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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W e  apply Hidden Markov Models (HMMs) to  the 

problem of statistical modeling and multiple sequence 
alignment of protein fami l ies.  A var iant  of the Ex- 
pectation Maximizat ion (EM)  algorithm known as the 
Viterbi algorithm is used io  obtain the sfat ist ical  model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f rom the unaligned sequences. In a detailed ser ies of 
experiments, we have taken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA400 unaligned globin se- 
quences, and produced a statistical model entirely aufo-  
matically f rom the p r imary  (unaligned) sequences. W e  
use no pr ior  knowledge of globin structure.  Using this 
model, we  obtained a multiple alignment of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA400 se- 
quences and 225 other globin sequences that agrees al- 
most perfectly wi th a strucfural  alignment by Bashford 
et al. Th is  model can also discr iminate all these 6 2 5  
globins f rom nonglobin protein sequences with greater 
fhan 99% accuracy, and can thus be used f o r  database 
searches. 

1 Introduction 

Predicting the three-dimensional structure of a bi- 
ological macromolecule purely from primary sequence 
data is still a largely unsolved problem. The rate of 
generation of sequence data far exceeds that at which 
structures are being determined. Fortunately, an ac- 
curate alignment of two or more sequences can provide 
a wealth of information to guide further experimenta- 
tion, particularly if one of the aligned molecules has 
been well characterized biochemically or structurally. 
Furthermore, multiple sequence alignments are used 
to infer the evolutionary relationships between sets of 
protein (or nucleic acid) sequences. In both cases, any 

judicious inference from the alignment is critically de- 
pendent on the accuracy of that alignment. 

Consider a family of protein sequences that all have 
a common three-dimensional structure, for example, 
the family of globins (proteins involved in the storage 
and transportation of oxygen). The common or core 
structure in these sequences can be defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a se- 
quence of positions in space where amino acids occur. 
In the case of globins, whose structure contains prin- 
cipally alpha helices, the 150 or so residues in a helical 
conformation have been named A l l  A2, ..., A16, B1, 

... etc., where the letter denotes which alpha helix the 
residue occurs in, and the number indicates the loca- 
tion within that helix (see e.g. [l]). For each of these 
positions there is a (distinct) probability distribution 
over the 20 amino acids that measures how likely it is 
that each amino acid will occur in that position in a 
typical globin, as well as the probability that there is 
no amino acid in that position. These have been called 
profiles [2, 3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41. A profile of globins can be thought of 
as a statistical model for the family of globins, in that 
for any sequence of amino acids, it defines a probabil- 
ity for that sequence, such that globin sequences tend 
to have much higher probabilities than non-globin se- 
quences. 

In this paper we define a class of structures related 
to profiles and propose them as statistical models of 
protein families such as globins. Similar models can 
also be applied to other, non-protein sequence fam- 
ilies, such as DNA [5, 61. The novel aspect of this 
work is that we are able to “learn” or “estimate” 
the stochastic model directly from raw, unaligned se- 
quences, rather than starting with a multiple align- 
ment of the sequences. Once we have built a statis- 
tical model for a family of sequences, we can use this 
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model to discriminate other sequences in this family 
from sequences not in the family. We can also use the 
model to obtain a multiple alignment of all of the se- 
quences in the family, by aligning each of the sequences 
to the model, rather than trying to align them to each 
other (see figures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 and 3). Finally, we can study the 
model we have found directly, and see what it reveals 
about the common structure underlying the various 
sequences in the family. 

We demonstrate the general technique on a set of 
625 globin sequences from the SWISS-PROT data- 
base, release 19 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]. By building a statistical model of 
globins based on 400 globin sequences selected a t  ran- 
dom, we are able to discriminate with very high accu- 
racy between the remaining 225 globins and the 19,458 
non-globins in the database. Specifically, with one 
probability cutoff, we can produce a model that mis- 
classifies only 2 out of 225 globins as non-globins (and 
none of the “training set” of 400 globins), and mis- 
classifies only 10 out of 19,458 non-globins as globins. 
With a more conservative cutoff i t  misclassifies 8 out of 
225 globins and 0 out of 19,458 non-globins (3 globins 
in the training set of 400 are also misclassified in this 
case). 

We also obtain a multiple sequence alignment for all 
of the 625 globin sequences that basically reproduces 
the alignment given for the seven globins in Bashford 
et al. [l], even though their method employed addi- 
tional information on the three-dimensional structure 
of globins, whereas we have only used the primary se- 
quence information. Our method of multiple align- 
ment is quite different from conventional methods, 
which are usually based on pairwise alignments us- 
ing the standard dynamic programming scheme with 
gap penalties (see e.g. [SI). The alignments produced 
by conventional methods often depend strongly on 
the particular values of the parameters required by 
the method, in particular the gap penalties [9]. Fur- 
thermore, a given set of sequences is likely to pos- 
sess both fairly conserved regions and highly variable 
regions, yet in aligning them with the conventional 
global methods, the same penalties are used for all re- 
gions of the sequences. Substitutions, insertions, or 

deletions in a region of high conservation should ide- 
ally be penalized more than in a variable region, and 
some kinds of substitutions should be penalized differ- 
ently in one position than in another. That is one of 
the motivations for the present work. The statistical 
model we propose corresponds to multiple alignment 
with variable penalties, depending on the position. 
Furthermore, the penalties we use are in large part 
learned from the data itself. Essentially, we build a 

statistical model during the process of multiple align- 
ment, rather than leaving this as a separate task to 
be done after the alignment is completed. We believe 
the model should guide the alignment as much zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the 
alignment determines the model. 

