the residues outside the ligand binding re-
gion [77-79]. Despite some promising strategies, most appli-
cations of molecular dynamics simulations in the field of 
docking are still done at a post-docking stage, to assess the 
stability of different docked conformations, to obtain addi-
tional conformational and energetic insight into ligand bind-
ing, or simply to improve the ligand pose as a refinement 
tool [80-87]. 

Presence of Structural Water Molecules 

Solvation effects are well-known to influence the binding 
ability of a drug [69, 88]. As such they have become an inte-
gral part of many scoring functions used in protein-ligand 
docking [2, 3]. Force field-based scoring methods, for exam-
ple, have long used a distance-dependent dielectric constant 
to reflect the screening effect of water molecules in electro-
static interactions. In empirical-based scoring methods the 
inclusion of specific terms related to solvation (e.g. a desol-
vation energy term) is also quite common, with the corre-
sponding coefficient in the overall energy expression being 
adjusted to fit binding affinity data from an experimentally 
determined training set. However, more than solvation, it is 
the presence of structural water molecules that remains a 
hard challenge in present day protein-ligand docking. 

Water molecules often appear around ligands in protein 
crystallographic structures, and their presence and precise 
positioning can lead to significant alterations on both the 
ligand binding affinity and range of most favored conforma-
tions, important issues for protein-ligand docking and virtual 
screening applications [89-93]. An analysis of a representa-
tive set of 392 high-resolution protein-ligand complexes 
from the Protein Data Bank revealed an average of 4.6 
ligand-bound water molecules, 76% of which interacting 
simultaneously with both the ligand and the protein [94]. For 
these specific cases, an implicit representation of the solvent 
is clearly not enough. Hence in general, while part of the 
function of water in ligand binding can be accounted through 
a better description of solvation effects, there are a number 
of important issues that require an explicit atomic level de-
scription of water. 

In principle, an explicit description of structural water 
molecules can be done in a number of ways [95]. Typical 
molecular mechanical force fields contain reasonable water 
models [96] that can be adopted in protein ligand docking. 3-
Point water models, such as TIP3P [97], SPC [98], SPC/E 
[99], which have a van der Waals center at the water oxygen 
atom and partial charges at the oxygen and hydrogen atoms 
are a popular choice. An improved description can be ob-
tained with more sophisticated models, like the TIP4P [100] 
and TIP5P [101] water models. 

In the particular case of protein-ligand docking, through 
the application of such models, the presence of structural 
water molecules can be reasonably accounted for in several 
very precise situations. Imagine, for example, that one is 
starting a protein-ligand docking (or even a virtual screening 
campaign) for a protein target on which there is precise in-
formation for the presence of a strongly-bound or conserved 
water molecule (present in a variety of similar X-ray struc-
tures for the same target). In such cases, the water molecule 
can be treated as being an integral part of the protein target 
for docking. A similar decision can be made regarding dock-
ing with ligands containing a common scaffold, when there 
is an X-ray structure available for one of the ligands in the 
series showing the presence of a water molecule.  

For most situations of interest, however, when no a priori 
information is available or can be easily obtained, water 
molecules emerge as an additional participant in docking, 
often the most elusive one, and an additional variable in the 
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docking process. While ideally the conformational space 
associated to the interaction of a variable number of water 
molecules with a given ligand should be explored together, 
against a given protein target, and evaluated accordingly, the 
immense range of possibilities associated greatly limits the 
practical application of such principles. 

An ingenious approach to partially circumvent this issue 
is the “Just Add Water Molecules” (JAWS) procedure de-
veloped by Michel & co-workers [102]. This method uses a 
double-decoupling scheme to compare the energetic cost 
associated to water molecule appearance and disappearance 
on a binding-site grid. Its accuracy in locating hydration sites 
has been demonstrated for five different biomolecular sys-
tems, namely neuraminidase, scytalone dehydratase, major 
urinary protein 1, -lactoglobulin, and COX-2. The JAWS 
methodology has been shown to work particularly well for 
water molecules well-buried in cavities, in which the grid is 
isolated from the bulk water. More challenging has been its 
application to more exposed binding sites, where neverthe-
less quite reasonable results have been obtained [102]. Other 
less recent approaches such as AQUARIUS [103], CS-Map 
[104], MCSS [105], SuperStar [106] and most notably 
GRID[107] have also been described in the literature to iden-
tify potential water binding sites. 

Assuming that a good knowledge on the preferred hydra-
tion sites is known, either from X-ray or NMR approaches or 
from computational alternatives such as JAWS, it is neces-
sary for protein-ligand docking to anticipate which water 
molecules are more likely to be displaced to allow ligand 
binding. Fast methods like WaterScore [108], HINT [109], 
or Consolv [110] can be used to differentiate between water 
molecules that should be included in the docking process and 
those that should be replaced to make room for the ligand, 
helping to prepare initial structures for docking. Several 
docking programs have also implemented strategies to alter 
water positioning (including its addition or removal) during 
docking or even after docking, typically through an energy 
penalty associated [90]. 

Entropy 

It is well known that entropic effects have an important 
contribution to the protein-ligand binding energy [111-116]. 
Entropy contributions arise from a variety of aspects. These 
include the reduction of the translational and rotational de-
grees of freedom in the ligand, changes in the normal modes 
of the protein and the ligand during binding, from the ar-
rangement of water layers around the two solutes and even 
from protonation and deprotonation events [112, 113, 117-
122] However, in most commonly used computational appli-
cations that deal with protein complexes, including free en-
ergy calculations [123, 124], entropy is neglected altogether, 
or at least the subject of quite dramatic simplifications [114, 
125]. In fact, the calculation of the entropic contribution is 
computationally very expensive as it requires extremely well 
minimized structures for a Normal Mode analysis, or large 
numbers of conformations for a Quasi-harmonic analysis 
[126-128]. This problem is even more striking in the case of 
protein-ligand docking, for which computational efficiency 
is an important requirement, with issues like protein flexibil-

ity often posing already quite a heavy requirement for a rea-
sonably accurate protocol. 

