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Abstract

A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause
cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored
that target different steps in the production and processing of proteins implicated in neurodegenerative disease,
including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy
pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire
proteostatic network. However, there are major challenges that impact the development of novel therapies,
including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of
biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of
collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and
regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that
prevent, reverse or delay the progression of neurodegenerative proteinopathies.
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Background

Many neurodegenerative diseases involve the misfolding
and aggregation of specific proteins into abnormal, toxic
species. Therapeutic targeting of protein misfolding has
generated unique challenges for drug discovery and de-
velopment for several reasons, including 1) the dynamic
nature of the protein species involved, 2) uncertainty
about which forms of a given disease protein (mono-
mers, oligomers, or insoluble aggregates) are primarily
responsible for cellular toxicity, 3) our still limited un-
derstanding about which components of the cellular
proteostatic machinery these disease proteins interact
with and 4) lack of well-validated biomarkers for clinical
trials. However, as we continue to gain knowledge of dis-
ease mechanisms, improve our abilities to model disease
states in vitro and in vivo, and identify new biomarkers,
there is increasing optimism that we will discover novel
therapeutics that prevent, reverse, or delay the progres-
sion of neurodegenerative diseases. In concert with the
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scientific advances in the past several decades, the field
of neurodegenerative disease research is undergoing sig-
nificant change with respect to how various stakeholders
engage each other and share information with the entire
community. Increasing collaboration between scientists
from the pharmaceutical industry disease foundations,
academic researchers, contract research organizations,
and patient advocacy group, and increasing communica-
tion between groups studying different diseases, has
spurred promising initiatives in basic, translational, and
clinical research in neurodegenerative disease.

There are multiple steps in the production and pro-
cessing of disease proteins that could be targeted thera-
peutically, from initial synthesis to degradation and
extracellular clearance (Fig. 1). This review discusses the
advantages and potential problems associated with tar-
geting different pathways involved in the production and
processing of misfolded proteins, and highlights new
candidate therapeutics that have been developed by tar-
geting specific steps in the life cycles of disease proteins.
It also discusses some key issues involved in translating
preclinical findings to successful clinical trials.
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Fig. 1 Mechanisms involved in protein misfolding & therapeutic targets. A newly synthesized protein is stabilized by endogenous chaperone
proteins. Under normal conditions abnormal protein aggregates (misfolded proteins) are degraded and/or cleared extracellularly, undergo
autophagy or are degraded with the aid of the cellular proteasome. In cases of abnormality and misfolding of proteins (such as those present in
many neurological diseases) post translational modification inhibitors, protein cleavage inhibitors and extrinsic molecular chaperones have been
used in attempts to curtail or correct protein misfolding. In addition, post translational approaches to address and combat the presence of
misfolded proteins include agonists that attempt to activate endogenous clearance pathways as well as the introduction of recombinant

Activate endogenous clearance
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Roles of misfolded proteins and aggregates in
proteinopathies

Misfolded proteins exist in cells together with unfolded,
intermediately folded, and correctly folded species [1]. In
healthy cells, misfolded proteins are either degraded or
refolded correctly by chaperone proteins that are in-
volved in protein folding and trafficking as well as inter-
mediate stabilization [1]. Indeed, it is now believed that
many, if not all, proteins can form amyloid fibrils under
appropriate biochemical conditions [2, 3]. However,
many disease-associated amyloidogenic proteins have ex-
tensive regions of intrinsic disorder in their free soluble
forms [4] and have specific, often short, internal amino
acid sequences that are necessary and sufficient to sup-
port aggregation [3, 5]. These same motifs can be found
in other non-disease proteins, and when liberated from
rest of protein these fragments will aggregate into cyto-
toxic amyloid fibrils [2, 5].

Once formed, higher order amyloid aggregates are
highly resistant to degradation. Proteasomes can de-
grade only single chain polypeptides, and also require
the proteins to be partially or fully (in the case of
proteasomes) unfolded [6]. In addition, the amyloid
state is extremely stable thermodynamically, because
of the extensive contacts made between the protein
chains of the polymer. The thermodynamic stability
of amyloid aggregates also contributes to their ability
to convert native proteins into amyloid forms (ie., to
seed prion-like propagation) [7].

Under conditions of proteotoxic stress, cellular aging,
or the presence of disease mutations, proteins can es-
cape a cell’s quality control system and begin to aggre-
gate into non-native structures, which range from
oligomers and amorphous assemblies to highly ordered
amyloid fibrils and plaques.