The type of statistical model we propose is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhidden 
Markov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel (HMM,  or simply “model” for short). 
The HMM we build identifies a set of positions that 
describe the (more-or-less) conserved first-order struc- 
ture in the sequences. In biological terms, this corre- 
sponds to identifying the core elements of homologous 
molecules. Each of these positions may be viewed as 
corresponding to a column in a multiple alignment of 
the sequences, or to  a position in space, as described 
above. Often not all positions are modeled, but only 
the ones with the most significantly nonrandom statis- 
tics. As in a profile, for each position in the model, 
the relative probabilities of the different amino acids 
in that position are given, as is the probability that 
the amino acid at  that position is deleted (i.e., missing 
in the sequence). For any amino acid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, the negative 
logarithm of the probability of x at a given position 
in the model can be interpreted as a penalty for an 
alignment that puts z in this position, and the neg- 
ative logarithm of the probability of deletion at that 
position can be similarly interpreted as a penalty for 
an alignment that puts a “-” (gap character) in that 
position. Furthermore, for each pair of adjacent po- 
sitions, the model includes the probability for initiat- 
ing an insertion of one ot more amino acids between 
these positions, and the probability for extending it. 
Other things are also included, such as the probability 
that an amino acid at  a particular position is deleted, 
given that the amino acid at  the previous position 
was deleted. This helps model the higher probability 
of consecutive deletions/insertions in certain regions. 
By taking negative logarithms as above, these meth- 
ods provide a very flexible, position-dependent form 
of initiation and extension gap penalties. 

Once the hidden Markov model is learned, a multi- 
ple alignment of the sequences is easily produced from 
it by aligning each sequence to the model separately 
using a dynamic programming method (the Viterbi al- 
gorithm). The process is similar to aligning a sequence 
to a profile or average sequence. To search a database 
for similar sequences, simply align all the sequences 
to the model, and see how they score (the score is the 
probability of the sequence given that model). 

The algorithm we use to estimate the model is an 
approximation of the Baum-Welch or more general 
EM (expectation maximization) method’ [ll]. The 

‘Sometimes the algorithm is called the Viterbi algorithm, 
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basic idea is to start with some initial model, possibly 
randomly constructed, align all the sequences to this 
model, and then reestimate the probabilities in the 
model based on how the sequences align to it. This 
process of alignment to the model and then reestima- 
tion of the parameters of the model continues until 
there are no further changes to the model. From a 
statistical perspective, the procedure can be viewed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as a computationally efficient approximation to max- 
imum likelihood estimation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor, if prior probabilities 
for the parameters of the model are incorporated, as 
a maximum a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAposteriori or Bayesian approach. A re- 
lated EM procedure is applied in [5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA61 to model pro- 
tein binding sites, and an explicit 2-state HMM model 
is constructed in [12] to distinguish coding from non- 
coding regions in DNA. Here, in an attempt to model 
entire proteins, we explore a significantly richer class of 
models than these. Independent work, closely related 
to ours, is also given in [13], where hidden Markov 
models for protein superfamilies are constructed. The 
models used there are smaller than ours, but have a 
more varied structure. 

2 The protein HMM 

A hidden Markov Model describes a series of obser- 
vations by a “hidden” stochastic process - a Markov 
process; for an excellent review, see [lo]. In speech 
recognition, where HMMs have been used extensively, 
the observations are sounds forming a word, and a 
model is one that by its “hidden” random process gen- 
erates these sounds with high probability. Every pos- 
sible sound sequence can be generated by the model 
with some probability, and thus the model defines a 
probability distribution over possible sound sequences. 
A good word model would assign high probability to 
all sound sequences that are likely utterances of the 
word it models, and low probability to any other se- 
quence. In this paper we are proposing an HMM simi- 
lar to the ones used in speech to model protein families 
- or families of other molecular sequences like DNA 
and RNA. When modeling proteins, the observations 
are the amino acids in the primary sequence of a pro- 
tein (corresponding to sounds in a word). A model for 
a set of proteins is one that assigns high probability to 
the sequences in that particular set. In the following 
we will describe the model using the 20 amino acids 
as the underlying alphabet, but we stress again that 
any other alphabet reflecting primary sequence or any 

but following [IO] we reserve that name for the estimation part 

of the algorithm. 

derived property can be used. 

The HMM contains a sequence of M states that we 
call match states. These correspond to positions in 
a protein or columns in a multiple alignment. Each 
of these states can generate a letter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx from the 20- 
letter amino acid alphabet according to a distribution 
P ( x l m k ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = 1 . .  . M .  The notation P ( z l m k )  means 
that each of the match states mk,  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 IC 5 M ,  have 
different distributions. These match states form the 
main line in the model and are shown as boxes in 
figure 1. For each match state mk there is a delete 
state d k  that does not produce any amino acid, it is 
a “dummy” state used to skip mk. Delete states are 
shown as circles in figure 1. Finally, there are insertion 
states between all the match states, M + 1 in total, 
shown as diamonds in figure 1. They generate amino 
acids in exactly the same way as the match states, but 
they use probability distributions P ( z l i k ) .  

From each state, there are three possible transi- 
tions to other states, also shown in figure 1. Transi- 
tions into match or delete states always move forward 
in the model, whereas transitions into insertion states 
do not. Note that multiple insertions between match 
states can occur because of the self loop on the insert 
state, meaning that a transition from an insert state to 
itself is possible. The transition probability from state 
SI to s2 is called I(s2)sl). For convenience we have 
added a dummy begin state and a dummy end state, 
which are denoted mo and mM+1,  respectively. These 
states do not produce any amino acid. A sequence can 
be generated by a “random walk” through the model 
as follows: beginning a t  state mo (BEGIN) choose a 
transition to ml, dl, or i o  randomly according to the 
probabilities7(ml Imo), T ( d 1  Imo), and 7 ( i o ( m o ) .  Ifml is 
chosen, generate the first amino acid x1 from the prob- 
ability distribution P(zlm,), and choose a transition 
to the next state according to probabilities 7 ( . l m l ) ,  

where “.” indicates any possible next state. If this next 
state is the insert state i l ,  then generate amino acid 
x2 from P ( x l i 1 )  and select the next state from 7 ( , l i l ) .  