Designing efficient scoring functions able to incorporate 
entropy is hence a challenge for the next years, although 
several attempts to include the binding entropy in protein-
ligand docking have been reported in the literature, particu-
larly involving re-scoring schemes [117, 129, 130].  

Ruvinsky et al. [117] have introduced a novel method to 
estimate the contributions of translational, rotational, and 
torsional entropy into the protein-ligand binding affinity. The 
method works by performing multiple docking experiments, 
clustering the resulting conformations by similarity, and then 
using a measure of the cluster size to estimate the entropic 
contribution. Hence, the method assumes that large clusters 
of conformations are indicative of favorable entropic contri-
butions of the local energy landscapes, and that the docking 
algorithm provides a reasonable exploration of the associated 
conformational space. Despite this assumption, this treat-
ment of entropy was shown to improve docking accuracy by 
10 –21% when used with the AutoDock scoring function 
[117]. The authors subsequently showed important im-
provements when applied in conjunction with other well-
known scoring functions [129], namely by 2–25% when used 
with G-Score, 7–41% with D-Score, 0–8% with LigScore, 1–
6% with PLP, 0–12% with LUDI, 2–8% with F-Score, 7–
29% with ChemScore, 0–9% with X-Score, 2–19% with 
PMF, and 1–7% with DrugScore. Tests were performed 
against a dataset of 100 PDB protein-ligand complexes and 
ensembles of 101 docked positions generated by Wang et al. 
[131]. 

Lee et al. [130] proposed a similar statistical rescoring 
method to introduce entropy into the protein-ligand docking 
problem. According to the method developed by Lee et al. a 
probability function is introduced to analyze the populations 
of different binding modes in the context of statistical me-
chanics. This is then used to allow an estimate of the contri-
bution of the state represented by a sampled conformation to 
the configurational integral, applying the notion of colony 
energy, proposed by Xiang et al. [132]. Improved accuracy 
in pose prediction has been demonstrated for several com-
mon scoring functions, but this method can be easily com-
bined with other preexisting scoring functions, and requires 
very little extra computational costs because no energy 
minimizations, dynamics simulations, or clustering is needed 
[130]. 

Other attempts to accurately account for entropy involve 
the inclusion of entropic terms in Knowledge-Based Scoring 
Functions used in docking [111]. Globally however, the 
challenge still remains.  

PROTEIN-LIGAND DOCKING PROGRAMS 

The number of docking programs currently available is 
high and has been steadily increasing over the last decades. 
(Table 1) presents an overview of the most common protein-
ligand docking programs, listed alphabetically, with indica-
tion of its main citations (original paper), and of the corre-
sponding year of publication and country of origin. This list 
is comprehensive but not complete. Software programs re-
leased in the period 2006-2011 are highlighted and will be
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Table 1. Comprehensive List of the Most Common Protein-Ligand Docking Programs 

Program Country
a
 Year

b
 Reference

c
 

AADS India 2011 [133] 

ADAM Japan 1994 [134] 

AutoDock USA 1990 [8, 135, 136] 

AutoDock Vina USA 2010 [137] 

BetaDock South Korea 2011 [138] 

DARWIN USA 2000 [139] 

DIVALI USA 1995 [140] 

DOCK USA 1988 [39, 141-146] 

DockVision Canada 1992 [9] 

EADock Switzerland 2007 [147] 

eHiTS Canada | UK 2006 [148] 

EUDOC USA 2001 [44] 

FDS UK 2003 [38] 

FlexE Germany 2001 [149] 

FlexX Germany 1996 [18, 20] 

FLIPDock USA 2007 [150] 

FLOG USA 1994 [151] 

FRED USA | UK 2003 [49] 

FTDOCK UK 1997 [152] 

GEMDOCK Taiwan 2004 [153] 

Glide USA 2004 [154, 155] 

GOLD UK 1995 [33, 156] 

Hammerhead USA 1996 [157] 

ICM-Dock USA 1997 [41] 

Lead finder Russia | Canada 2008 [158] 

LigandFit USA 2003 [50] 

LigDockCSA South Korea 2011 [159] 

LIGIN Israel | Germany 1996 [34] 

LUDI Germany 1992 [160] 

MADAMM Portugal 2009 [161] 

MCDOCK USA 1999 [162] 

MDock USA 2007 [163] 

MolDock Denmark 2006 [164] 

MS-DOCK France 2008 [165] 

ParDOCK India 2007 [166] 

PhDOCK USA 2003 [167] 



Protein-Ligand Docking in the New Millennium Current Medicinal Chemistry, 2013, Vol. 20, No. 18    2301 

(Table 1) contd…. 

Program Country
a
 Year

b
 Reference

c
 

PLANTS Belgium | Germany 2006 [168] 

PRO_LEADS UK 1998 [35] 

PRODOCK USA 1999 [169] 

ProPose Germany 2004 [170] 

PSI-DOCK China 2006 [171] 

PSO@AUTODOCK Germany 2007 [172] 

PythDock South Korea 2011 [173] 

Q-Dock USA 2008 [174] 

QXP USA 1997 [175] 

SANDOCK UK 1998 [176] 

SFDOCK China 1999 [177] 

SODOCK Taiwan 2007 [178] 

SOFTDocking USA 1991 [179] 

Surflex USA 2003 [48] 

SYSDOC USA 1994 [71] 

VoteDock Poland 2011 [180] 

YUCCA USA 2005 [181] 

[a] Country of origin, as indicated in the author address in the corresponding paper; [b] Programs released in the period 2006-2011 marked in bold; [c] Original main reference 

considered in the citation analysis. 

the subject of particular care, particularly in light of the chal-
lenges outlined previously. Special attention will also be 
dedicated to the docking programs that have been available 
for longer and that continue to be regarded by users world-
wide as a solid and competitive alternative. Finally, a par-
ticular look will be dedicated towards protein-ligand docking 
programs that are emerging as particular promising alterna-
tives and gaining a considerable number of users. 