Cells are normally faced with a continuous stream of
misfolded proteins arising from mistakes in biogenesis,
disease-causing mutations, and physiological stressors
(Table 1 lists misfolded proteins associated with neuro-
degenerative disease). They deal with misfolded proteins
by refolding, degrading, or sequestering them in specific
intracellular compartments, such as aggresomes or other
types of inclusion bodies. Chaperone proteins bind to
nascent polypeptides as they emerge from ribosomes

Table 1 Misfolded proteins associated with neurodegenerative
diseases

Proteinopathy Aggregating protein(s)

Amyloid beta (Ab) peptide; Tau

Alzheimer's disease

Parkinson'’s disease a-synuclein

Multiple tauopathies Tau protein (microtubule associated)

Huntington's disease Huntingtin with tandem glutamine

repeats
Amyotrophic lateral sclerosis Superoxide dismutase 1
Spongiform encephalopathies Prion proteins

Familial amyloidotic
polyneuropathy

Transthyretin (mutant forms)
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and assist in their folding, and oversee and participate in
every step in the handling of misfolded proteins. Chaper-
ones also monitor the quality of the folded chains and
can in some cases unfold and refold misfolded proteins.
Alternatively, chaperones target the misfolded proteins
for degradation via the ubiquitin proteasome system or
autophagy pathway, or for sequestration in various cellu-
lar compartments [8, 9].

Studies in yeast have revealed two overlapping but
functionally distinct networks of chaperones [10, 11].
CLIPs (chaperones linked to protein synthesis) are phys-
ically associated with the translational machinery and
oversee quality control of newly translated proteins.
CLIPs comprise a large family of proteins, and evidence
suggests that different CLIPs associate with different
classes of proteins [12]. The second set of chaperones,
heat shock proteins (HSPs), protects the proteome from
denaturing environmental stressors, including thermal,
oxidative, and hypoxic stresses. CLIPs and HSPs have dif-
ferent modes of transcriptional regulation in yeast: CLIPs
are generally down-regulated under conditions of proteo-
toxic stress, whereas HSPs are up-regulated [9, 10].
Subnetworks of differentially regulated chaperones and
co-chaperones have also been identified in C. elegans and
in the human brain [13]. In addition, it has been found
that as the human brain ages, a subset of chaperones con-
sisting primarily of CLIPs are repressed, and chaperones
that help protect the proteome against misfolded protein
toxicity are induced mimicking proteotoxic stress; these
differences are even more pronounced in the brains of
people with Alzheimer’s, Huntington’s, or Parkinson’s dis-
ease [13]. Misfolded proteins that are not immediately
refolded are actively sequestered in spatially and function-
ally segregated quality control compartments [8, 14]. In
yeast, the juxtanuclear quality control (JUNQ) compart-
ment concentrates soluble misfolded proteins that are ei-
ther later refolded by chaperones or degraded by the
ubiquitin proteasome system (UPS). The insoluble protein
deposit (IPOD) compartment, which may be equivalent to
the aggresomes found in mammalian cells, sequesters in-
soluble aggregates. The sequestration of aggregated
misfolded proteins may in many cases serve a beneficial
role — by preventing misfolded proteins from saturating
chaperones and proteasomes, facilitating their clearance via
the UPS or through autophagy, or by preserving them for
subsequent refolding and return to use in the cell [15, 16].

Proteostasis

The term “proteostasis” refers to the integrated activity
of cellular mechanisms that regulate protein production,
folding, trafficking, degradation, and clearance. Cellular
responses to proteotoxic stress, like the heat shock re-
sponse and the unfolded protein response (UPR) involve
large-scale rebalancing of the proteostatic network via
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transcriptional regulation of both chaperones (e.g.,
Hsp70, Hsp90) and non-chaperone proteins (including
transcription factors, signaling proteins and receptors,
and cell cycle regulators [17]. Post-translational modifi-
cations can also radically change the activity of some
chaperones [18], and likely also play a key role in pro-
teostasis, although this area remains largely unexplored.
During the ageing process, or in diseases associated with
misfolded proteins, cells may experience “proteostatic
collapse.” Proteostatic collapse is associated with the ac-
cumulation of ubiquitinated inclusion bodies (IBs),
which are seen in many neurodegenerative diseases [9].
It has been suggested that ubiquitinated aggregates can
directly inhibit or clog proteasomes [19, 20]. However,
in the case of ubiquitinated Huntingtin (Htt), this does
not appear to be the case, nor is ubiquitination required
for Htt to accumulate in IBs [21]. Rather, the accumula-
tion of ubiquitinated species in misfolded protein dis-
eases may reflect a global perturbation of proteostasis, in
which chaperones and proteasomes are simply over-
whelmed with client proteins.

