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Increasing evidence in recent years indicates that protein misfolding and aggregation,

leading to ER stress, are central factors of pathogenicity in neurodegenerative diseases.

This is particularly true in Huntington’s disease (HD), where in contrast with other

disorders, the cause is monogenic. Mutant huntingtin interferes with many cellular

processes, but the fact that modulation of ER stress and of the unfolded response

pathways reduces the toxicity, places these mechanisms at the core and gives hope

for potential therapeutic approaches. There is currently no effective treatment for HD

and it has a fatal outcome a few years after the start of symptoms of cognitive and motor

impairment. Here we will discuss recent findings that shed light on the mechanisms of

protein misfolding and aggregation that give origin to ER stress in neurodegenerative

diseases, focusing on Huntington’s disease, on the cellular response and on how to use

this knowledge for possible therapeutic strategies.

Keywords: Huntington’s disease, neurodegeneration, protein misfolding, protein aggregation, ER stress, unfolded

protein response

PROTEIN MISFOLDING AND AGGREGATION

Protein Synthesis, Folding and Misfolding
The acquisition of a correct three-dimensional native structure is a crucial step during the
biosynthesis of a functional cellular protein (Vendruscolo et al., 2003). Protein folding is an
intrinsic property of a polypeptide chain, which is strongly influenced by the cellular environment
and is under regulation of other partner proteins in oligomeric assemblies and of folding
catalysts and molecular chaperones (Hartl and Hayer-Hartl, 2002; Ellis and Minton, 2006). During
co-translational folding, exposed regions of partially folded proteins are at risk of interaction with
other cellular molecules (Hartl and Hayer-Hartl, 2002; Balchin et al., 2016; Chiti and Dobson,
2017). Therefore, short non-native intermediate forms develop to protect the regions which are
susceptible to aggregation (Mogk et al., 2018). Proteins undergo a stochastic search for more
stable conformations with lowest free energy by a trial and error process (Dinner et al., 2000;
Vendruscolo et al., 2003; Chiti and Dobson, 2017). In general, the marginally stable native state
of a folded protein and the crowded cellular environment are responsible for the error proneness
of protein folding, despite being always under inspection of the protein quality control system,
the ubiquitin-proteasome complex and molecular chaperones (Vendruscolo et al., 2003; Labbadia
and Morimoto, 2015; Miller et al., 2015; Balchin et al., 2016). Failure of any of these protective
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checkpoints can initiate a protein misfolding process, which
can generate protein oligomers or larger aggregates. The failure
can be caused, among others, by high temperature, low pH,
oxidative stress, abnormal presence of metal ions, mutations,
transcriptional, translational or posttranslational errors, and
aging (Sekijima et al., 2005; Chu et al., 2007; Chiti and Dobson,
2009; Koga et al., 2011; Brehme et al., 2014; Mckinnon and
Tabrizi, 2014; Labbadia and Morimoto, 2015; Martinez-Lopez
et al., 2015; Balchin et al., 2016).

Protein Aggregation and Its Effects in
Disease
A protein can form amorphous aggregates or amyloid fibrils
with well-ordered straight fibrillar structure, composed of
protofilaments (Chiti and Dobson, 2017; Hartl, 2017).
Conditions that support high net protein charge favor the
formation of fibrillar aggregates.

Protein aggregation can follow several pathways that are
not mutually exclusive. Native protein monomers may have
a natural tendency to reversibly associate and to form small
oligomers, which can occasionally associate into large aggregates.
Alternatively, the native monomer may have a very low tendency
to reversibly associate but it can undergo a conformational
change resulting in an aggregation-prone misfolded form. This
misfolded conformation may also arise from mutations. In
a surface-induced aggregation mechanism, aggregation begins
with the binding of a native monomer to the surface of
the container in vitro or to intracellular membranes in
cells. These interactions cause conformational changes in the
monomer which increase its tendency to aggregate (Philo
and Arakawa, 2009). For any of these mechanisms, it is
widely accepted that progression into large aggregates involves
a nucleation and seeding mechanism. Independently of the
lower or higher tendencies to form small oligomers, once an
aggregate of sufficient size (critical nucleus) forms, then it
grows exponentially. Two kinetic phases are observed: a lag
phase generating a seed and an elongation phase where visible
particulates appear (Soto and Pritzkow, 2018). Seeding activity
was recently found at early stages, before appearance of visible
aggregates, in pre-symptomatic HDmodel mice (Ast et al., 2018).