Most Common Docking Alternatives 

(Fig. 1) illustrates the number of citations of the most 
common protein-ligand docking programs in the period 
2001-2011. AutoDock, GOLD, DOCK, FlexX, Glide, FTD 
OCK and QXP are the most cited docking programs, with 
over 300 citations each in this period. With the exception of 
Glide, all the other top cited docking programs have been 
available since the 1990s. Hence, they may be regarded as 
well-established mature docking alternatives, with a large 
and rather stable number of users. LigandFit, Surflex and 
FlexE are other more recent highly cited docking alterna-
tives. 

AutoDock is a versatile protein-ligand docking program 
developed by Morris & co-workers at the Scripps Research 
Institute [8, 135, 136]. Its free availability to academic users, 
together with the good accuracy and high versatility shown, 
have made it a very popular first choice for new users. These 
reasons have contributed to its widespread use, well por-

trayed in the impressively high number of citations in the 
past 10 years (3980 according to ISI Web of Science). The 
most recent version - AutoDock 4 (AutoDock Vina is de-
scribed separately in this review) - includes already side-
chain flexibility on selected amino acid residues. AutoDock 
offers a variety of search algorithms including a Monte Carlo 
Simulated Annealing algorithm, a Genetic Algorithm (GA), 
and a hybrid local search GA, also known as the Lamarckian 
Genetic Algorithm (LGA). The program can be used with a 
visual interface called AutoDock Tools (ADT) which en-
sures an efficient analysis of the docking results.  

GOLD is another highly regarded protein-ligand docking 
program. This program is the result of collaboration between 
the University of Sheffield, GlaxoSmithKline and the Cam-
bridge Crystallographic Data Centre (CCDC), and is com-
mercially available, following the initial development by 
Jones and co-workers [33, 156]. The program contains a 
genetic algorithm (GA) based search method for generating 
ligand poses, a user interface with interactive docking set-up 
via Hermes, and a comprehensive docking set-up wizard. 
GOLD allows full ligand flexibility, while ensuring partial 
protein flexibility, through protein side-chain and backbone 
flexibility for up to a maximum of ten user-defined residues. 
The program contains a useful variety of constraint options 
and allows the automatic consideration of cavity bound wa-
ter molecules. Several different scoring functions can be 
considered including GoldScore, ChemScore, Astex Statisti-
cal Potential (ASP), and Piecewise Linear Potential (PLP). 
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Extensive options for customizing or implementing new 
scoring functions through a Scoring Function Application 
Programming Interface are also present, allowing the user to 
improve the scoring function to be used in specific receptors. 

DOCK [39, 141-146] is a successful docking software 
initially developed by Irwin Kuntz that has been in the mar-
ket since 1988 and that is available free of charge for aca-
demic institutions. The present version - DOCK 6 - contains 
a series of improved scoring options including explicit terms 
for ligand conformational entropy corrections, ligand desol-
vation, and receptor desolvation. An AMBER molecular 
mechanics scoring function with implicit solvent, conjugate 
gradient minimization, and molecular dynamics simulation 
capabilities are also present. 

FlexX [18, 20] (now part of LeadIT) is a very interesting 
docking program developed by Rarey and co-workers that is 
presently commercialized by BioSolveIT. FlexX is based on 
a robust incremental construction algorithm through which 
the ligand is decomposed into pieces and then flexibly built 
up in the active site, using diverse placement strategies. The 
program contains improved capabilities to deal with flexible 
water molecules and with metal coordination.  

Originally developed by Friesner et al. [154, 155] in 
2004, Glide is a complete solution for protein-ligand docking 
that is now available as a module in the Schrodinger soft-
ware suite, commercialized by the Schrodinger LLC. Glide 
has gained a considerable number of users in just a few years 
and is emerging as an exciting alternative for protein-ligand 
docking. Glide generates a set of grids with different types of 
fields representing geometries and properties of the binding 
site region of the receptor. The torsional space of the ligand 
is then exhaustively sampled, generating a large number of 
binding poses. Following this initial rough positioning, a 
hierarchical strategy is employed in scoring. This starts with 
the application of a series of filters that narrows down the 
range of alternatives to be evaluated, and is followed by a 

GlideScore scoring, evolving to an in situ minimization with 
the OPLS-AA force field [182, 183] for the best alternatives. 
A final energy evaluation with a composite scoring function, 
which combines empirical and force-field-based terms, is 
then performed in a selected number of ligand-receptor 
poses, ensuring a very accurate scoring.  

FTDOCK (Fourier Transform rigid-body DOCKing) is a 
rigid docking program developed by Sternberg & co-workers 
[152] in 1997 that uses a docking algorithm based on that of 
Katchalski-Katzir [152]. The program divides the ligand and 
the receptor into orthogonal grids and scans the translational 
and rotational space of the two. The scoring method is based 
in a surface complementary score between the two grids, 
calculated with the help of Fourier transforms. Although 
surface complementarity was the only score used in the 
original method [152], recent versions apply also an electro-
static-based filter [152]. The program is free to both aca-
demic and commercial users, but it is no longer supported 
and no development has taken place in the last decade. 

QXP (Quick eXPlore) is a protein-ligand docking appli-
cation developed by McMarting & Bohacek and originally 
published in 1997 [32], with a search algorithm derived from 
the method of Monte Carlo perturbation with energy mini-
mization in the Cartesian space. QXP uses a modified ver-
sion of the AMBER force field [184, 185], with partial 
charges calculated from bond-dipole moments [186] and 
applies a superposition force field that automatically assigns 
short-range attractive forces to similar atoms within different 
molecules [187]. After an initial Monte Carlo perturbation, a 
fast search step is introduced, yielding an approximate low-
energy structure prior to energy minimization. 

We would like to state very clearly that the number of cita-
tions of a given paper is no measure of quality of the corre-
sponding protein-ligand docking software program. It can be 
taken as much as a rough indicator of the popularity of a spe-
cific docking software. Naturally, this popularity reflects mostly 

 

 
Fig. (1). Number of citations for the most common protein-ligand docking programs in the period 2001-2011. Programs published in 2011 

not included. 
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the views of the academic milieu, and only a scarce fraction of 
the protein-ligand docking applications in the pharmaceutical 
industry, as most of the research work conducted at the latter is 
not publicly available and does not get published.  

