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Despite the recognized importance of the multi-scale spatio-temporal organization of proteins,
most computational tools can only access a limited spectrum of time and spatial scales, thereby ig-
noring the effects on protein behavior of the intricate coupling between the different scales. Starting
from a physico-chemical atomistic network of interactions that encodes the structure of the protein,
we introduce a methodology based on multi-scale graph partitioning that can uncover partitions and
levels of organization of proteins that span the whole range of scales, revealing biological features
occurring at different levels of organization and tracking their effect across scales. Additionally, we
introduce a measure of robustness to quantify the relevance of the partitions through the generation
of biochemically-motivated surrogate random graph models. We apply the method to four distinct
conformations of myosin tail interacting protein, a protein from the molecular motor of the malaria
parasite, and study properties that have been experimentally addressed such as the closing mecha-
nism, the presence of conserved clusters, and the identification through computational mutational
analysis of key residues for binding.

Keywords: multi-scale graph partitioning, robustness analysis, variation of information, myosin tail interact-
ing protein, myosin-myosin light chains interactions, random graph surrogates

I. INTRODUCTION

A. The methodology: Multi-scale analysis of

protein structures

Proteins are complex structures characterized by mul-
tiple scales in time and space [1–4]. Atoms, functional
chemical groups, amino acids, the ensuing secondary
structures, the large conformational domains: each define
different, yet coupled, levels of structural and dynami-
cal organization linked to behaviors occurring at differ-
ent time and spatial scales. Molecular dynamics simula-
tions [5] can deal successfully with the very short time
scales but such methods cannot be applied to long times
(or large systems) due to their exorbitant computational
cost. On the other hand, because many of the key bi-
ological functions take place at the micro- to millisec-
ond time scales, strongly simplified coarse-grained sys-
tems have been proposed as a means to reaching the bi-
ologically relevant regimes [6–9]. However, these simpli-
fied coarse-grainings often ignore the detailed physico-
chemical atomic interactions and, consequently, cannot
provide a picture that emerges seamlessly from the small-
est scales.
Yet the different levels of organization in proteins do

not behave independently: the dynamics at long time
and length scales, which is in many cases crucial for bi-
ological function, is the result of the integrative interac-
tion of the finer organizational levels. Analyzing proteins
from this multi-scale perspective can reveal the intricate
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linkage between the levels and give insight into the be-
havior of the protein starting from the bottom-up. This
picture can also aid in the understanding of the effects
that small-scale changes like mutations have on large-
scale organization. To achieve this, we apply a recently
proposed general methodology for multi-scale graph par-
titioning [10] that uses dynamical processes on graphs to
uncover the multi-level organization of graph communi-
ties relevant at different time scales. This method allows
us to bridge the gap across scales, thus relating the be-
havior at a certain level to the consequences it has at
coarser scales. In the case of proteins, our analysis starts
from a fully atomistic description of the protein which
is transformed into a graph theoretical formalism. The
method is then able to find increasingly large clusters
of atoms that behave coherently over increasingly long
time scales and quantifies the time scales over which those
groupings are relevant. This leads to a multi-level hier-
archical organization of the protein structure at differ-
ent scales: from chemical groups through amino acids, to
the appearance of secondary structures and intermediate
structural elements, such as clusters of several helices, to
the eventual emergence of large conformational units [11].
Hence the picture at larger scales emerges directly from
the detailed physico-chemical information at the smallest
atomic scales.

In this paper, we extend this multi-scale methodology
and then apply it to understand the multi-scale dynam-
ical features of a class of biologically relevant proteins
and to infer possible mechanisms of functional motions.
The present work extends the methodology in two ways:
firstly, we introduce a tool to quantify the relevance of a
level of organization through a novel measure of its ro-
bustness as compared to that of relevant biochemically-
motivated surrogate null models; secondly, we introduce
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a measure which estimates the effect of mutations of a
particular residue on the structure and dynamics of the
global properties of the protein and therefore suggests
key residues or “hotspots” that could be targeted through
mutagenesis. This extended method is first exemplified
on adenylate kinase (AdK), a model protein for which
there is extensive experimental data. We then apply
our analysis to the detailed study of a particular myosin-
myosin light chain interaction, an example of biological
importance in which protein interactions lead to signif-
icant changes in their functionality. We now give some
biological background for this biological system.