If delete (d2) is chosen next, generate no amino acid, 
and choose the next state from l(.ld2). Continue in 
this manner all the way to the END state, generating 
a sequence of amino acids z1, x2 . . . ZL by following a 
path of states yo, y1 . . . YN, y ~ + 1  through the model, 
where yo = mo (the BEGIN state) and y ~ + l  = mM+1 

(the END state). Because the delete states do not 
produce any amino acid, N is larger than or equal to 
L .  If yi is a match or insert state, we define I(i) to be 
the index in the sequence 21.. .XL of the amino acid 
produced in state y;. The probability of the event 
that the path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyo..  . yN+l is taken and the sequence 
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Figure 1: The model. The “begin” and “end” states are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmo and m5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .ZL is generated is 

where we set P(zqq1yi) = 1 if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi is a delete state. The 
probability of any sequence 21 . . . X L  of amino acids is 
a sum over all possible paths that could produce that 
sequence] which we write as follows: 

Prob(z1 . . .zt) 

= Prob(x1 . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. E L ,  yo.. . y ~ + 1 ) .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
paths 

In this way a probability distribution on the space of 
sequences is defined. The goal is to find a model, i.e. a 
proper model length and probability parameters, that 
accurately describes a family of proteins by assigning 
large probabilities to sequences in that family. 

We have chosen this particular structure for the 
HMM because it is the simplest model that captures 
the structural intuition of a protein as a sequence 
of positions, each with its own distribution over the 
amino acids, along with the possibility for either skip- 
ping a position or inserting extra amino acids between 
consecutive positions, and allowing for the possibility 
that once a position is skipped, it may be more likely 
that positions following that one are also skipped. 
This choice appears to have wo‘rked well for modeling 
the globins, but other types of HMMs may be better at  
other tasks. The beauty of the HMM method is that 
i t  is completely general. One can choose any structure 
for the states and transitions that is appropriate for 
the problem at hand. 

3 Estimating the HMM 

All the parameters in the model (i.e., probabilities) 
could in principle be chosen by hand from an exist- 
ing alignment of protein sequences, as in [2], or from 
information about the three-dimensional structure of 
proteins, as in [3]. The novel approach we take is to 
“learn” the parameters entirely automatically from a 
set of unaligned primary sequences, using an EM al- 
gorithm. The particular method we use to learn the 
model can be viewed as a computationally efficient 
approximation to Maximum A Posteriori (MAP) esti- 
mation of the parameters of the model. 

In MAP estimation, we define the poster ior  prob- 
a6ility Prob(model1sequences) of each particular set- 
ting of the model parameters (denoted simply “model” 
here), given the training sequences we have available 
(denoted simply “sequences” here). This posterior 
probability is defined using Bayes rule, 

Prob( modellsequences) 
Prob (sequences Imodel) Prob (model) 

Prob(sequences) * (3) - - 

Here Prob(sequences Imodel) is defined using equation 
(2), as described below, Prob(mode1) is a prior on the 
space of models, and Prob(sequences) can be viewed 
as a normalizing constant. The prior on the models 
contains prior beliefs on what a model should be like, 
and can be used to “penalize” models that are known 
to be bad or uninteresting. We discuss this further 
below. To find the best model one can optimize the 
posterior probability (3) with respect to the parame- 
ters of the model. 

The distance from sequence to model 

First, we need a way to calculate the probability 
Prob(sequencesImode1). Call the sequences s l . .  .sn. 
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Then, assuming independence 
n 

Prob(s' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . .snImodel) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn Prob(d'Imode1). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) gives an expression for Prob(spImodel), 
which can be calculated using the "forward algorithm" 
[lo]. Often the most probable path will have a much 
higher weight than any other path, so for simplicity 
and computational efficiency we have chosen to use 
the approximation 

Prob(slmode1) 21 max Prob(s, pathlmodel), (5) 

where Prob(s, pathimodel) is given in (1). (In equa- 
tion (1) and (2) we did not condition on the model, 
because it was assumed to be fixed.) Instead of max- 
imizing the probability we find it convenient to min- 
imize the negative logarithm of the probability. This 
minimum we will call the distance from the sequence 
to the model, 

paths 

dist(s, model) = - min log Prob(s, pathimodel) 
paths 

N+1 

- _  - min C [ l o g 7 ( ~ i l ~ i - l )  + logP(cl(i)IYi)Xfi) 
paths . 

;=l 

Here we have translated back to the notation of (1) 
where the path is given by yo.. .yN+l and the se- 
quence s by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21. . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ~ .  This distance from sequence 
to model is very similar to the standard "edit dis- 
tance" from one sequence to another (with gap penal- 
ties), see e.g. [SI. The -log7(yilyi-l) corresponds to 
a penalty for using the transition from yi-1 to y; in 
the model. One of the main differences is that the 
penalties (e.g., for starting a gap) depend on the posi- 
tion in the model, whereas they would be fixed in the 
standard pairwise alignment method. Indeed, this dis- 
tance can be efficiently calculated in quadratic time by 
a straightforward generalization of the dynamic pro- 
gramming method used for sequence comparison (see 
also [2]). In addition, the most probable path can be 
found using the usual backtracking technique. The 
algorithm is known as the Viterbi algorithm in the 
HMM literature (see e.g. [lo]). 