Several features can be associated to this popularity. The 
price of the program is naturally an important issue. Open 
source alternatives and programs that are made publicly 
available to academic institutions tend to get a higher num-
ber of citations than the ones that require a paid license. 
Even within the latter, there can be large differences in price 
for different software alternatives, which reflect in the num-
ber of users, but this can also be affected by the marketing 
efforts. Another set of issues that are important to the num-
ber of citations associated to a given program involves its 
ease of installation and use, the existence of support and the 
availability of adequate learning tutorials that could help a 
user to make the most of the program. Then, on top of all 
these issues we have, of course, the quality of the program, 
its range of application, the variety and quality of the avail-
able scoring functions and search algorithms, the computa-
tional times associated, etc. 

Despite these potential limitations, the number of cita-
tion, when used with care, presents a useful way to identify 
and track emerging trends within this rapidly evolving field 
that is program-ligand docking.  

Evolution in the Last 10 Years 

(Fig. 2) shows the evolution of the number of citations 
per year of the 7 most cited protein-ligand docking programs 

over the last 10 years, together with its relative percentage in 
terms of citations per year. 

The results show that AutoDock was the top cited pro-
tein-ligand docking software throughout the last decade, 
reaching a level around 500 citations per year. In addition, 
the results show that while in 2001 its difference towards the 
second most cited alternative - DOCK - was of only a few 
citations, in 2010 the difference towards the second most 
cited docking program – GOLD - grew to close to 200 cita-
tions per year. In the past five years, its relative number of 
citations among the top cited alternatives was maintained 
among 36-37%, indicating a stable and very significant 
“market share”.  

Between 2001 and 2011, DOCK went from being the sec-
ond most cited program to the fourth place, behind GOLD and 
Glide, while keeping close to an average number of 150 cita-
tions per year. GOLD has been through this period the most 
cited commercially available docking program. While be-
tween 2001 and 2007 GOLD’s main competitor among paid 
alternatives was FlexX, Schrodinger’s Glide has emerged as 
its most cited competitor. Nevertheless, Gold has been able to 
secure through the past five years a “market-share” of 20-23% 
among all the most cited alternatives, while Glide is currently 
at 17% and FlexX at 9%. FTDOCK and QXP only represent 3 
and 1% respectively of the total number of citations per year 
of the seven most cited docking alternatives. 

Globally, these results show that AutoDock has been 
dominating the competition, in terms of number of citations, 

 

 

Fig. (2). Evolution of the number of citations per year for the 7 most cited protein-ligand docking programs over the period 2001-2011 and 

its relative percentage. 
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and that its number of citations per year and “market share” 
continues very high. GOLD is a stable second, while DOCK, 
FlexX, and QXP have been losing “market share”. Glide is 
the fastest growing protein-ligand docking program, in terms 
of number of citations, among the top 7 alternatives. 

Emerging Protein-Ligand Docking Alternatives 

In addition to these top cited alternatives other 46 dock-
ing programs are mentioned in (Table 1 and Fig. 1). (Fig. 3) 
shows the different proveniences of such alternatives, high-
lighting the richness of this field of research. In fact, among 
the docking programs listed in (Table 1) are creations from 
17 different countries from all around the globe. USA, UK 
and Germany are the countries with the highest number of 
programs in this field, but in recent years several very ap-
pealing alternatives have emerged, particularly in Asia.  

AADS (Automated Active site identification, Docking, 
and Scoring protocol) is an integrated protein-ligand docking 
tool recently developed by Jayaram and co-workers at the 
Indian Institute of Technology, New Delhi, India [133]. The 
program incorporates active site detection, docking, and 
scoring within a single tool. The AADS methodology is im-
plemented on an 80 processor cluster and presented as a 
freely accessible web-available tool [133]. The program de-
tects a total of 10 possible binding sites within a target-
protein, taking into consideration the physicochemical prop-
erties of the amino acid side chains around the possible pro-
tein cavities. The program then performs rigid docking of an 
input ligand/candidate molecule at the 10 predicted binding 
sites, using an all-atom energy based Monte Carlo method. 
Scoring is performed through a previously developed in-
house scoring function called Bappl (Binding Affinity Pre-
diction of Protein-Ligand) [188] which embeds an effective 
free energy function, including specific energy terms for 
electrostatics, van der Waals, hydrophobicity, and loss of 
conformational entropy of protein side-chains upon ligand 
binding. Results, including the best four ligand-protein poses 
and the expected association energy (in kcal/mol) can be 
emailed back to the user.  

BetaDock is a new freely available protein-ligand dock-
ing software developed by Kim & co-workers at Hanyang 
University, Seoul, South Korea [138] and based on the use of 
Voronoi diagrams. BetaDock differs from other alternatives 
in the field as it applies a new approach to the protein-ligand 
docking problem based on the recently developed theory of 

-complex and -shape of molecules, giving higher priority 
to shape complementarity between a receptor and a ligand 
[189, 190]. Although the present version is working with 
rigid ligands only, very promising results have been ob-
tained. In particular, BetaDock was tested against AutoDock 
4 (with ligand flexibility turned off) for 85 protein-ligand 
complexes from the Astex Diverse set database [191], giving 
superior results, both in terms of the structural quality of the 
solutions obtained and in terms of speed.  

LigDockCSA is a docking program developed by Shin & 
co-workers [159] at the Seoul National University, in South 
Korea, that combines a highly efficient search method - Con-
formational Space Annealing (CSA) - with a scoring func-
tion based on the AutoDock energy function with a piece-
wise linear potential (PLP) torsional energy. Conformational 

space annealing is designed to search over broad ranges of 
conformational space, generating numerous local minima 
before arriving at the global minimum free energy conforma-
tion. LigDockCSA applies this principle iteratively, gradu-
ally narrowing the conformational space associated to the 
lower energy conformations. For this reason it is particularly 
efficient. The performance of LigDockCSA was tested on 
the Astex diverse set [191] against AutoDock and GOLD, 
with improved success rates.  