Propagation

A key feature of misfolded protein diseases is the ability
of the pathogenic protein species to propagate in a
prion-like manner by recruiting normally folded coun-
terparts to adopt pathogenic conformations. Pathogenic
amyloids can also spread from neurons to other neurons
and neighboring glia to initiate new pathology after in-
jection into the brains of normal animals [22, 23]. Both
in vivo and in vitro studies have shown that misfolding
of one disease causing protein can induce misfolding of
other aggregation-prone proteins [23], and aggregates of
different disease proteins may be found in the same pa-
tient [24]. Moreover, the accumulation of one species of
misfolded proteins can impair the entire proteostatic
network, thereby triggering the misfolding of unrelated
proteins that would otherwise fold normally [25, 26].
The mechanisms by which misfolded proteins spread
from one neuron to another are currently an area of ac-
tive investigation. New evidence suggests that inter-
neuronal spread of misfolded proteins involves 1)
activity-dependent secretion by exosomes ([27] and/or
2) chaperone-mediated pathways [28, 29].

Mechanisms of misfolded protein toxicity

In the long term, all neurodegenerative disease proteins
produce synaptic dysfunction and loss and, ultimately,
neuronal cell death. The precise upstream mechanisms
by which different misfolded disease proteins cause
neurotoxicity are still unclear, and appear to differ
depending on the protein species involved. Misfolded
disease proteins appear to act primarily by toxic gain-of-
function and/or dominant-negative effects, although
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loss-of-function effects have also been observed. Direct,
acute effects of misfolded proteins on neuronal function
have been observed after treating neurons with purified
oligomers or transfecting them with expression vectors.
To give just a few examples, amyloid-beta, tau, and alpha-
synuclein all interfere with synaptic signaling [30-32]; mu-
tant tau disrupts microtubule function and neuronal
transport mechanisms [32, 33]; and alpha-synuclein dis-
rupts mitochondrial protein import [32, 34]. In addition,
larger aggregates of misfolded proteins may exert toxic ef-
fects by binding to and sequestering other cytosolic pro-
teins. For example, proteomic studies of artificial proteins
designed to form amyloid-like fibrils showed that the tox-
icity of these proteins correlated with the ability of their
aggregates to engage in aberrant protein interactions and
disrupt the cytosolic stress response [35]. Notably, the en-
dogenous cellular proteins sequestered by the amyloid ag-
gregates tended to be relatively large in size and enriched
in intrinsically unstructured regions, and many play key
roles in essential cellular activities such as transcription,
translation and protein quality control. Indeed, another
emerging common feature among misfolded disease pro-
teins is their ability to disrupt proteostasis (see more
below). More recently, cytosolic aggregates of several dif-
ferent proteins, including artificial B-sheets, fragments of
mutant huntingtin, and TAR DNA binding protein-43
(TDP-43) have also been shown to disrupt nucleocytoplas-
mic transport of both proteins and RNA [36].

In addition to synaptic dysfunction, other cellular
changes common to the major neurodegenerative diseases
include calcium signaling abnormalities, mitochondrial
dysfunction, oxidative stress, and neuroinflammation.
These symptoms of cellular distress often occur early in
the disease process, and are believed to be a cause as well
as a consequence of neurodegeneration. That is, the rela-
tionship between the accumulation of misfolded disease
proteins and other signs of cellular distress is bidirectional,
and in many cases mutually exacerbating. For example,
amyloid-p, a-synuclein, and mHtt all cause acute oxidative
stress in neurons and/or astrocytes, and impair astroglial
anti-oxidant responses [37-40]. Conversely, oxidative
stress promotes the aggregation of disease proteins, and
contributes to age- and disease-related proteostatic col-
lapse [41, 42]. Similarly, there appearaas a downward
spiralling cycle of interactions between protein misfolding
and neuroinflammation, which has been most extensively
studied for AD. Soluble A oligomers and insoluble Af
aggregates have been shown to bind to and activate and
microglia and astrocytes, stimulating a chronic low level
state of neuroinflammation [43]. Several lines of evidence
suggest that the pro-inflammatory effects of AP, while per-
haps helpful in the short-term, ultimately impair the
microglial and astroglial function, including their ability to
dispose of AP and other misfolded proteins [38, 43—45].
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The destructive consequences of the neuroinflammation
provoked by misfolded disease proteins are likely exacer-
bated by ongoing, age-related senescence of the immune
system senescence [46, 47].

Therapeutic targets

Targeting production, misfolding and aggregation

The development of drugs targeting protein misfolding
or aggregation has been challenging due to the lack of
certainty about which form/s of a given disease protein
is primarily responsible for the disease. In the case of
amyloid-p (Ap), it was originally thought that fibrils and
plaques were the pathogenic species in Alzheimer’s dis-
ease, but more recent studies point to aggregation inter-
mediates (oligomers and soluble protofibrils) as the
primary culprits; similar findings have emerged with re-
spect to different species of a-synuclein in Parkinson’s
disease [4, 48]. The situation is further complicated by the
existence of the variety of intermediate species that exist
during the folding and oligomerization processes. Recent
studies have demonstrated that aggregated fibrils of tau,
a-synuclein, and AP exist in different conformational vari-
ants, or ‘strains, that have different propagation properties
and different levels of neurotoxicity [49-51].