Genetic, biochemical, mouse model studies, and
neuropathological evidence have shown that in
neurodegenerative diseases misfolded proteins form aggregates,
in most cases amyloid fibrils, which may be deposited
intracellularly or extracellularly. In diseases, such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), Amyotrophic Lateral
Sclerosis (ALS), and HD, protein aggregates vary, but all forms
have a similar intermolecular beta-sheet–rich structure, both in
small oligomers and in large fibrillar aggregates. The implicated
polypeptides are different but they can form similar structures of
amyloid fibrils (Eisenberg and Jucker, 2012; Chiti and Dobson,
2017; Hartl, 2017). The aggregation process triggers cellular
dysfunction, loss of synaptic connections and is responsible
for brain damage or disease (Soto, 2003; Ross and Poirier,
2004; Goedert, 2015; Soto and Pritzkow, 2018). Initial studies
hypothesized that the large insoluble aggregates lead to cell

death, and therefore prevention of aggregate formation might be
a strategy to help reduce the toxicity (Bucciantini et al., 2002).
However, there is increasing evidence that in general, smaller
soluble toxic misfolded oligomers are the main causative agent
for neurodegeneration (Jarrett et al., 1993; Morris et al., 2009;
Leitman et al., 2013; Chiti and Dobson, 2017; Hartl, 2017; Moily
et al., 2017). The 3D structure of the oligomeric species appears
to determine their toxic character (Hoffner and Djian, 2015;
Smith, 2018). The insoluble aggregates could then be a result
of a strategy of the cells to reduce the toxicity by shielding the
toxic species in these large structures called dry steric zippers
(Eisenberg and Jucker, 2012) (Figure 1).

Protein Aggregation in HD and Other
Neurodegenerative Diseases
HD is a result of mutation in the gene encoding for the huntingtin
protein (Htt), the expansion of CAG repeats that encode for
a polyglutamine (polyQ) stretch, which is pathogenic when
it contains more than about 35 glutamines (Zoghbi and Orr,
2000; Sakahira et al., 2002). A similar phenomenon occurs in
other polyQ diseases, such as spinocerebellar ataxias (Shao and
Diamond, 2007). In HD, the mutation results in mutant Htt
(mHtt) misfolding and aggregation. The polyQ stretch is on exon
1, which is cleaved off, with the resulting N-terminal fragment
enough to cause aggregation. A recent report shows also the
presence of aberrantly spliced mHtt forms containing only exon
1 in samples from HD patients (Neueder et al., 2017). The 17-
residue-long N-terminus preceding the polyQ stretch interacts
with intracellular membranes and has a strong influence on
mHtt aggregation (Pandey et al., 2017). Ubiquitination at the
N-terminus appears to be an important determinant for mHtt
degradation (Wang et al., 2017). In a recent study, a mutation
in the N17 N-terminal region prevented the formation of large
aggregates but not oligomers in a Drosophila HD model and
led to an increase in toxicity. This suggested neurotoxicity of
the oligomers and perhaps protection by the large aggregates
(Branco-Santos et al., 2017). This follows a growing number
of reports linking mHtt oligomers and not the final large
aggregates to cytotoxicity (Schaffar et al., 2004; Takahashi et al.,
2008; Lajoie and Snapp, 2010; Leitman et al., 2013). In fact,
no connection was found between large mHtt aggregates and
neuronal death in HD patients (Kuemmerle et al., 1999). In
cellular HD models, the transition from oligomers to large
aggregates correlates with a reduction in ER stress (Leitman
et al., 2013) and in apoptosis (Ramdzan et al., 2017). However,
the formation of mHtt inclusions still affects to some degree
cellular function (Ramdzan et al., 2017). As mentioned above,
the toxicity of soluble oligomers is not unique to HD. No
correlation was found between large insoluble aggregates and
memory loss in an AD mouse model (Lesné et al., 2008) and
AD patients do not necessarily present brain aggregates (Petersen
et al., 2013). Targeting oligomeric forms of Aβ instead of large
aggregates provides better results in the reduction of AD toxicity
(Sengupta et al., 2016).