Estimation algorithm 

There is no known efficient way to directly calculate. 
the best model, i.e., the one that maximizes the pos- 
terior probability (3). However, there are algorithms 
that iteratively re-estimate the model from some ar- 
bitrary starting point which guarantee that the poste- 
rior probability increases in each iteration, and thus 

find a local maximum. The most common one is 
the Baum-Welch or forward-backward algorithm [lo], 
which is a version of the general EM (Expectation- 
Maximization) method often used in statistics. The 
full Baum-Welch algorithm is computationally rather 
intensive, but using the Viterbi approximation (5) 
makes it somewhat faster.' 

The Viterbi-EM adaptation of the model to the se- 
quences is an iterative process. From some more or 
less arbitrary starting point the best path through 
the model is found for all the sequences, and the new 
probabilities are basically set equal to the fraction of 
times that particular path was used, or that particular 
amino acid produced. More precisely, it proceeds as 
follows: 

1. Choose an initial model. If one already knows 
some features present in the sequences, they can 
be encoded in the initial model. 

2. Using the Viterbi algorithm, find the most prob- 
able path through the model for each of the se- 
quences. The number of these paths that pass 
through state y is denoted n(y), the number of 
times the transition from y to y' occurs is denoted 
n(y'ly), and the number of times an amino acid c 
was generated in state y is denoted m(z1y). Obvi- 
ously n(mk) = n(mk+l Imk)+n(dk+l I m k ) + n ( i t  Ink),  

and similarly for delete and insert states. Also 
n(y) = CiZl m(a,ly) if y is a match or insertion 
state and a1 . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.a20 are the amino acids. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 

3. Reestimate the transition probabilities and amino 
acid probabilities in the match and insertion 
states from 

Here R(y'1y) and R(cly) represent a regulan'zer, 
which comes from the model prior in (3). We as- 
sume that R(y"1y) = 0 if there is no transition 
from state y to state y". Often R is just set equal 
to one in order to avoid zero probabilities, but it 
can be used to bias the model in a certain direc- 
tion, as will be discussed later. 

4. Repeat step 2 and 3 until the parameters change 
only insignificantly. 

'Recently we have switched to using the full Baum-Welch al- 

gorithm for training the model instead of the Viterbi algorithm, 

because we find that it  gives slightly better results, even though 

it takes about twice as long. 
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Further details are given in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[14]. The main dif- 
ference between this method, which uses the Viterbi 
approximation, and the standard Baum-Welch algo- 
rithm is that in the latter all paths (not just the most 
probable) are considered, but weighted according to 
their probability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hitial model and local minima 

As already mentioned, the algorithm discussed above 
does not guarantee convergence to the best model. 
It is basically a steepest-descent-type algorithm that 
climbs the nearest peak (local maximum) of the pos- 
terior probability function. Since finding the globally 
optimal model seems to be a difficult optimization 
problem in general [15], we have experimented with 
various heuristic methods to  improve the performance 
of the method. 

Probably the best method is to give the model 
a hint if something is already known about the se- 
quences, which is often the case. A good starting point 
makes it much more likely that  the nearest peak is at  
least close to  optimal. This is done by setting the 
probabilities in the initial model to values reflecting 
that knowledge. If, for instance, an alignment of some 
of the sequences is available, i t  is straightforward to 
translate that into a model by simply calculating the 
relative frequency of the amino acids and the transi- 
tion frequencies in each position. We can then use (7) 
and (8) to find the initial model. 

It is of course even more interesting if the model 
can be found from a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtabula rasa, i.e., using no knowl- 
edge about the sequences. For that we have used an 
initial model where all equivalent probabilities are the 
same, i.e., 7 ( m k  lmk+l)  is independent of the position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k in the model, and similarly for all other transition 
probabilities, and ’P(z1mk) is also independent of k. 
To avoid the smaller local maxima, noise is added to 
the model during the iteration before each reestima- 
tion. Initially quite a lot of noise is added, but over 
ten iterations the noise is decreased linearly to zero. 
Since noise is added directly to the model, it is not like 
the usual implementation of simulated annealing, but 
the principle is the same. The “annealing schedule” 
is presently rather arbitrary, but i t  does seem to give 
reasonable results if it is applied several times, and the 
best of the models found is used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the final model. 
Details are given in [14]. 

Choosing the length of the model 

The length of the model is a crucial parameter that 
needs to be chosen a prior i .  However, we have de- 

veloped a simple heuristic that selects a good model 
length, and even helps in the problem of local min- 
ima. The heuristic is this: After learning, if more 
than a fraction3 3;lef of the optimal paths of the se- 
quences choose dk, the delete state at position k, that 
position is removed from the model. Similarly, if more 
than a fraction yiYins make insertions at position IC (in 
state ik), a number of new positions are inserted into 
the model after position k. This number is equal to 
the average number of insertions the sequences make 
at  that position. After these changes in the model, it 
is retrained, and this cycle is repeated until no more 
changes are needed. We call this “model surgery”. 

Over-fitting and regularization 

A model with too many free parameters cannot be es- 
timated well from a relatively small data set of training 
sequences. If we try to estimate such a model, we run 
into the problem of overfitting, in which the model fits 
the training sequences very well, but gives a poor fit 
to related (test) sequences that were not included in 
the training set. We say that the model does not “gen- 
eralize” well to test sequences. This phenomenon has 
been well documented in statistics and machine learn- 
ing (see e.g. [Is]). One way to deal with this problem 
is to control the effective number of free parameters in 
the model by regularization, which can be viewed as a 
way of implementing MAP estimation. 