Identifying key toxic species of misfolded proteins has
been challenged the inability of conventional biochemical
analytic methods to detect and characterize intermediate
species. For example, denaturing gel electrophoresis
(SDS-PAGE) has been shown to alter the oligomerization
state of AP42 oligomers [52]. Recently, ion mobility
spectrometry-mass spectrometry (IMS-MS) and nuclear
magnetic resonance (NMR) spectroscopy have been used
to analyze the folding and aggregation of amyloid proteins
in solution and to identify inhibitors of these processes
[53-55]. As an alternative to preventing the initial mis-
folding and aggregation of amyloids, another approach
now being explored is to stabilize mature fibrils to prevent
their prion-like propagation [48, 56].

In cases where the relative pathogenicity of various
misfolded protein species is unknown, one strategy
would be to intervene therapeutically as far upstream
as possible in the protein synthesis pathway: ie., at
the level of protein translation, cleavage, or post-
translational modification. In theory, targeting early
steps in the processing pathway would provide the
highest degree of therapeutic specificity and eliminate
toxic gains or losses of function caused by misfolded
or aggregated forms of the protein, while preventing
the propagation of abnormal folding and aggregation.
Protein cleavage and post-translational modification
targets are being actively explored for AP using Beta
Amyloid Cleaving Enzyme (BACE) inhibitors (some of
which are now in clinical trials) and for tau using
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inhibitors of tau phosphorylation (e.g., glycogen syn-
thase 3p inhibitors) and acetylation [57-60].

Targeting chaperones

Chaperones are another possible target class for thera-
peutic intervention in protein misfolding disease states.
As chaperones are involved in all aspects of proteostasis,
they offer potential therapeutic entry points to each step
in the processing of a pathogenic protein. There are over
200 different chaperone proteins expressed in the mam-
malian brain [61], and different cell types express differ-
ent sets of chaperones and co-chaperones [62, 63]. Cell
type-specific expression of chaperone subsets may help
to explain why some misfolded proteins are toxic in one
cell type and not in others, and also presents opportun-
ities to develop drugs targeting neuron- or glial cell-
specific chaperones. However, the sheer number of
chaperones and the diversity in their mechanisms of ac-
tion also presents challenge to therapeutics develop-
ment; we still have limited knowledge of which
chaperones interact with which disease proteins and
how. Some clues have been offered by links between
mutations in specific chaperones and hereditary forms
of certain neurodegenerative diseases. For example, mu-
tations in Hsp70 and Hsp40 have been linked to
Parkinson’s disease [64, 65], and mutations in the co-
chaperone valosin-containing protein (VCP) have been
found in ALS [66]. In addition, to date over 20 different
chaperones have been found to confer neuroprotection
when over-expressed in cell or animal models of various
neurodegenerative diseases, and in many cases individual
chaperones appear to protect against several different
disease proteins [67].

One approach to therapeutically targeting the
chaperone system has been to develop small molecule
inhibitors or activators of specific chaperones. Among
chaperones relevant to neurodegeneration, Hsp70 and
Hsp90 have been the most intensely studied. Hsp70 and
Hsp90 have opposing effects on client protein stability:
Hsp70 promotes their degradation via the UPS system,
whereas Hsp90 stabilizes client proteins and inhibits
their ubiquitination. The activities of Hsp90 and Hsp70
are tightly linked via HSF1. Hsp90 inhibitors typically
activate HSF1, which in turn induces Hsp70 [68]. A var-
iety of small molecule drugs have been developed that
inhibit Hsp90, activate Hsp70, or both, and have been
shown to reduce the formation of disease protein aggre-
gates, reduce cellular toxicity, and improve neurological
phenotypes in cellular and animal models of SBMA, HD,
PD, and AD [62, 67, 69-71]. None of these drugs have
yet entered clinical trials for use in neurodegenerative
diseases, due to issues of low brain penetration and/or
peripheral cytotoxicity, but active effort in this area is
continuing [70, 72—74].
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A second approach to developing chaperone-based
therapeutics has been through protein engineering. For
example, it was discovered that the yeast disaggregate
Hsp104 has the ability to dissolve in vitro fibrils formed
from a variety of neurodegenerative disease proteins, in-
cluding tau, polyglutamine, AB42, a-synuclein and prion
protein [75, 76]. However, relatively high concentrations
of Hsp104 are needed to dissolve these proteins. Making
small changes in Hspl04's sequence yielded proteins
with much higher dissaggregase activity and lower tox-
icity, including variants that reduced neurodegeneration
in a C. elegans model of PD [77]. Other chaperones to
which this approach might be applied include the yeast
chaperonin Tric, which has the unusual ability to cross
cell membranes and has been shown to protect against
Htt toxicity [16], and metazoan chaperones known to
have disaggregase activity (e.g, Hsp110, Hsp70, and
Hsp40) [78].