ParDOCK (Paralel DOCK) is a web-enabled freely avail-
able all-atom energy based Monte Carlo docking program 
that is implemented as a fully automated, parallel processing 
mode. The program was developed also by Jayaram and co-
workers at the Indian Institute of Technology, New Delhi, 
India, and takes as initial input a reference complex (includ-
ing the target protein bound to a reference ligand) and a can-
didate molecule [166]. The reference complex is automati-
cally taken into consideration in optimizing the conditions 
for docking the candidate molecule. In this program the ge-
ometry of the ligand is optimized with the semi-empirical 
method AM1 [192], in a process that is followed by a partial 
charge determination through the AM1-BCC procedure [193, 
194]. The General AMBER force field [195], is used to as-
sign atom types, bond angle, dihedral and van der Waals 
parameters for the ligand. The program was tested on a 
dataset of 226 protein-ligand complexes through both self-
docking and cross-docking, with the authors obtaining the 
crystal conformation to an average RMSD of 0.53 in 98% of 
all the cases. Binding site prediction, torsional flexibility of 
the ligands and protein are some improvements proposed by 
the authors. 

PSI-DOCK (Pose Sensitive Inclined Docking) is a flexi-
ble docking method developed by Lai and co-workers [171] 
at Beijing University, China. The program uses a tabu-
enhanced genetic algorithm (TEGA) with a shape comple-
mentary scoring function to explore in a first step the poten-
tial binding poses of the ligand. The predicted binding poses 
are then optimized through a competition genetic algorithm 
and evaluated through a specifically developed improved 
scoring function (SCORE) to determine the binding pose 
with the lowest docking energy. For a test dataset of 194 
complexes, PSI-DOCK was shown to achieve a 67% success 
rate (RMSD <2.0 Å) with just a docking run, which was im-
proved to a 74% success rate for 10 runs. The program was 
also shown to be able to reproduce the binding energy of a 
training set of 200 protein–ligand complexes with a correla-
tion coefficient of 0.788 and a standard error of 8.13 kJ/mol, 
while in a test set of 64 complexes a correlation coefficient 
of 0.777 and standard error of 7.96 kJ/mol were obtained. All 
protein hydrogen atoms and the flexibility of the terminal 
protein atoms are intrinsically taken into account in PSI-
DOCK. Additionally, there is no need to calculate partial 
atomic charges, as PSI-DOCK energy function does not con-
tain an electrostatic energy term. These features cancel the 
need for the user to add hydrogen atoms and restrain the ini-
tial docking preparations to a minimum, helping to make this 
program a particularly easy one to use.  

PythDock is a python-based protein-ligand docking pro-
gram developed by Chung and co-workers [173] at Hanyang 
University, Ansan, South Korea, that uses a simple scoring
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Fig. (3). The World of Protein-Ligand Docking. Distribution of the most common Protein-Ligand Docking programs by country of origin 

taking into consideration the affiliation of the authors at the time of the publication of the original paper. 

function including electrostatic and dispersion/repulsion 
terms only, together with a search algorithm based on the 
particle swarm optimization method. The program is a rigid 
protein-ligand docking program, in the sense that treats 
ligands and proteins with fixed conformations. A representa-
tive number of conformers must be generated using other 
conformation generating programs prior to docking [173]. 
Nevertheless, despite its simplicity, the performance of 
PythDock was evaluated against both AutoDock 4.2 and 
DOCK 6.2, in a dataset of 14 protein-ligand experimentally 
determined complexes, giving quite reasonable results [173]. 

SODOCK (Swarm Optimization for Highly Flexible Pro-
tein–Ligand Docking) is a sophisticated protein-ligand dock-
ing program developed by Ho and co-workers [178] in Tai-

wan, specialized in highly flexible ligands. SODOCK con-
tains a novel hybrid search algorithm that couples a Particle 
Swarm Optimization (PSO)[178] method for solving flexible 
protein–ligand docking problems with a local search ap-
proach. The PSO method used is a population-based search 
algorithm inspired by the social behaviors of organisms, such 
as the flocking of birds, simpler and quicker to converge than 
standard genetic algorithms. The success of PSO is improved 
with the joint use of the local search algorithm, which is 
based on the Solis and Wets local search technique [196]. 
For scoring, SODOCK applies the empirical energy function 
of AutoDock 3.05. SODOCK has been shown to outperform 
GOLD 1.2, DOCK 4.0, FlexX 1.8, and AutoDock 3.05 (with 
a Lamarckian genetic algorithm) in 19 out of a total of 37 
ligand-receptor test cases, in terms of RMSD, as reported by 
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Ho and co-workers [178]. Improvements in the scoring func-
tion have been proposed by the authors, as to make this an 
even more competitive alternative to the treatment of the 
docking problem. 

European protein-ligand docking programs such as Vote-
dock, PSO@AUTODOCK, MolDock, MS-DOCK, MAD 
AMM, and PLANTS have also been made available in re-
cent years. 

VoteDock is a protein-ligand docking program based on 
a consensus docking approach developed by Plewczynski 
and coworkers at the University of Warsaw, Poland [180]. 
The program enables massive ligand-docking to the corre-
sponding targets by applying a combination of several inde-
pendent docking algorithms and scoring functions, which run 
in parallel. The method then combines the results from the 
various programs into a single consensus prediction of the 
tridimensional structure of the protein-ligand complex. The 
Seven docking software programs that VoteDock uses, in its 
consensus approach, are AutoDock 4.2.1, Glide 4.5, GOLD 
3.2, Surflex 2.2, FlexX 2.2.1, eHiTS 9.0, and LigandFit 2.3, 
covering a variety of types of docking algorithms. The per-
formance of this approach was evaluated against an exten-
sive benchmark dataset of 1300 protein–ligands pairs in the 
PDBbind database for which structural and affinity data was 
available, with the authors showing that VoteDock is able to 
dock properly approximately 20% more pairs on average 
than typical docking methods alone, and 10% more pairs 
than the single best program tested alone. Despite the fact 
that most of the individual docking programs required to run 
VoteDock cannot be distributed under academic license 
agreement, greatly limiting its availability to standard users, 
a modified version of VoteDock is in preparation and will be 
made available through an internet server [180].  