Misfolded proteins trigger cellular responses, such as the heat
shock response (Kakkar et al., 2014; Kampinga and Bergink,
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FIGURE 1 | Model of mHtt aggregation, generation of ER stress and the consequent UPR protective and later pro-apoptotic responses. A misfolded mHtt monomer,

with the aggregation prone polyQ domain indicated (beta sheets in green) is cleaved and associates with other monomers to form toxic oligomers, which among other

effects cause sequestration and depletion of ERAD factors such as p97, inhibiting ERAD. mHtt oligomers can associate into larger aggregate fibrils with dry steric

zipper structure that shield the toxicity of mHtt. However, the transient presence of toxic mHtt oligomers, inhibiting ERAD, causes accumulation of unfolded secretory

proteins and ER stress, activating the UPR sensors IRE1, PERK, and ATF6, starting an initial protective or adaptive phase of the UPR. This includes upregulation and

translocation to the nucleus of transcription factors, XBP1s, ATF4, NRF2, ATF6, which induce expression of chaperones, ERAD machinery, anti-oxidative response

components. Concurrently, eIF2α phosphorylation by PERK causes transient arrest in translation, reducing the ER load. If the ER stress remains unresolved, the

pro-apoptotic stage of the UPR is initiated, causing upregulation of ASK1-P and CHOP and Ca2+ exit from the ER, inducing the intrinsic apoptotic pathway with the

mitochondrial release of cytochrome C. Sigma-1 receptor is upregulated and modulates Ca2+ release, with a protective effect. Cytotoxic pathways are indicated in

red and cell protective ones in green. The numbers indicate possible points of therapeutic intervention, with activation (1) or inhibition (2) of PERK, inhibition of the

downstream effects of eIF2α-P (3), inhibition of eIF2α-P dephosphorylation (4), and Sigma-1 receptor activation (5).

2016) and the ER or mitochondrial unfolded protein responses
(UPR). These responses attempt to increase the capacity to
unfold and refold the misfolded proteins through upregulation
of molecular chaperones and to improve the ability to degrade
the misfolded proteins by upregulation of the proteasome
machinery. These responses are cell autonomous but a non-
cell autonomous regulation has been described, especially in
studies in Caenorhabditis elegans (Prahlad and Morimoto, 2011;
Volovik et al., 2014).

Failure of the UPR or of the heat-shock response are
found to be associated with several pathologic conditions
such as AD, PD, HD, prion diseases, Type II diabetes, and
ALS (Douglas and Dillin, 2010; Lee et al., 2011; Hipp et al.,
2014; Labbadia and Morimoto, 2015; Chiti and Dobson, 2017;
Hartl, 2017; Shamsi et al., 2017). Progressive decline in the
efficiency of these pathways with age has been linked to the
late age of onset of these diseases (Taylor and Dillin, 2011).

The UPR and its failure in disease are discussed in the
following chapters.