In our application of regularization to HMMs, the 
regularizer is closely related to the model prior, and 
it can be used to bias the model in some specific di- 
rection. The regularizer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( R )  is added to the frequency 
counts in (7) and (8) as if we actually saw more than 
n(y’Iy) or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn(zIy) events. For instance, in our models 
we believe a priori that sequences should spend most 
of their time in the match states on the main line of 
the HMM, so we incorporate this belief into the model 
prior by setting R(r~ly) to  a large value compared to 
the regularizer R(y l r~) ,  which is added to  transitions 
diverging from the main line. In so doing, these pa- 
rameters become less adjustable, and as a result we 
are less prone to overfit the data. We also tend to get 
better models because we are encouraging the learn- 
ing algorithm to first explore the more a priori likely 
part of model space when trying to fit the data. A 
more detailed Bayesian interpretation of this method 
of regularization is beyond the scope of this paper. 

In the extreme case, the regularizets R(.l.) can be 
such large numbers that the parameters simply be- 
come “hardwired”. We have found that the method 

3Currently we choose rdei  and yens each to be 1/2. 
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works best when very large regularizers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR(x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy), pro- 
portional to the relative overall frequencies of amino 
acids in globin sequences, are used when y is an insert 
state. This has the effect of fixing the distributions in 
the insert states, rather than trying to estimate them 
from the training sequences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Experiments 

The modeling has  been tested on the globin fam- 
ily, which includes the hemoglobins, myoglobins, and 
other heme-binding proteins. Hemoglobin is the pro- 
tein which, in vertebrates, functions as the principal 
carrier of oxygen from the lungs to the tissues. It 
is normally found within the erythrocytes, annucleate 
cells which are present in the plasma of the circula- 
tory system. Myoglobin is a protein present in muscle 
cells of both vertebrates and invertebrates and partic- 
ipates in respiration, where it functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a storage 
site for oxygen. In some invertebrates, erythrocruorin 
has a function similar to that of hemoglobin in higher 
animals, and, like other invertebrate heme-containing 
proteins, is extracellular. Mammalian hemoglobins 
are tetramers composed of four subunits: two alpha 
chains and two other subunits (usually beta, gamma, 
delta or theta). Myoglobin is a single chain and the 
remainder have different oligomeric states (homo- or 

heterodimers) and overall architecture. 
Globins are a well studied and fairly homogeneous 

family with many sequences available. Our set of 628 
globins was found in the SWISS-PROT database (re- 
lease 19) by searching for the word “globin” (three of 
these later turned out to be non-globins, hence the 
number 625 given in the introduction). They have an 
average length of about 145 amino acids without too 
much variation. The sample of globins in the database 
is not the random sample of globins a statistician 
would prefer, but it is perhaps one of the best and 
largest collection of protein sequences from a homolo- 
gous family. Searching for the words “alpha”, “beta” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 
“gamma” , “delta” , “theta”, and “myoglobin” in the 
data file gave the following results: 224 alpha chains, 
199 beta, 16 gamma, 8 delta, 5 theta, and 79 myo- 
globins, which adds up to 531 sequences. These should 
naturally be considered minimum numbers, but they 
give a good picture of how skewed the sample is. 

Many of the globin sequences have been aligned 
by Bashford et al. [l] using seven different globins 
whose three-dimensional structures were known. This 
was done by aligning these seven sequences, and then 
aligning the rest (of the 226 they studied) to the clos- 

est of these seven. The alignment of the seven is shown 
in figure 2. 

AAAAAARAARAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC 
nnnn 

. - - - - - - - - GLSAA~RQVIAATWKDIAGADNGAGVGKDCLI KFLSAHPQWAAVFG-FSG- 

DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF FFGGG 

S-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL--RVDPV 
STPDAVMGNPKVKAHGKKVLGAFSffiLAHL---D--NLKGTPATLSELHCDKL--HVDPE 
KSEAfMKASEDLKKHGVALGAILKK----K-GHHEAELKPLAQSHATKH--KIPIK 
KDLESIKGTAPFEPHANRIVGFFSKIIGEL--P---NIEADVKPPVASHKPRG---VTHD 
TTAWLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF--QVDPQ 
GTSEVPQNNPELXIAHAGKVFKLWEAA1QMVT~DATLKNLI;SVHVSKG- - -VADA 
---AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGNKHIKAQ 

F GG GG 

GGGGGGGGGGGGGGGG HHHHHHHHHHHHHHHHHHHHHHHHH 

NFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------ 
NFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKWAGVANALAHKYH------ 
YLEFISEAIIHVLHSRHPADFGADAQGAMSKALELFRKDIAAKYKELCYQG 
QL”FRAGFVSYMKAHT--DFA-GAEAAWGATLLYTFFGMIFSt34------- 
YFKVLAAVIADTVAAG---------DAGFEKLMSMICILLRSAY------- 
HFFWKEAILKTIKEWGAKWSEELNSAWIAYDELAIVIKKEMNDAA--- 
YFEPLCASLLSAMEHRIGGKNAAAK!JAWAAAYADISGALISGL4X----- 

Figure 2: The alignment of seven representative 
globins from Bashford et  al. [l]. Above the align- 
ments are indicated which alpha helix each column 
belongs to. Bashford et al. identified 8 helices (A 
to H),  but some regions are not well defined (es- 
pecially CD, D, and FG). The sequences and their 
SWISS-PROT identifiers are from the top: Hu- 
man zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa (HBA$HUMAN), human /3 (HBBLHUMAN), 
sperm whale myoglobin (MYG$PHYCA), larval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAChi- 
ronomous ihummi globin (GLBS$CHITP), sea lam- 
prey globin (GLB5$PETMA), Lupinvs luteus leghe- 
moglobin (LGB2$LUPLU), and bloodworm globin 
(G LB 1 $G LY DI) . 