PSO@AUTODOCK is a very fast and efficient protein-
ligand docking program specifically designed for the treat-
ment of highly flexible ligands and like SODOCK is based 
on swarm intelligence [172]. PSO@AUTODOCK was de-
veloped at the University of Leipzig, Germany, by Nama-
sivayam & Gunther and includes two Particle Swarm Opti-
mization algorithms (varCPSO and varCPSO-Is) designed 
for the rapid docking of highly flexible ligands. These 
searching algorithms were embedded in the source code of 
AutoDock 3 [14]. Hence, PSO@AUTODOCK uses the same 
energy function that is available in AutoDock 3 (and in 
SODOCK) for scoring. The main difference resides in the 
efficiency of the search algorithms developed, with the 
authors reporting for a selected number of examples, a 10-
fold decrease in the number of steps required for identifica-
tion of the local minimum in comparison with SODOCK, 
and a 60-fold decrease when comparing with AutoDock 3. 
These results make PSO@AUTODOCK a very promising 
alternative for flexible ligand docking, and enable the inclu-
sion of ligand flexibility in virtual screening campaigns of 
reasonably-sized libraries comprising several thousands of 
compounds.  

MolDock is a docking program developed by Thomsen 
& Christensen, in Denmark, that is included in the Molegro 
Virtual Docker package, commercialized by Molegro Aps 
[164]. MolDock is based on a heuristic search algorithm that 
combines differential evolution with a cavity prediction algo-

rithm. MolDock automatically identifies potential binding 
sites, which are then evaluated with the differential evolution 
search algorithm. The program also applies a scoring func-
tion that is an extension of the piecewise linear potential 
(PLP) introduced by Gehlhaar et al. [197]. This new version 
includes a new hydrogen bonding term that takes directional-
ity into account and an improved electrostatic term with a 
new charge scheme. The performance of MolDock has been 
evaluated against 77 protein-ligand complexes from the 
GOLD dataset [198], resulting, in general, in higher average 
accuracies than Glide, Surflex, FlexX and GOLD.  

MS-DOCK is Multi-Staged docking/scoring protocol 
[165] developed by Miteva & coworkers at University Paris 
Descartes, France, based on the program DOCK. The pro-
gram starts by employing an algorithm called Multiconf-
DOCK to generate several conformers per input ligand and 
then performs a rigid docking of those conformers against 
the protein target, using DOCK 6.0. In particular, MS-
DOCK was specifically designed to allow the rapid screen-
ing of a large molecular database, enriching the set of ligands 
to be effectively evaluated with more sophisticated and ex-
pensive methods with molecules having a good shape com-
plementarity for a given target protein binding site. Depend-
ing on the target-binding site, MS-DOCK allows the use of 
only a fraction of the initial database (typically 30-50%) 
without compromising the performance of a virtual screening 
protocol in retrieving actives compounds, effectively im-
proving the speed and rate in the search of hit compounds 
with new scaffolds.  

MADAMM (MultistAged Docking with an Automated 
Molecular Modeling protocol) [161] is a protein-ligand 
docking application designed by Ramos & co-workers at the 
University of Porto, Portugal, that allows the flexibilization 
of both the receptor and the ligand during a multistaged 
automated hierarchical docking process. MADAMM in-
volves an initial stage in which protein-flexibility is taken 
into account by using rotamer libraries to generate different 
combinations of conformers involving the most important 
amino acid residues at the active-site. From this stage a given 
target structure can be transformed into as much as 1000 
target structures, implicitly accounting for protein flexibility. 
The program then automatically docks the ligand against 
each of these target structures using a standard docking pro-
gram that treats the ligand as flexible, with the current ver-
sion using GOLD. In the subsequent steps – the automated 
minimization protocol - a series of energy minimization 
stages (typically 4) with a molecular mechanics force field 
(CHARMM) are automatically applied to a selected percent-
age of the top ranked solutions, with the radius of amino acid 
residues around the active-site effectively considered in the 
minimization increasing in each of these steps, as the number 
of solutions evolving to the next stages is decreasing. Glob-
ally, this approach proved to be particularly effective in 
docking ligands when starting from an unbound structure of 
the protein. MADAMM is available free of charge.  

PLANTS (Protein-Ligand ANT System) [168] is an in-
teresting docking program developed by Korb, Stutzle & 
Exner at the Universitat Kontanz (Germany) and Universite 
Libre de Bruxelles (Belgium). This program is based in Ant 
Colony Optimization (ACO), a methodological approach that 
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is based on the behavior of real ants on finding the shortest 
path between their nest and a food source. In the case of pro-
tein-ligand docking, an artificial ant colony is employed to 
find a minimum energy conformation of the ligand in the 
binding site. These ants are used to mimic the behavior of 
real ants and mark low energy ligand conformations with 
pheromone trails. The artificial pheromone trail information 
is then modified in subsequent iterations to generate low 
energy conformations with a higher probability [168]. While 
the ligand is treated as flexible, the flexibility of the protein 
is only marginally taken into account through the optimiza-
tion of the atomic position of the hydrogen atoms that are 
involved in hydrogen bonding. Two specifically designed 
scoring functions (PLANTSCHEMPLP and PLANTSPLP) have 
also been made available [199]. The program has been 
shown to reproduce 87% of the complexes present in the 
Astex diverse set, and 77% of the ones available at 
CCDC/Astex (non-covalently bound), with root-mean-square 
deviations of less than 2 angstrom with respect to the ex-
perimentally determined structures. PLANTS is available 
free of charge for academic users. 

In addition to these protein-ligand programs, developed 
in Asia and Europe, several very interesting alternatives have 
also been developed in the USA. Notable examples include 
AutoDock Vina, MDOCK, FLIPDock, and Q-Dock.  

AutoDock Vina [137] is a new generation docking pro-
gram developed by Trott & Olson at the Scripps Research 
Institute, La Jolla, California, following the success of previ-
ous AutoDock versions. Like its predecessors AutoDock 
Vina is freely accessible to a large number of users, as it is 
open-source. AutoDock Vina inherits some of the ideas and 
approaches of AutoDock 4, but it is designed in a conceptu-
ally different way. It offers significant improvements in the 
average accuracy of the binding mode predictions, while also 
being up to two orders of magnitude faster than AutoDock 4. 
It features also new search and scoring algorithms [137]. Its 
multi-core capability, high performance and enhanced accu-
racy, ease of use and free-availability have contributed to an 
extremely fast dissemination through the docking commu-
nity, well portrayed in the high number of citations in the 
first two years after the publication of the original paper. 
Vina is more than likely to become the most cited docking 
software in a nearby future. Its high computational efficiency 
and ability to use multiple CPUs or CPU cores make this 
program also a very competitive alternative for virtual 
screening. 