ER STRESS AND HUNTINGTON’S DISEASE

ER Stress and the UPR
ER stress develops in many neurodegenerative diseases such as
AD, PD, ALS, and HD (Ogen-Shtern et al., 2016; Xiang et al.,
2016; Remondelli and Renna, 2017) and there is increasing
evidence that it is a main factor in the degeneration of the cells
(Hoozemans et al., 2005; Vidal et al., 2011; Stutzbach et al.,
2013; Heman-Ackah et al., 2017). Many of these diseases are a
result of mutation in specific genes (e.g., Htt, SOD1) leading to
the accumulation of a misfolded protein. As mentioned above,
misfolded proteins have a propensity to interact and aggregate
in the cell, giving rise to toxic species that generate ER stress
and compromise cell function. One of the ways by which ER
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stress is generated in this process, in many cases by cytosolic
proteins such as mHtt, is by interference of toxic oligomers
with ER-associated degradation (ERAD) components (Figure 1).
This has been observed in HD (Duennwald and Lindquist, 2008;
Leitman et al., 2013) and AD models (Abisambra et al., 2013;
Soejima et al., 2013; Fonseca et al., 2014). ER stress triggers
activation of the UPR, with the aim of removing or refolding the
damaged proteins (Hetz and Papa, 2017). The UPR is activated
through three main transmembrane proteins acting as UPR
sensors: IRE1, PERK, and ATF6 (Figure 1). Inositol-requiring
protein 1α (IRE1) is a protein kinase associated in its inactive
formwith the chaperone Binding immunoglobulin Protein (BiP).
Upon accumulation of unfolded proteins, IRE1 dissociates from
BiP/GRP78 and becomes active by autophosphorylation. When
active, IRE1 splices the mRNA encoding for the transcription
factor XBP-1, which is then translated to the active form XBP-
1s. XBP-1s translocates into the nucleus, inducing transcription
of BiP and other chaperones and target genes related to
ERAD regulation (Chen and Brandizzi, 2013). A second sensor
associated with BiP is PKR-like ER-localized eIF2α kinase
(PERK). Activation of PERK by autophosphorylation, after
dissociation from BiP, results in phosphorylation of eukaryotic
initiation factor 2α (eIF2α), leading to inhibition of protein
translation. Paradoxically, translation of the transcription factor
ATF4 increases upon phosphorylation of eIF2α (Ron, 2002;
McQuiston and Diehl, 2017), leading to expression of many
genes, among them Growth arrest and DNA damage-inducible
gene 34 (GADD34, also called PPP1R15A), a regulatory subunit
of protein phosphatase PP1, which dephosphorylates eIF2α,
resulting in recovery from the PERK-mediated translational
block (Novoa et al., 2001). Besides eIF2α, PERK phosphorylates
nuclear erythroid 2 p45-related factor 2 (NRF2), causing
dissociation of the cytosolic NRF2-Keap1 complex and leading to
release of NRF2 to the nucleus where it promotes transcription
of RNAs encoding components of the antioxidant response
(Cullinan et al., 2003). The third UPR sensor is activating
transcription factor 6 (ATF6) which is regulated by BiP as well.
Upon BiP dissociation, ATF6 translocates from the ER to the
Golgi, where it is cleaved by proteases that detach ATF6 from
the Golgi membrane. The released soluble cytosolic domain
of ATF6 is a transcription factor that enters the nucleus and
activates expression of UPR target genes such as BiP and
XBP1 (Yoshida et al., 2001; Shen et al., 2002; Hetz, 2012). ER
stress activates the three UPR branches, leading to inhibition
of protein translation, increase in chaperone production and
enhanced degradation. However, a chronic activation of the
UPR leads to a fatal outcome. In case of failure to restore
protein homeostasis, the UPR initiates an apoptotic pathway
leading to cell death. IRE1 mediates activation of tumor
necrosis factor receptor associated factor 2 (TRAF2), activating
apoptotic factors such as ASK1. A long-term phosphorylated
status of eIF2α induces CHOP/GADD153, a transcription factor
that activates expression of pro-apoptotic genes (Oyadomari
and Mori, 2004; Sano and Reed, 2013). PERK activation and
eIF2α phosphorylation without resolution of ER stress have
been particularly implicated in neurodegeneration (Ohno, 2017;
Taalab et al., 2018).

ER Stress and Cell Toxicity in HD
HD is a genetic disorder characterized by movement disorder,
cognitive decline, and behavioral difficulties (Walker, 2007;
Wright et al., 2017; Pandey and Rajamma, 2018). As found
in post-mortem and MRI studies, HD patients suffer from
neuronal cell death, initially and mostly in the striatum but
also in the cortex and other areas of the brain (Reiner
et al., 1988; Rosas et al., 2003). Although the involvement
of protein aggregation in neurodegenerative disease is well
established (Murphy, 2002; Taylor, 2002; Ross and Poirier, 2004),
toxicity could arise through a number of pathways. In HD,
protein aggregation in the cytoplasm interferes for example with
nucleocytoplasmic transport, causing aberrant redistribution of
nuclear shuttle factors to the cytosol (Woerner et al., 2016).
Over-expression of molecular chaperones, such as Hsp70 and
Hsp40, was shown to reduce the toxicity of mHtt aggregates in
yeast and fly HD models, without preventing their formation,
possibly by sheltering the exposed hydrophobic regions or by
a conformational effect on the misfolded protein (Kazemi-
Esfarjani and Benzer, 2000; Meriin et al., 2002). Another
important consequence of mHtt aggregation is the activation of
the UPR (Duennwald and Lindquist, 2008; Reijonen et al., 2008;
Carnemolla et al., 2009; Leitman et al., 2013, 2014; Jiang et al.,
2016). Interference with the ubiquitin-proteasome system (UPS)
is important in HD models and apparently also in HD patients
(Bennett et al., 2007; Ortega et al., 2007; Finkbeiner and Mitra,
2008; Hipp et al., 2012). However, some studies using cytosolic
GFP-based reporters of proteasomal activity did not find a global
UPS impairment (Bowman et al., 2005; Bett et al., 2009). In
fact, an important interference was attributed to sequestration
and depletion of p97/VCP and its cofactors Npl4 and Ufd1 by
mHtt, which would not cause global UPS deficiency, but rather a
crippling dysfunction of ERAD (Duennwald and Lindquist, 2008;
Yang et al., 2010; Leitman et al., 2013). Homocysteine-induced
endoplasmic reticulum protein (Herp), an important factor in
ERAD, was recently reported to be directly involved in targeting
of mHtt for degradation (Luo et al., 2018). The inhibition of
ERAD leads to accumulation of unfolded proteins in the ER, ER
stress, and UPR induction, which were observed in HD models
in yeast and mammalian cells (Duennwald and Lindquist, 2008;
Reijonen et al., 2008; Carnemolla et al., 2009; Leitman et al.,
2013, 2014), in animal HD models (Carnemolla et al., 2009; Cho
et al., 2009; Noh et al., 2009; Vidal et al., 2012), and in post-
mortem samples from HD patients (Carnemolla et al., 2009).
Other cellular factors, such as ubiquitin-specific protease-14 and
ATF5, are important for reduction of ER stress, and were recently
found to be sequestered and depleted during mHtt aggregation
(Hyrskyluoto et al., 2014; Hernández et al., 2017). One of the
consequences of ER stress is to affect mitochondrial function and
exacerbate oxidative stress, a key element in mHtt cytotoxicity
(reviewed in Zheng et al., 2018).