Our procedure was tested in two ways. First, to 
see if the model was at all appropriate for the descrip- 
tion of the globins, an initial model was derived from 
the alignment of the seven globins as outlined in the 
previous section. The length of this model was 171, 
which is the same as the length of the alignment. A lit- 
tle noise was added to the model, and it was trained 
using all of the 628 sequences, but without anneal- 
ing (i.e., noise was only added to the initial model). 
The distributions over the amino acids modeled in the 
insertion states were held fixed to the overall amino 
acid distribution in the globins by regularization, as 
described above, and were not reestimated from the 
training sequences. Also, no positions in the model 
were added or deleted in the process. The procedure 
was repeated ten times, and virtually identical models 
were produced in all the runs. (The runs differed only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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in the specific noise added to the initial model.) To 
score a final model, we used the average distance be- 
tween the sequences and the models. As discussed in 
the previous section, the distance between a sequence 
and a model is approximately the negative log prob- 
ability of the sequence under the model. These aver- 
age distance scores were consistently around zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA208 in all 
runs. 

In the second and more interesting experiment, we 
used a homogeneous initial model that contained no 
knowledge about the globin family. Its probability 
parameters were set according to what we thought 
were reasonable guesses, but they were the same for 
all equivalent transitions (i.e., 9 different transition 
probabilities), and all amino acid probabilities (the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 
distributions) were set equal to the global distribution 
of the amino acids. Also, in this experiment 400 se- 
quences were picked uniformly at  random from the 628 
sequences. These sequences were used zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a “training 
set” to train the model. We held out the other 228 

sequences so that we could test the model on data not 
used. in the training process. 

The model was trained using noise and “model 
surgery” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 7 d e ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 7ins = 0.5), as described above. As 

in the previous experiment, the distributions in the in- 
sertion states were not reestimated from the training 
sequences. This was repeated 20 times, and the av- 
erage run-time was around 25 CPU minutes on a Sun 
Sparc 2 station. The final scores varied considerably 
for these runs, and all of them were higher than for 
the previous model. The best score was 218. That 
model had a length of 147. We validated this model 
from this second experiment in two ways: from the 
alignments it produces, and by its ability to discrimi- 
nate between globins and non-globins. The results are 
described below. 

In [14] we give a detailed description of the partic- 
ular regularization values and noise added in these ex- 
periments. Our choice of parameters for these experi- 
ments is based on only one or two trials. Subsequent 
experiments have verified that when there are many 
training sequences, as for the globins, the method is 
not very sensitive the choice of these parameters. Fur- 
thermore, recently we tried the program with the ex- 
act same setting of all the regularization, noise rate 
and other parameters on an entirely different set of se- 
quences: the set of 193 protein kinase sequences from 
the protein kinase catalytic domain database by Hanks 
and Quinn [17]. Preliminary analysis of these exper- 
iments indicate that the method works just as well 
on the kinases as it does on the globins, without any 
further tuning of the parameters. This is perhaps the 

best evidence for the robustness of the method. We 
will give details of these experiments in a future paper. 

Multiple sequence alignments 

Fkom a model it is possible to obtain a multiple align- 
ment of all the sequences. It is in a sense an incomplete 
alignment, because insertions are not really aligned. It 
is obtained by finding the most probable path through 
the model for the sequences to be aligned. This gives 
an alignment of all the amino acids that align to the 
match states on the main line in the model. Between 
the match states there might be insertions of vary- 
ing lengths, but by inserting enough spaces in all the 
sequences to accommodate the longest insertion, an 
alignment is obtained. Figure 3 shows the alignment 
of the seven sequences produced by the model from the 
second experiment, and gives a more detailed expla- 
nation. Once a model has been constructed, a similar 
multiple alignment can be produced for the entire set 
of 628 globin sequences (or any subset, however small) 
using this model. The alignments using the model 
from the first experiments are even better, and are al- 
most identical to the structural alignments from [l]. 

This indicates that an extremely good model exists, 
and that the EM algorithm was able to find a good 
approximation to it. It also shows that the method 
will be very useful for inserting new sequences into ex- 
isting alignments, since the previous alignment forms 
a good starting point for the EM algorithm in this 
case. As more sequences become available, the over- 
all accuracy of the multiple alignment should improve, 
because better models will be found. 

Although it is not perfect, the alignment found 
from the second experiment (starting from an unbi- 
ased model) agrees very well with the structurally de- 
rived alignment by Bashford et al. [l]. The main prob- 
lem with the alignment, from a protein structure point 
of view, is that it does not correctly align the first im- 
portant conserved histidine (H) of HBALHUMAN (the 
first ~equence) .~  Other than this, the only region in 
which the model did not give the same alignment as 
Bashford et al. is the region between the C and E he- 
lices (with the exception of the first part of the alpha 
chain, most of the E helix is correct). This region is 
highly variable, since only some of the globins have 
the D helix. Five of the insertions the model chose are 
between helices or at  the ends of helices, regions which 

‘In subsequent experiments using the full Baum-Welch alg+ 

rithm instead of the Viterbi method for training, we have ob- 

tained correct alignments of this histidine. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn fact, these align- 
ments have been almost perfect. We will report them in a future 

paper. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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AAAARAAAAAAAAAAA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABBBBBBBBBBBBBBBBCCCCCCCCCCC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DDDD 

t . * * t * t t f t * t * t t  t . * t t t t . f t t . t t . t t t t . t . f .  