MDOCK [163] is a protein-ligand docking software de-
veloped by Huang & Zhou at the University of Missouri, 
USA, that allows the simultaneous docking of ligands 
against multiple protein structures/conformations, thereby 
accounting for protein flexibility. The program employs a 
fast ensemble docking algorithm to account for protein struc-
tural variations, which can be applied to different structures 
for a given target protein taken from the Protein Data Bank 
(PDB), or to different protein conformations generated from 
computational methods like molecular dynamics or Monte 
Carlo simulations, when starting from a single PDB struc-
ture. Each protein conformation is treated as an independent 
target for docking, with the algorithm then automatically 
selecting the optimal protein conformation. The program 

uses an iterative knowledge-based scoring function [200, 
201] called ITScore that includes only intermolecular inter-
actions. MDOCK was validated on 10 protein ensembles 
containing 104 crystal structures and 87 ligands, both in 
terms of binding mode and energy score predictions. An 
overall success rate of 93% was obtained, when considering 
as criterion a root-mean-square deviation below 2.5 Å when 
comparing with the experimentally determined structure. 
MDOCK package is available free of charge for academic 
users. 

FLIPDock (Flexible LIgand-Protein Docking) [150] is a 
docking software developed by Zhao & Sanner at the Scripps 
Research Institute, La Jolla, California that allows the auto-
mated docking of flexible ligand molecules into the active 
site of flexible protein targets. A data structure called Flexi-
bility Tree (FT) [202] is used to represent the conformational 
space of the receptor and ligand molecules, allowing a hier-
archical and multi-resolution representation of conforma-
tional changes in macromolecules. In particular, FT breaks 
down the molecular systems into a set of molecular frag-
ments moving relative to each other, using inter-domain mo-
tion descriptors such as hinge, shear, twist, and screw and 
intra-domain motion descriptors like rotameric side chains, 
normal modes, and essential dynamics. These descriptions 
are used to generate a complex subspace involving the most 
relevant portion of the conformational space of the bio-
molecular system. A genetic algorithm is employed to search 
through the solution space in a process that can also involve 
a two-step divide and conquer algorithm. The current FLIP-
Dock version uses an empirical scoring function based on 
AutoDock 3.05, but its modular nature and overall architec-
ture of the program offer the ability to incorporate different 
search algorithms and scoring functions in the future [150]. 
FLIPDock is particularly strong in handling conformational 
changes that involve the receptor backbone, when most pro-
tein-ligand docking programs fail. The program is free for 
academic users and will surely become a major docking al-
ternative in the following years. 

Q-Dock [174] is a low-resolution flexible ligand docking 
program with pocket-specific threading restraints developed 
by Brylinski & Skolnick at Georgia Institute of Technology, 
Atlanta, USA, designed to deal with the structural inaccura-
cies in predicted receptor models. Q-Dock describes both the 
ligand and the protein in a reduced representation mode, i.e. 
through a coarse-grained knowledge-based potential. Such 
approach enables the use of low-quality receptor structures, 
such as the ones routinely produced by proteome-scale pro-
tein structure modeling projects, ensuring a wider-range of 
applicability than typical all-atom approaches. The program 
uses pocket-specific statistical potentials and harmonic re-
straints imposed on the binding poses of the common mole-
cule substructures extracted from evolutionarily related pro-
teins. Ligand flexibility is accounted for through an ensem-
ble docking of pre-calculated discrete ligand conformations 
with Replica Exchange Monte Carlo (REMC). Globally, the 
authors show that Q-Dock is able to recover on average 25-
35% more binding residues and 15-20% more specific native 
contacts than a variety of commonly used standard all-atom 
protein-ligand docking approaches in self-docking experi-
ments for a database of 206 X-ray structures. 
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Performance of Protein-Ligand Docking Programs 

As highlighted in the introductory section, comparing 

docking programs can be difficult. Many studies comparing 
different docking programs have been made available in the 

literature. However, the performance of different alternatives 

can vary significantly with the target, the docking protocol, 
the specific set of variables, or the user. For these reasons 

comparisons are not always fair and should be regarded with 

care. The evaluation of Protein-ligand docking programs 
against reference validation sets is, in principle, a more 

trustworthy strategy to assess the quality of different alterna-

tives. Other interesting alternative is the evaluation of the 
performance of specific docking tools in well-defined struc-

ture-prediction challenges, such as the GPCR Dock assess-

ment [203-205]. Here, we review the performance of some 
of the most common docking alternatives in two specific 

settings: (1) against the ASTEX diverse set of protein-ligand 

compounds; (2) against the directory of useful decoys data-
base;  

The ASTEX Diverse Set 

The ASTEX Diverse Set [191] is a docking validation 

set, derived from the Protein Data Bank, that contains 85 

diverse, relevant protein-ligand complexes. It has become a 
standard test of reference in terms of pose prediction for 

docking programs in the last years. 

Liebeschuetz et al. [206] have evaluated the several scor-
ing functions available in GOLD against this test set. They 

found that GOLD's ChemPLP was the most effective scoring 

function for pose prediction in cognate protein–ligand com-
plexes among those available in GOLD, achieving a success 

rate of 87% over the ASTEX 85 sites below a 2.0 Å RMSD 

and 68 % below 1.0 Å RMSD. ChemScore, ASP and Gold-
Score gave sucess rates of 82%, 79% and 78% , respectively, 

for a 2.0 Å RMSD cut-off, values that decreased to a 53-58% 

range when a 1.0 Å RMSD criterion was considered.  