SIGMA-1 RECEPTOR

One important ER stress-activated protein, with a cell-protective
function is the Sigma-1 receptor (S1R). The S1R is an
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evolutionarily conserved ligand–operated molecular chaperone,
especially involved in brain function, including neuromodulation
and neuroplasticity (Hayashi, 2015). The S1R is expressed in
a wide range of tissues, with higher levels in the central
nervous system (CNS), where it is linked to diverse pathologies
(Nguyen et al., 2017). The S1R is a transmembrane protein
(25 KD) consisting of 223 amino acids and largely localized
to a specialized ER subdomain that contacts mitochondria and
is called the mitochondrion–associated ER membrane (MAM)
(Hanner et al., 1996; Hayashi and Su, 2007; Hayashi et al., 2009;
Fujimoto and Hayashi, 2011; Kourrich et al., 2012). The overall
topology of this receptor is still unclear and there are studies
that suggest a single or two transmembrane domains (Hayashi
and Su, 2007; Ortega-Roldan et al., 2015; Schmidt et al., 2016;
Mavylutov et al., 2017). A recent crystal structure of the S1R
suggests a single transmembrane domain and oligomerization
into trimeric and up to hexameric assemblies (Schmidt et al.,
2016). The S1R is activated by both ER stress and agonists,
which might lead to its translocation to different subcellular
compartments, such as the MAM, nuclear envelope, and plasma
membrane (Hayashi and Su, 2003; Su et al., 2010; Kourrich
et al., 2012). The association of BiP with the S1R keeps it in an
inactive conformation (Hayashi and Su, 2007; Tsai et al., 2014).
Upon ER stress, accumulation of misfolded proteins in the ER
causes S1R dissociation from BiP and its activation. Calcium
levels and S1R agonists also modulate its activity (Hayashi and
Su, 2007; Wang et al., 2012), and S1R expression is upregulated
in response to PERK pathway activation (Mitsuda et al., 2011).
The “chaperone” activity of S1R is throughmodulation of inositol
1,4,5-triphosphate receptor (IP3R) activity. IP3R is a ligand-gated
calcium channel that upon activation releases calcium from the
ER, especially at the MAMs (Li et al., 2009; Gilady et al., 2010).
Therefore, S1R modulation of IP3R activity regulates calcium
transfer to mitochondria (Hayashi and Su, 2007) promoting ATP
generation and attenuating the mitochondrial apoptotic pathway
(Hayashi and Su, 2007; Bernard-Marissal et al., 2015; Hayashi,
2015). Studies have also demonstrated a suppressor effect of S1R
activity on ROS and oxidative damage (Meunier and Hayashi,
2010; Pal et al., 2012; Wang et al., 2012).

A decreased level of S1R or its activity is found associated with
neurodegenerative diseases (Nguyen et al., 2015). A S1Rmutation
was linked to a familial form of ALS (Al-Saif et al., 2011). The
mutation impairs MAMs and affects calcium signaling (Bernard-
Marissal et al., 2015). Several in vivo and in vitro studies have
shown evidence of S1R as a target for treating neuropsychiatric as
well as neurodegenerative disorders (Katnik et al., 2006; Meunier
et al., 2006; Vagnerova et al., 2006;Mancuso et al., 2012; Behensky
et al., 2013; Hyrskyluoto et al., 2013; Francardo et al., 2014;
Nguyen et al., 2014). S1R was reported to have a protective effect
in HeLa cells expressing mHtt, increasing proteasome activity
and mHtt degradation (Miki et al., 2015). In the next section
we will discuss recent studies on HD models, which reported a
beneficial effect of S1R modulation.