Targeting degradation

Defects in both the UPS and autophagy pathways of pro-
tein degradation are often seen in neurodegenerative dis-
eases [79, 80]. For example, many of the gene mutations
that cause familial PD encode proteins involved in the
UPS and/or autophagy, including PINK-1, Parkin (a ubi-
quitin ligase), UCH-L1 (Ub carboxy terminal hydrolase
L1), DJ-1 (PARK?), and LRRK2/PRAKS [79, 81, 82]. As
with the chaperone system, choosing promising drug
targets from the UPS or autophagy pathways is challen-
ging because of the number of proteins involved (there
are ~ 500 to 1000 associated just with the UPS system).
In addition, for most diseases it isn’t known which form/
s of the disease protein are primarily responsible for cel-
lular toxicity. This issue is critical when targeting protein
degradation, because the pathway by which a given pro-
tein is degraded (e.g., UPS versus autophagy) can vary
depending on whether the protein is in the soluble or fi-
brillar state, and on what specific post-translational
modifications it bears [83, 84].

A number of small molecules have been identified that
upregulate components of the UPS, promote the degrad-
ation of disease proteins and in vitro, and (in some
cases) have neuroprotective effects on cultured cells
[84-86], but few have yet been shown to be effective in
vivo. One interesting exception is rolipram, an agent that
stimulates the phosphorylation and activity of the 26S
proteasome. Myeku and colleagues [21] showed that 26S
proteasome function is impaired in a mouse tauopathy
model, and that treating the mice with rolipram treat-
ment improved 26S proteasome function, decreased tau
aggregation, and improved cognition.

Inhibition of the mammalian target of rapamycin
(mTOR) pathway has proven to be an exceptionally ef-
fective approach for stimulating the degradation of
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neurodegenerative disease proteins. mTOR, a serine/
threonine kinase, is a signaling nexus that collects infor-
mation about ambient levels of resources necessary for
cell growth (e.g., nutrients, ATP, growth factors, and
oxygen) and up- or downregulates protein synthesis and
degradation accordingly. When growth conditions are
favorable, mTOR inhibits autophagy by inhibiting the
ULK1 complex, which is required for the biogenesis of
autophagosomes. Thus, mTOR inhibitors typically have
the net effect of stimulating autophagy [87, 88].

Rapamycin and other mTOR inhibitors increase the
clearance of abnormal protein aggregates and slow neu-
rodegeneration in both cell and animal models of a var-
iety of neurodegenerative diseases, including AD, PD,
spinocerebellar ataxia type 3, and frontotemporal de-
mentia [87, 88]. In most of these cases, mTOR inhibitors
have been shown to act at least in part via stimulation of
autophagy. A recent study showed that in yeast, inhibit-
ing mTOR also produces a rapid, coordinated upregula-
tion of proteasomes and their 19S regulatory chaperones
[89]. Thus, the efficacy of mTOR inhibitors in clearing a
variety of neurodegenerative disease proteins may be
due to the ability of these drugs to upregulate both the
proteasomal and autophagic routes of protein
degradation.

Several mTOR-dependent activators of autophagy,
including the natural compounds curcurmin and res-
veratrol, are currently in clinical trials for treating
neurodegenerative diseases. However, mTOR is a
multifarious protein that regulates many cellular pro-
cesses in addition to protein degradation, and in clin-
ical trials to date wmTOR inhibitors have caused
unpredictable and undesirable side effects. Autophagy
can be stimulated mTOR-independent mechanisms
[79, 87, 88], and a number of compounds, including
FDA-approved drugs, have now been shown to stimu-
late clearance of abnormal proteins and confer pro-
tective effects in cell or animal models of
neurodegenerative disease [87, 88, 90, 91]. It has been
suggested that these compounds might be used in
conjuction with mTOR inhibitors to maximize thera-
peutic benefit and minimize side effects [87, 90].