V.........LSPADKTNVKAAWGKVGA..HAGEYGAEALEAMFLSFPITKTYFPHFD-L 
Vh ........ LTPEEKSAVTALWGKV--..NVDEVGGEALGRLLVWPWTQRFFESFGDL 
V.........LSEGEWQLVLHVWAKVEA..DVAGHGQDILIRLFKSHPETLEKFDRFKHL 

LSAWISTVQASPDKV--..KGDPVGI--LYAVFKADPSIHAKCTQFAGK 
PivdtgsvapLSAAEKTKIRSAWAPWS..TYETSGVDILVKFCT9l’PMQEPFP~KGL 
Ga ........ LTESORALVKSSWEEPNA..NIPKHTHRFFILVLEIAPAAKDLFSFLK-G 
G.. . . . . . . .LSAAQRQVIAATWKDIAGadNGAGVGKDCLIKFLSAHFQMA---AVFG-F 

DDDDDDDEE EEEEEEEEEEEEEEEEEEE FPFFFFFFPF FFFFG 
F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGGGG 

.t.tt.tt.tt *f.*t**tf .f 

SHGSAQVKGH-GKK VADALTNAVAHVDD ..... MPNALSALSDLHA . . .  HKLRVD 
SPPDAVMGNPKVKA.HGKKVLGAFSDGLAHLDN ..... LKGTFATLSELHC ... DKLHVD 
KTEA-GMKASEDLKkH~VLTAU;AILKKKKGH.....HEAELKFLAQSHA...TMKIP 
D L E S - I K ~ A P F E T  .HRNRIVGFPSKIIGELPN.....IEAD~PVASHK...PR-GVT 
~ A W L K K S A D V R W  .HAERIINAVNDAVASMDDtek..MSMKLRDLSGKHA...KSFQVD 
TSEVPQ-NNPELQA .HAGKVFKLWEAAIQI&VtgWDATLKNKSVHV...SK-GVA 
SGAS----DPGVAA.LGAKVLAQIGVAVSHLGDsgk..MVAQMKAVGVRHKgygNK-HIK 

CGGGGGGGGGCGGGCGW; HHHHHHHHHHHHHHHHHHHHHHHHHH 
.ftt**ttt.**t*.t** zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. t t . t t t t . . t f t . t t . f . f f . f t  

PVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASV9l’VLTSKY . . . . . .  R 
PENPRLLGNVLVCVLAHHFGKEFTPPVQAAYQKWAGVANALAHKY . . . . . .  H 
IKYLEFISEA1IHVLHSRHPGDFGADAQGAMNKALELFRKDlA4KYkelgyqC 
H W W N F R A G F V S Y H K A H - - T D F - A ~ E A A ~ A T L D T P F G M I P S  ~ . . . . . . -  
WYFKYLRAVIADTVAA---CD------AGFEKLNSMICILLRSAY . . . . . . -  
DAHFPWKEAILKTIKEWCAKWSEELNSAWIAYDELAIVIKKEMnda . . .  A 
AQYFEPILASLLSAMEHRICCKWNAAAKDAWAAAYADISCALISG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALcl..... S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3: The alignment of the globins depicted in fig- 
ure 2, as obtained from our model trained on 400 ran- 
domly chosen globin sequences using a homogeneous 
initial model. The capital letters represent amino 
acids aligned to the main line of the model, “-)’ to 
deletions in the model, and lower-case letters to amino 
acids treated as insertions by the model. The ‘l.” is 
used as fill character to accommodate insertions. No 
attempt has been made to align the insertion regions. 
The stars above the alignments indicate almost perfect 
agreement with the structural alignment (the only ac- 
cepted difference is reasonable displacements of gaps). 
The training set contained five of the seven globins, 
not HBA$HUMAN and GLB5$PETMA. 

are very variable. The last insertion (of length one) 
appears in the E helix in the only region not modeled 
very well. 

Database search: Discriminating globins from 

non-globins 

The model found in the second experiment was tested 
by comparing it to all proteins in the SWISS-PROT 
database of length less than 2000 amino acids. For 
each of these sequences their distance to the model was 
computed. For the non-globins, this distance turns 
out to increase roughly linearly with the length of the 
sequence. By smoothing the non-globin distance data5 
we found a curve for the average distance as a function 

5The smoothing was done by assuming local linearity and 
averaging over a running window of 300 points. 

of sequence length. The standard deviation was also 
calculated as a function of length and smoothed the 
same way. Finally the deviation from the average, 
measured in standard deviations, was found for all the 
sequences. These are plotted in figure 4. 

The model distinguishes almost perfectly between 
globins and non-globins. Choosing a cutoff of 4 stan- 
dard deviations we would get 10 out of 19,458 “false 
globins” and miss 2 out of 625 globins. Choos- 
ing 5 standard deviations as a cutoff would give 0 
false globins and miss 11 of the real globins. The 
‘Lanomalous” globin sequences between 4 and 5 stan- 
dard deviations from the average non-globin include 
those from invertebrates (arthropods, molluscs and 
annelids) that, unlike hemoglobin and myoglobin from 
higher organisms, are extracellular. The two se- 
quences falling between 1 and 3 standard deviations 
from the average non-globin are protozoan (unicellu- 
lar), whereas the other globins are metazoan. 