The performance of DOCK 6.0 against the ASTEX di-

verse set was analyzed by Brozell and co-workers [207]. 
Considering as a success criterion a RMSD below 2.0 Å, the 

authors were able to obtain success rates between 61.4% and 

72.4%, depending on the initial starting coordinates used, or 
the lab where docking was conducted.  

GLIDE was also evaluated against the ASTEX set. Re-

pasky et al. [208] obtained a success rate of 71% (for a 
RMSD below 2.0 Å) when using the initial structures taken 

from the ASTEX set. This success rate was increased to 82% 

when some improvements were added to the protocol, 
through the application of the "Schrödinger best-practices" 

procedure [208], which involved among other issues, the 

manual inspection and correction of all the bond-orders and 
charges of the ligands.  

Neves & co-workers [209] have analyzed also the per-
formance of ICM against the 85 co-crystal structures of 

ASTEX. That were able to predict with ICM the top 1 scor-

ing poses below a 2.0 Å RMSD in 91% of the sites with an 
average RMSD of 0.91 Å (median= 0.54 Å). Predictions 

below 1 Å and below 0.5 Å were found in 78% and 43% of 

the cases, respectively. 

The Directory of Useful Decoys 

The Directory of Useful Decoys (DUD) is a collection of 
useful decoys for benchmarking virtual screening containing 
2950 active ligands for 40 different targets, set by Huang, 
Shoichet, and Irwin [210]. For each of the active compounds, 
this database contains a set of 36 "decoys" with similar 
physical properties, but dissimilar topology, making it a 
challenging dataset to test protein-ligand docking algorithms.  

Using this dataset, the performance of a docking program 
in this virtual screening procedure is expressed through a 
graphical representation of the true positive rate versus the 
false positive rate in terms of receiver operating characteris-
tic (ROC) plots. In ROC plots the True Positive Rate (TPR = 
TP/P) is plotted versus the False Positive Rate (FPR = 
FP/N), where TP is the number of True Positives, P is the 
total number of Positives (actives), FP is the number of False 
Positives, and N is the total number of Negatives (decoys). 
An useful measure is the area under the curve (AUC). The 
higher the AUC value in a ROC curve, the better the dis-
crimination between the true positive and the false positive 
poses. As a successful docking program in virtual screening 
should rank active compounds early on a large score list, the 
fraction of actives recovered at 0.1%, 1% and 2% decoys 
recovered (abbreviated to ROC(0.1%), ROC(1%) and ROC(2%)) 
are normally used also as early recognition metrics. 

Liebeschuetz et al. [206] have evaluated the four scoring 
functions available in GOLD against the DUD dataset. 
ChemPLP and ChemScore resulted in average AUC values 
of 0.70, while ASP gave an AUC of 0.66 and GoldScore of 
0.61. ChemPLP showed the best overall performance in the 
test with ROC(0.1%), ROC(1%) and ROC(2%) at 8, 14, and 17% 
respectively. The worst performance was shown by Chem-
Score with ROC(0.1%), ROC(1%) and ROC(2%) at 3, 8 and 12%, 
while ASP and GoldScore exhibited intermediate enrichment 
factor rates.  

Brozell and co-workers [207] have analyzed the perform-
ance of DOCK 6.0 against the DUD set and have obtained an 
average AUC of 0.60 (maximum 0.96; minimum 0.29) with 
native pairing. True positive rates ROC(0.1%), ROC(1%) and 
ROC(2%) at 2.3%, 13.0% and 17.3% were obtained with the 
default DUD structures, values that increased to 2.6, 15.1 
and 20.4% respectively when starting from raw pdb coordi-
nates.  

GLIDE was also evaluated against the DUD set by Re-
pasky et al. [208], yielding an average AUC of 0.74, a value 
that increased to 0.80 when using the "Schrödinger best-
practices" procedure [208]. Virtual screening experiments 
with best-practices inputs give true positive rates ROC(0.1%), 
ROC(1%) and ROC(2%) at 12%, 25%, and 34 % of known ac-
tives, whereas with the default set these recovery rates de-
crease to 7, 21, and 29 %. 

Using ICM against the DUD set, Neves et al. [209] were 
able to obtain an average AUC of 0.72, although the varia-
tion between the calculated AUC for the individual templates 
was quite significant, varying from 0.96 for Neuraminidase 
to 0.27 for the platelet derived growth factor receptor kinase. 
True positive rates ROC(0.1%), ROC(1%) and ROC(2%) at 7.3%, 
21.0% and 26.6% of true positives, respectively, were ob-
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tained using the original pocket coordinates and the default 
scoring method. 

Cross et al. [211] have also evaluated the performance of 
DOCK, FlexX, GLIDE, ICM, PhDOCK, and Surflex against 
the DUD database. In particular, the authors found that 
GLIDE (average AUC of 0.72) and Surflex (average AUC of 
0.66) outperformed the other docking programs when used 
for virtual screening (with average AUC values in the range 
0.55 - 0.63).  

CONCLUSIONS AND OUTLOOK 

Over the past decade, protein-ligand docking has 
emerged as a particular important tool in drug design and 
development programs. This gain in standing is well por-
trayed in the rising number of available protein-ligand dock-
ing software programs, increasing level of sophistication of 
its most recent applications, and growing number of users. In 
spite of the large number of alternatives, we are still far from 
a perfect docking program. In terms of the searching algo-
rithms, efficiently accounting for protein flexibility remains 
a challenging task. In terms of the scoring functions features 
like the presence of structural water molecules and the treat-
ment of entropy, among others, still pose considerable prob-
lems for protein-ligand docking. However, the high number 
of programs, their geographically diverse origin, and the 
different way in how they deal with the diverse challenges 
posed by protein-ligand docking are all reasons that demon-
strate the vividness of the field.  

Many protein-ligand docking programs are currently 
available and new alternatives are continuing to appear every 
year. Some of these alternatives will fade among the plethora 
of protein-ligand docking applications, while others will rise 
to become top choices among the users of the field. Given 
the technical development pace in the field all alternatives 
will eventually become obsolete, at least without a major 
effort by the development teams in keeping their software 
programs updated and competitive. Early adopters have the 
major gain here, even though mastering a new software can 
be difficult. The richness of this field is sure to make it worth 
their effort. 
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