Targeting extracellular clearance

One of the best-explored examples of targeting clearance
of misfolded proteins has been the use of antibodies to
promote clearance of AP. These antibodies are thought
to operate by either or both of two mechanisms: 1) by
penetrating the blood brain barrier (BBB) to bind Af in
the extracellular space, and 2) through a”peripheral sink”
effect [92]. Almost all misfolded proteins show some
extracellular leakage [93], and an advantage of targeting
extracellular misfolded proteins is that it can theoretic-
ally be accomplished by highly selective antibodies. For
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example, monoclonal antibodies have been developed to
AP and a-synuclein that show >1000-fold higher affin-
ities for the oligomeric versus monomeric forms of the
proteins [94—96].

Current challenges in the use of AP antibodies include
low rates of BBB penetration [97], nonspecific engage-
ment of AR and uncertainty as to which antibodies en-
gage clinically relevant forms of AP [98-100]. Detailed
structural studies of how different antibodies interact
with specific epitopes in the AP molecule are now un-
derway [101] and help inform antibody design and
epitope-targeting in the future. An alternative method of
improving the clearance of toxic misfolded species is to
harness endogenous mechanisms of protein clearance
into the extracellular space. For example, LXR beta re-
ceptor agonists, which promote clearance of AP into the
extracellular space by the ABCA1 transporter, have shown
therapeutic effects in AD mouse models [102, 103]. Yet
another potential avenue for new therapies targeting
extracellular clearance of disease proteins is the use of
non-antibody scaffold drugs [104].

Rebalancing the proteostatic network

The ability of the cell’s proteostatic machinery to coun-
ter proteotoxic stressors deteriorates with age, and is
further compromised by mutations and other disease
conditions that lead to the accumulation of misfolded
proteins [16]. Thus, another potential approach to the
development of therapeutics would involve large-scale
rebalancing of the proteostatic network. Indeed, the effi-
cacy of mTOR inhibitors may reflect their ability to pro-
voke large-scale rebalancing of protein synthesis and
degradation pathways. Another attractive target in this
regard is heat shock factor 1 (HSF1), a transcriptional
activator that helps coordinate the heat shock response.
The heat shock response (and other proteotoxic stress
responses) diminish with age and in neurodegenerative
disease [105]. In addition, it was recently shown that
HSF1 degradation is abnormally elevated in mouse and
human «-synucleinopathy [106]. Over-expression of hu-
man HSF1 has been shown to be neuroprotective in cell
models of neurodegenerative diseases [107, 108], to re-
duce polyglutamine aggregate formation and prolong
lifespan in a mouse model of HD [17] and to reduce
pathogenic androgen receptor accumulation and neuro-
toxicity in a mouse model of spinobulbar muscular atro-
phy [109]. Small molecule activators of HSF1 have now
been identified and shown to have neuroprotective ef-
fects in cell or animal models of neurodegenerative
diseases [107, 108].

Agents targeting HSF1 or other master regulators of
the proteostatic network have the advantages of being
fast-acting and relatively agnostic to the identities of the
misfolded proteins involved in a given neurodegenerative
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disease and to their mechanisms of aggregation and tox-
icity. The effects of such drugs are hard to predict, how-
ever. For example, the induction of the heat shock
response actually exacerbates Htt IB formation in a cel-
lular model of HD [110]. In addition, it has been pointed
out that, under normal physiological conditions, the heat
shock response and other proteotoxic stress response
pathways are activated only transiently, and that multiple
cellular mechanisms are in place to limit and down-
regulate these responses [111]. Consistent with those
facts, an Hsp90 inhibitor that induces the heat shock
response in HD model mice was found to provide short-
term beneficial effects, but those benefits proved transient
[112]. Yet another potential issue with HSF1 activators is
that HSF1 promotes tumorigenesis and is activated in a
broad range of highly malignant human cancers [113, 114].
This issue is not necessarily unsurmountable, however, as it
has also been shown that the HSF1 drives a different tran-
scriptional program and stimulates different sets of cellular
processes in cancer cells (including proliferation, invasion,
and metastasis) than it does in normal cells [113]. The
ability of HSF1 to activate distinct transcriptional pro-
grams in cancer cells versus normal cells is thought
to result in part from differences in post-
transcriptional modifications to HSF1 in the different
cell types [113, 114], which in turn raises the possibil-
ity that the neuroprotective effects of HSF1 could be
harnessed separately from its tumorigenic ones.