THERAPEUTIC APPROACHES FOR HD

There is currently no cure or effective therapy for HD. There
are two main recent experimental approaches to try to develop

a therapy (reviewed in Huang et al., 2016; Wright et al., 2017;
Caron et al., 2018; Saavedra et al., 2018). One involves gene
therapy, which includes knockdown of mHtt (Aguiar et al., 2017;
Datson et al., 2017; Southwell et al., 2018) and expression of
miRNAs (Miniarikova et al., 2017; Evers et al., 2018) (Table 1).
Htt is necessary in embryonic development but it might be
possible to eliminate it in the adult brain, (reviewed in Liu
and Zeitlin, 2017). Allele-specific CRISPR/Cas9-mediated gene
editing has been recently reported in adult HD140Q-knockin
mice (Yang et al., 2017). CRISPR/Cas9 can also be used to
specifically remove the CAG repeats (Dabrowska et al., 2018). A
main set-back of gene therapy approaches is attaining efficient
delivery, but there is huge progress in this direction in recent
years. Therapy involving fetal cell transplantation has also been
attempted (Bachoud-Lévi et al., 2006; Mazzocchi-Jones et al.,
2009; Schackel et al., 2013; Precious et al., 2017). The other
approach focuses on blocking the cellular toxicity of mHtt.
This includes many strategies, for example inhibiting mHtt
cleavage by caspase 6 (Aharony et al., 2015), targeting or
modulating heat shock proteins (Kampinga and Bergink, 2016;
Scior et al., 2018), neurotrophic factors such as CNTF (Emerich
et al., 1997), HDACs (Suelves et al., 2017), proteasome activity
(Jeon et al., 2016), and mitochondrial oxidative phosphorylation
(Ruetenik et al., 2016). Compounds that promote daf-16/FOXO
function and in turn stimulate insulin/IGF1 signaling and extend
longevity (Hesp et al., 2015), such as resveratrol, metformin
and some steroids, have shown beneficial effects in C. elegans
(Farina et al., 2017) and mouse HD models (Arnoux et al.,
2018). Metformin also appeared protective in a statistical
analysis of HD patients participating in the Enroll-HD database
(Hervas et al., 2017).

Reduction of ER stress is protective in HD, and can be
accomplished for example with the use of chemical chaperones
(Keene et al., 2002; Ferrante et al., 2003). As mentioned above,
p97/VCP depletion is an important factor in HD pathogenicity,
through inhibition of ERAD and development of ER stress
(Leitman et al., 2013). It was recently reported that VCP
interacts with mHtt on mitochondria, enhancing mitophagy and
cell death; a peptide was developed to inhibit the interaction
(Guo et al., 2016). There is a cross-talk between ER stress
and autophagy and for example, XBP1 deficiency leads to an
enhancement of autophagy and overall improvement in HD
model mice (Vidal et al., 2012). Induction of autophagy by
genistein was protective in a cellular HD model (Pierzynowska
et al., 2018). An ER stress upregulated protein, ectodermal-neural
cortex 1 (ENC1), was recently shown to inhibit autophagy in an
HD cellular model, and its knockdown increased autophagy and
cell survival, suggesting it as a possible target for therapy (Lee
et al., 2016). mHtt-induced ER stress also increases expression
of protein disulfide isomerase (PDI) (Duennwald and Lindquist,
2008), a small molecule PDI modulator caused improved motor
function and survival in the N171-82Q HD model mouse (Zhou
et al., 2018). ER Ca2+ depletion causes protein misfolding in
the ER and ER stress. Recent studies targeted Ca2+ balance,
showing beneficial effects, with a small molecule activator of
SERCA in a rat model of PD (Dahl, 2016) and with inhibition
of TRPC1-Dependent Store-Operated Calcium Entry in an HD
mouse model (Wu et al., 2018).

Frontiers in Molecular Biosciences | www.frontiersin.org 5 April 2019 | Volume 6 | Article 20

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Shacham et al. ER Stress in HD

TABLE 1 | Therapeutic approaches for HD.