It is also interesting to see where random sequences 
fall in the histogram. First, we generated about 2000 
sequences at  random with the same distribution of 
amino acids as the globins (length from 10 to 2000). 
They are all closer than 5 standard deviations to the 
average non-globin (see figure 4, last panel). Second, 
we generated 500 sequences at random zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom the model. 
This was done by taking random walks through the 
states of the model, as described above. Obviously 
they should fit the model very well, and they do. How- 
ever, the majority of the globins fit the model even 
better. This may simply be because the data set is 
far from being a set of random and independent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAse- 
quences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Conclusion 

A new method to model protein families using hid- 
den Markov models has been introduced. The method 
utilizes the tremendous amount of information con- 
tained in many sequences from the same family. For 
the simple case of globins, with this method it is pos- 
sible to obtain multiple alignments that mirror struc- 
tural alignments using only the unaligned primary se- 
quences as input. Furthermore, we also did not need 
any sophisticated weighting schemes to compensate 
for the skewed dataset (which is dominated by alpha 
and beta chains), nor did we need a large number of 
precomputed regularization parameters, such as the 
approximately 200 parameters of the Dayhoff matrix 
normally used in multiple alignment programs. The 
model can also be used in database searches for pu- 
tative analogs of sequences in a given protein family, 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Histograms of the distance to  the model mea- 
sured in standard deviations from the average distance 
to the model for non-globins (see text). 
Top: The training set of 400 globins and test set of 225 
globins. Four globin fragments of length 19-45 were re- 
moved from the data (three from worms and one from 
indian spiny-tailed lizard). We also removed three non- 
globin sequences in the globin file that we discovered 
when analyzing the outliers. All of these were close to 
zero standard deviations from the average. 
Also shown are all the non-globins in the SWISS-PROT 
database of length less than 2000. From this data we 
removed on the order of ten sequences that contained 
a lot of Xs (unknown amino acids), because they spuri- 
ously match the model very well. (Currently we treat an 
unknown amino acid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas being the most probable amino 
acid a t  the position it is matched to.) Note the change of 
scale of the y-axis. The insert shows the critical region 
around five standard deviations from the average. 

Bottom: The distribution of 2000 randomly generated 
sequences with the same amino acid distribution as 
the globins (labeled “random”). These sequences have 
lengths 1,2,3,4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA..., 2000. Note that, even though they have 
the same amino acid distribution, these sequences are all 
less than 5 standard deviations from the average, which 
strongly supports a cutoff around that value. Also 500 

random sequences generated from the model and after- 
wards compared to the same model are shown (labeled 
“from model”). They were generated by the kind of “ran- 
dom walk” described earlier. 

and we believe that the model itself is a valuable tool 
for representing the family. We have demonstrated 
the model for globin sequences in the experiments de- 
scribed here, and are currently planning to do further 
experiments with the kinase, cytochrome c, serine pro- 
tease, immunoglobulin, ATPase and helicase protein 
families. 

The method requires that many sequences be avail- 
able from the family one wants to model. Since the 
number of sequences in the protein databases is grow- 
ing rapidly, this may be less of a problem in the future, 
but it will always be a serious issue. Currently only 
a relatively small number of sequences are available 
for most protein families. For the globin family, we 
found that 400 sequences is certainly enough. Prelim- 
inary results indicate that 200 is enough, and even as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4000k fl E3 non-globins 1 
E3 training set 

I test set 

200 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

H random 

I from model 

0 10 20 
Standard deviation 

few as 70 suffice, if they are chosen carefully from our 
database of 628 (70 chosen at  random will be nearly all 
alpha and beta chains). Using careful regularization 
this number might even be lowered further. However, 
there will be a limit on how small the number of avail- 
able sequences can be if one hopes to get a reasonable 
model starting from a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtabula ram. 

There are two possible answers to the problem of 
small sets of training sequences. The first is to add 
more prior knowledge into the training process. This 
can be done by starting with a better initial model, 
and by using more involved kinds of regularization. 
We are currently exploring a regularization method 
that we call “soft tying” of the distributions in the 
states of the HMM. This combines the idea of tying 
states, see e.g. [lo], in which the number of free param- 
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etersais reduced by having groups of states all share 
the same distribution on the output alphabet (the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 
amino acids in this case), and the idea of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsofl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAweight 
sharing from [18], in which the regularizer (in this 
case for the distribution of amino acids) is also adap- 
tively modified during learning. Even more complex, 
position-specific kinds of regularization are possible. 
Switching from the alphabet of the primary sequences 
to a different representation based more on the struc- 
tural or chemical properties of the amino acids in the 
sequence may also help. 

The second answer is to give up trying to model 
the whole protein in cases where only few sequences 
are known, and instead try to model only pieces of 
the protein (motifs or domains) that have the same 
or similar structure in other proteins. In this case 
we can find more training sequences by adding in the 
corresponding pieces of these other proteins. In fact, 
the EM method can be used to locate the appropri- 
ate pieces by itself, given the entire sequences [5, 61. 

We are currently experimenting with an extension of 
the method described here that does this, applying it 
to the kinase and EF hand domains. In this method 
we augment our models by having “free insertions” in 
both ends of a (short) model, so that only a subse- 
quence is matched to the model. In addition, several 
models can also be linked together with free insertions 
in between, to model more than one subsequence in 
the molecules. 

Finally, when a relatively large number of sequences 
are available, it is sometimes possible to get better re- 
sults by dividing these sequences into clusters of sim- 
ilar sequences, and training a different model for each 
cluster. For example, we can train separate models 
for the alpha and beta chains in the globin dataset. 
It turns out that again, this partition into clusters of 
similar sequences can also be done automatically by 
the EM algorithm during training. This way of using 
EM is called mixture modeling in the statistics litera- 
ture, and is known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas competitive learning in the neu- 
ral network literature. To implement this, we simply 
start with more than one model and force the mod- 
els to “compete” for the sequences, and adapt to  fit 
only the ones they “won”. This method gives very 
good results on the globins, discovering the subclasses 
of alpha chains, beta chains and myoglobins with near 
perfect accuracy. Details will be reported in a future 
paper. 

In summary, we believe that HMMs and the EM al- 
gorithm have tremendous potential in the area of sta- 
tistical modeling of biological macromolecules. Cur- 
rently, most of this potential remains to be realized. 
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