Challenges in translating preclinical findings to
clinical trials for diseases associated with
misfolded proteins

The misfolded protein neuropathies have proven an ex-
ceptionally challenging arena for therapeutics develop-
ment. Promising candidates for Alzheimer’s disease,
Parkinson’s disease, ALS, and Huntington’s disease have
been identified in preclinical studies, but very few have
shown significant benefits in clinical trials (Table 2 lists
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known drug-target interactions for neurodegenerative
diseases associated with misfolded proteins). This “fail-
ure to translate” has plagued the development of thera-
peutics for neurological diseases in general, and likely
reasons for it have been discussed in detail elsewhere
[115-117]. A leading cause is the lack of robust targets
whose modulation results in a therapeutic benefit. The
uncertainties about which process or protein to target,
and resulting failures to demonstrate target engagement,
result in preclinical studies in animal models that do not
have predictive validity. Additionally, there is a strong
need to identify translatable biomarkers in animal
models for clinical studies. Finally, pharmacokinetics and
drug safety pose significant challenges to successful drug
development for misfolded protein diseases. Recently,
however, strides have been made in the area of
Alzheimer’s disease with structural studies of how anti-
bodies interact with specific epitopes on the amyloid-p
molecule, and how these interactions correlate with clin-
ical outcomes [101].

Another area of opportunity is the identification of
novel targets. For example, the area of cell type-
specific targets has been relatively unexplored. A key
feature of the proteinopathies is that the proteins in-
volved are typically expressed in many or all cell
types, but cause pathological phenotypes only in spe-
cific sets of neurons. Thus, informed development of
therapeutics should include understanding not only of
the species of misfolded proteins involved, but also of
how they affect different populations of neurons. A
recent genomic/proteomic study in HD model mice
identified striatum- and cortex-specific transcription
modules whose expression correlated strongly with
both CAG repeat length and age [118]. Interestingly,
striatal modules included genes involved in establish-
ing and maintaining medium spiny neuron identity.
Another study showed that the degeneration of differ-
ent subtypes of neurons (e.g. striatal versus motor

Table 2 Drug-target pairs for neurodegenerative diseases associated with misfolded proteins

Compound name Company

Disease indication

Mechanism of action Status

TRx0237 TauRx Therapeutics Alzheimer's disease

AADvacl Axon Neuroscience SE Alzheimer's disease

ACI-35 AC Immune AG Alzheimer's disease

Arimoclomol Orphazyme ApS Amyotrophic Lateral
Sclerosis

Nuedexta Avanir Amyotrophic Lateral

Pharmaceuticals

treatment
Deferiprone Generic

Istradefylline Kyowa Hakko Kirin

Sclerosis — PBA symptom

Parkinson's disease

Parkinson’s disease

Phase Il clinical trials
completed

Tau aggregation inhibitor

Phase | clinical trials
completed

Active tau based

immunotherapy
Phospho-tau vaccine Phase | trial active

HSP activation Phase II/Ill active

Unknown for PBA treatment;
NMDA receptor antagonist

FDA approved

Iron chelator Phase Il recruiting

Adenosine A2A receptor
antagonist

Approved in Japan;
no FDA approval
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neurons) is mediated by down-regulation of different
sets of ER chaperones [119].

The use of transgenic rodent models to study patho-
genic mechanisms presents more challenges in the case
of the proteinopathies than in other diseases. The selec-
tion of the correct transgenic protein target is essential
to develop a useful rodent model of overexpression.
Transgenic models of disease are developed on the as-
sumption that increased production of a particular pro-
tein drives disease development. When the correct
protein target is not selected, the model does not accur-
ately represent the pathogenic mechanism. Rodents dif-
fer from humans with respect to basic biology (i.e., glia
to neuron ratio, anatomy of the brain vasculature) and
the biochemical properties of misfolded disease protein
aggregates [120]. A potential solution to the latter issue
would be the use of human/mouse chimeras. For ex-
ample, it has been shown that mutant huntingtin-
expressing human glial precursor cells can impart the
HD disease phenotype when grafted into the striata of
normal mice, and that normal glial precursors can res-
cue certain phenotypes and slow disease progression
when grafted into R6/2 HD mice [121].

Finally, there is a need for translatable biomarkers that
robustly track the progression and severity of the disease
for successful clinical trial. One approach has been to
measure amounts of soluble disease protein in the cere-
brospinal fluid (CSF). When analyzing soluble proteins,
the stability and kinetics of protein turnover in the CSF
must be established, along with inter- and intra-subject
variability. A challenge with the use of soluble proteins
as CSF biomarkers is their low concentrations in the
CSF, which in turn produces a low signal-to-noise ratio.
A new approach has been to study other components of
the CSE, such as exosomes. Exosomes are released by
most cell types, and carry cargoes of proteins that in-
clude misfolded disease proteins [122]. For chaperone or
proteasome targets, which are intracellular, it may be ne-
cessary to develop surrogate markers to assess target
engagement.