Approach Strategy Target Model/drug References

Reduction of ER

stress and/or mHtt

toxicity

Activation of protein quality

control

Trimeric Hsp70, Hsp110, Hsp40

chaperone

HD patient-derived neural cells and C.

elegans HD model

Scior et al., 2018

PDI N171-82Q HD model mouse/LOC14 Zhou et al., 2018

P97/VCP HD cell model Leitman et al., 2013

P97-mHtt interaction HD mouse- and patient-derived

cells/peptide

Guo et al., 2016

PERK HdhQ111 cell model/A4 Leitman et al., 2014

Protein misfolding R6/2 mice/chemical chaperones Ferrante et al., 2003

Keene et al., 2002

Proteasome activity YAC128 HD mice/PA28-gamma Jeon et al., 2016

Ca2+ balance YAC128 HD mice/EVP4593 Wu et al., 2018

Activation of mitochondrial

function

OXPHOS Yeast and Drosophila polyQ models Ruetenik et al., 2016

Activation of autophagy XBP1, ATF4 XBP1- or ATF4-deficient mice, YAC128

mice, HdhQ111 knock-in mice

Vidal et al., 2012

Lysosomal function HEK293 HD cell model/genistein Pierzynowska et al., 2018

ENC1 SH-SY5Y cells, embryonic HD mice striatum Lee et al., 2016

Activation of Sigma-1

receptor

Sigma-1 receptor Neuronal PC6.3 cell HD model/Pre084,

pridopidine

Hyrskyluoto et al., 2013.

R6/2 and Yac128 HD mouse

models/Pre084, pridopidine

Garcia-Miralles et al., 2017

Kusko et al., 2018

Squitieri et al., 2015

Cells from YAC128 HD mice/3-PPP,

pridopidine

Bol’shakova et al., 2017

Ryskamp et al., 2017

Clinical trials/pridopidine Waters et al., 2018

Other approaches Caspase 6—mHtt cleavage BACHD mice/peptide Aharony et al., 2015

Excitotoxicity Sprague Dawley rats injected with quinolinic

acid/CNTF

Emerich et al., 1997

HDAC3 HdhQ111 knock-in mice/RGFP966 Suelves et al., 2017

daf-16/FOXO C. elegans HD model 128Q/ steroids,

resveratrol

Farina et al., 2017

Hdh150 knock-in mice/metformin Arnoux et al., 2018

Statistical analysis of Enroll-HD

patients/metformin

Hervas et al., 2017

Gene therapy CRISPR/Cas9- knockout mHtt gene Adult HD140Q-knockin mice Yang et al., 2017

CRISPR/Cas9- CAG

repeats editing

mHtt gene HD patient-derived fibroblasts Dabrowska et al., 2018

mHtt knock down CAG repeat in mHtt mRNA

(antisense)

R6/2 mice model Datson et al., 2017

Southwell et al., 2018

miRNA expression mHtt mRNA (AAV5-miHTT) HD (tgHD) minipig model Evers et al., 2018

Sprague Dawley rats injected with a LV

expressing a chimeric mHtt fragment

Miniarikova et al., 2017

Stem cell therapy Fetal cell transplantion Fetal striatal cells C57/BL6 mice with striatal lesion Mazzocchi-Jones et al., 2009

Sprague Dawley rats injected with

quinolinic acid

Schackel et al., 2013

HD patients Bachoud-Lévi et al., 2006

Targeting the UPR Pathways
One strategy with encouraging results so far for several
neurodegenerative diseases is to target the UPR pathways
(Shenkman et al., 2015; Xiang et al., 2016; Pérez-Arancibia et al.,
2017). PERK, one of the three UPR sensors, is an interesting

and promising target (recently reviewed in Halliday et al., 2017a;
McQuiston and Diehl, 2017; Ohno, 2017; Hughes and Mallucci,
2018; Taalab et al., 2018). A very low activity of PERK-mediated
eIF2α phosphorylation in striatal neurons in culture and in the
mouse brain striatum was found connected to the higher mHtt
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toxicity in this region (Leitman et al., 2014). As explained above,
initial activation of PERK is beneficial, through phosphorylation
of eIF2α, resulting in transient inhibition of protein synthesis
and by activation of NRF2 and its anti-oxidant effects. However,
chronic ER stress leads to upregulation of CHOP through the
PERK pathway, which triggers a series of events ending in
apoptosis. Therefore, inhibition of PERK can be beneficial,
by reducing the activation of the apoptotic pathway, but this
will preclude the initial protective role of PERK (Figure 1).
Conversely, activating or prolonging eIF2α phosphorylation can
improve the initial protective stage but might lead to apoptosis
if it is not controlled. Both strategies have been attempted,
with positive results, but also with some negative reports. The
PERK inhibitor GSK2606414 was protective in prion (Moreno
et al., 2013), frontotemporal dementia (Radford et al., 2015)
AD (Yang et al., 2016) and PD (Mercado et al., 2018) mouse
models but secondary side effects of pancreatic toxicity appeared
as well, as high levels of insulin production in the pancreas
require regulation by a functional PERK pathway. Compounds
that inhibit the pathway downstream of eIF2α-P, and restore
protein synthesis, were developed and showed protective
effects in neurodegeneration caused by prion infection and
in frontotemporal dementia, without the secondary toxicity
(ISRIB, Trazodone) (Sidrauski et al., 2013; Halliday et al., 2015,
2017b). In several tauopathies, PERK variants with reduced
activity are a genetic risk factor. Expression of these variant
alleles in iPSC-derived neurons, or inhibition of PERK, showed
high vulnerability to ER stress in these cells (Yuan et al., 2018),
suggesting that an approach involving PERK pathway activation
would be beneficial. In a strategy to increase eIF2α-P, GADD34
inhibitors (salubrinal, guanabenz, sephin 1) were tested, showing
beneficial effects in mouse models of prion disease (Das et al.,
2015), PD (Sun et al., 2018), and ALS (Tsaytler et al., 2011), but
accelerated disease progression in another ALS study (Vieira
et al., 2015). Another approach is to directly activate PERK. A
PERK activator, CCT020312, was developed (Stockwell et al.,
2012) and recently tested in mouse and cellular tauopathy
models, showing beneficial effects and no toxicity (Bruch et al.,
2017). PERK modulation has only been reported in HD cellular
models (Leitman et al., 2014), but our own unpublished studies
in mouse HD models, using a PERK activator that we have
developed, showed significant protection. A combinatorial drug
approach, targeting different UPR pathways, or concomitantly
modulating other mechanisms has not been tried and may
be advantageous.

Approaches Involving the Sigma-1
Receptor
As mentioned above, S1R, activated by ER stress, could be a
promising target for ameliorating symptoms in HD (Nguyen
et al., 2015; Bol’shakova et al., 2017). The treatment of an
mHtt expressing neuronal cell line (PC6.3) with the S1R
agonist PRE-084 had a neuroprotective effect by restoring the
S1R deficit, upregulating antioxidant activity, and decreasing
ROS levels via NF-kB signaling (Hyrskyluoto et al., 2013).

This agonist and also 3-PPP showed a neuroprotective effect
by increasing the density in neuronal cultures from HD
model mice (Bol’shakova et al., 2017). Another S1R agonist,
pridopidine (also known as a dopamine stabilizer) showed
a neuroprotective effect in the R6/2 and Yac128 HD mouse
models, improving motor performance and survival (Squitieri
et al., 2015; Garcia-Miralles et al., 2017; Kusko et al., 2018),
mainly through normalization of calcium homeostasis (Ryskamp
et al., 2017). Our own unpublished results in HD cellular
models suggest that the effect of pridopidine through S1R
activation is by modulation of ER stress, affecting especially
the PERK pathway. A series of clinical trials have found
some encouraging results for pridopidine therapy in HD
(Squitieri and De Yebenes, 2015; Waters et al., 2018).

CONCLUDING REMARKS

Recent evidence increases our understanding of the
consequences of protein misfolding and aggregation in
HD on the generation of ER stress and cytotoxicity. Given
the similarities in the origin of ER stress in multifactorial
neurodegenerative diseases such as AD, the findings on HD have
important wider implications. It is becoming more clear that the
toxicity originates mainly from soluble oligomeric assemblies
rather than the large protein inclusions that develop with time.
Therefore, there is less interest in the development of inhibitors
of aggregation, a strategy that has failed so far. Late onset has
been linked to failure with age of protein homeostasis and the
consequent development of uncontrolled ER stress. HD therapy
is not yet imminent, but recent work points the way, with
modulation of the UPR, especially of the PERK pathway. The
question of whether to inhibit or activate this pathway should
probably be rephrased, as the solution might be different for
each disease and the aim should be to restore PERK pathway
activity to an optimal middle point. Other therapeutic strategies
could be the targeting of UPR-regulated downstream factors,
such as the promising recent reports of modulation of the
S1R in HD.
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