Molecular imaging approaches (e.g., positron emission
tomography, or PET) are an alternate approach to asses-
sing target distribution and engagement. Currently, dir-
ect imaging of neurodegenerative disease proteins in
vivo is possible in humans only for amyloid and tau
[123-125]. Most of the currently available amyloid PET
ligands are limited in their utility because they bind only
to insoluble fibrillar amyloid. Similarly, the development
of tau tracers has challenged by the biochemical com-
plexity and heterogeneity of tau deposits. Several prom-
ising tau tracers are now available for use in humans,
but remain to be fully characterized with respect to their
binding to specific isoforms and conformations of tau; in
addition, all show significant off-target binding. The
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recent development of antibody-based PET ligands of-
fers a potential solution to these issues. Such ligands
have now been used to detect oligomeric AP in the
mouse brain and this approach might also be used for a-
synuclein and other neurodegenerative disease proteins
for which no ligands are currently available [126].

A key issue that has arisen with respect to translatable
biomarkers is lack of correlation between levels of dis-
ease proteins and functional outcomes in rodent models.
For example, unlike humans, mouse AD models and
some mouse HD models do not show neuronal cell
death. However, even models that don’t show cell death
do typically show neuronal dysfunction and synaptic
loss. Imaging ligands that demonstrate synaptic loss are
now being developed in humans, and could be reverse-
translated for use in rodent studies [127]. Alternative
translatable measures of neuronal function currently be-
ing explored include EEG [128] and functional imaging
markers [129].

Collaborating to accelerate therapeutic
development
Until recently, drug discovery was the almost exclusive
domain of biotechnology and pharmaceutical compan-
ies. Today, a new model for drug discovery has evolved,
spurred in large part by initiatives led by patient advo-
cacy groups, philanthropic organizations, the National
Institutes of Health and other international funding
agencies. This new model involves coordinated collabo-
rations between academia, industry, private foundations,
and government funding agencies, and incorporates pa-
tients and caregivers as key collaborators, knowledge re-
sources, and decision-makers. Private foundations are
increasingly taking on leadership roles that used to be
handled primarily by government agencies, including the
facilitation and scientific management of focused re-
search initiatives, large-scale research consortia, and
partnerships between academia, industry, and CROs.
Team approaches are particularly critical for the pro-
teinopathies because of the heterogeneity and/or rarity
of these conditions and the difficulty of recruiting suffi-
ciently large patient cohorts for clinical trials for genetic
disease. Patient advocacy groups and foundations are
now playing critical roles in forcing some degree of
standardization and scientific rigor, and providing crit-
ical natural history data for disease progression markers.
Examples of such efforts include the Michael J. Fox
Foundation Parkinson’s Progression Markers Initiative,
the Target ALS drug discovery program, the Alzheimer’s
disease Drug Discovery Foundation Access program, and
the CHDI Foundation Preclinical Research program. An-
other key role for both governmental agencies and pri-
vate foundations in supporting collaborations is through
the development of public databases and “knowledge
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centers,” such as the National Alzheimer’s Coordinating
Center and the Academic Drug Discovery Consortium.
Recent national and international government initiatives
supporting early drug discovery include the NIH Blue-
print Neurotherapeutics Network and the European In-
novative Medicines Initiative.

Conclusion

There is active research ongoing to uncover the mecha-
nisms by which disease-associated proteins misfold, ag-
gregate, and cause cellular toxicity. Continued progress
in our ability to interrogate amyloid-forming proteins
and their interactions with other cellular proteins pro-
vide confidence that novel therapies will be identified for
multiple disease states. Therapeutic options now being
explored include targeting misfolded protein-chaperone
interactions at various points in the proteostatic path-
way, promoting protein clearance, and large-scale rebal-
ancing of proteostatic network. However, the
identification and in vivo validation of new therapeutic
compounds is impeded by the shortage of known disease
drivers and the lack of reliable biomarkers for monitor-
ing therapeutic responses in relevant animal models.
However, the increase in cooperative research and col-
laboration among the drug discovery community
(pharmaceutical companies, foundations, academia, con-
tract research organizations, clinicians, regulatory agen-
cies, advocacy groups and patients) is a positive shift
that can help accelerate the identification of novel thera-
peutic modalities.

Endnotes

This review is based in part on an open scientific sat-
ellite symposium entitled “Protein Misfolding — Implica-
tions and Strategies” held in conjunction with the 45™
Annual Society for Neuroscience meeting in 2015, spon-
sored and organized by Charles River Laboratories. The
meeting panelists included: Hyunsun Park (Health &
Life Science Consulting), Judith Frydman (Stanford Uni-
versity), John Dunlop (Astra Zeneca), Marc Baumann
(University of Helsinki), Alexander McCampbell (Bio-
gen), Ron Kopito (Stanford University), Patrick Sweeney
(Royal Veterinary College, University of London, Charles
River Laboratories) and Robert Hodgson (Charles River
Laboratories).
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