B. The biological system: Myosin-myosin light

chain interaction

Myosin light chains (MLCs) are small proteins known
to play a major role in the regulation of motor complexes.
In mammalian muscle cells, the essential and regulatory
light chains regulate the actin-myosin motor complex by
binding to the myosin heavy chains. Each of the myosin
heavy chains consists of a long tail terminated by a glob-
ular head, where the actin binds upon activation by ATP.
Preceding the head is the neck region, formed by a sin-
gle α-helix, which serves as the binding domain for the
two light chains (Fig. 1) [12, 13]. Crystal structures of
the myosin head and neck regions [14] have highlighted
the importance of the light chains in stabilizing the lever
arm formed by these two regions, which allows a more
powerful stroke in the cross-bridge cycle [15]. The light
chains have also been suggested to be responsible for the
fine tuning of the motor apparatus and even to interact
directly with the actin filaments [16]. However, the struc-
ture and dynamics of the myosin light chains and their
effects on regulation are still poorly understood.
Here we focus on myosin tail interacting protein

(MTIP), a myosin light chain involved in the invasion
machinery of Plasmodium species, which include the
causative agents of malaria. Therefore, MTIP is of par-
ticular interest as a potential target for the design of anti-
malarial drugs [18]. MTIP binds myosin A (MyoA), an
unconventional class XIV myosin, which was first found
to be part of the motor complex responsible for the glid-
ing mobility of Toxoplasma gondii [19]. Later on, MyoA
was also identified in Plasmodium species and discovered
to be responsible for their ability to invaginate red blood
cells [20]. MyoA was then found to be anchored to an in-
ner membrane complex, located just behind the plasma
membrane, via the MTIP protein [21–26].
A first crystal structure containing three conformations

of Plasmodium knowlesi MTIP (PkMTIP) suggested that
its binding to MyoA should essentially be realized by the
two lobes of the C-terminal domain wrapping around the
MyoA tail [17]. However, subsequent crystal structures of
Plasmodium falciparium MTIP (PfMTIP), and binding
assays demonstrated the importance of the N-terminal
domain, suggesting that it should also change its confor-
mation to bind with the MyoA tail [18, 27]. Although
initial assays suggested the last fifteen residues to be re-

FIG. 1. Crystal structure of the scallop muscle myosin es-
sential (ELC) and regulatory (RLC) light chains in complex
with the myosin heavy chain (PDB ID: 1QVI). This ELC is
the closest structural MTIP homolog [17] and, when bound
to the myosin heavy chain, adopts a conformation similar to
the way MTIP wraps around the MyoA tail.

sponsible for most of the interactions [21], subsequent
studies showed that the last nineteen residues give a much
stronger binding [18].

To help resolve these discrepancies, we study here how
different parts of MTIP interact dynamically at differ-
ent time scales, and how these interactions are influenced
upon binding with the MyoA tail. We investigate how the
mechanism by which MTIP wraps around the MyoA tail
is related to the multi-scale structure of the protein. Our
goal is to understand the changes induced in the struc-
ture upon binding with the MyoA and to identify amino
acids of the MyoA tail that play a key role in the binding.

The paper is organized as follows. Firstly, we describe
our multi-scale graph partitioning algorithm and intro-
duce two novel biochemically-motivated random graph
models, which allow our analysis to target a specific level
of organization by including in the null model biochemi-
cal properties dominant at the different scales considered.
Secondly, the method is tested on Escherichia coli adeny-
late kinase, since its structure and closing mechanism are
well documented [2]. Thirdly, the dynamic behavior of
MTIP is investigated by identifying parts of the protein
sharing the same dynamics at a particular scale, leading
to a hypothetical closing mechanism. The same tool is
then used to explain the differences observed between dif-
ferent conformations of PkMTIP and between the struc-
tures of PkMTIP and PfMTP. Finally, the role of each
amino acid of the MyoA tail is probed through computa-
tional mutagenesis.
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II. MATERIALS AND METHODS

A. Structural data

We first apply our extended methodology to a crys-
tal structure of Escherichia coli AdK (PDB ID code
4AKE). We then study in detail four crystal structures
of Plasmodium knowlesi (Pk) and Plasmodium falcipar-
ium (Pf) MTIPs, either unliganded or in complex with a
MyoA tail peptide. The two unliganded PkMTIP and the
complexed PkMTIP/MyoA structures were obtained by
Bosch et al [17] through 2.6 Å resolution X-ray crystallog-
raphy and comprise residues K79 to L204 of P. knowlesi
MTIP and residues S803 to A817 of P. yoelii MyoA tail
solved at pH 5.3 (PDB ID code 2AUC). The three confor-
mations were found within the same asymmetric unit in
the crystal. The structure of PfMTIP in complex with a
15-amino acid MyoA tail peptide, which has been deter-
mined by the same group [27], is a 1.7 Å resolution crys-
tal structure comprising residues E60 to Q204 in complex
with the same P. yoelii MyoA tail peptide and solved at
pH 7.5 (PDB ID code 2QAC).

B. Multi-scale graph partitioning through Stability

When dealing with complex graphs, it is sometimes
desirable to obtain simplified reduced representations
in terms of subgraphs or communities, i.e., meaningful
groupings of nodes that are significantly related. For in-
stance, the nodes of a network are likely to belong to-
gether if they are part of a tightly-knit group with many
connections within the group and fewer to external nodes.
Such communities can then be used as coarse-grained
representations of the network [28]. Community detec-
tion and graph clustering has a long history, and recent
research has both rediscovered classic results and intro-
duced novel methods [29, 30].
In this work, we use Stability, a recently introduced

method for multi-scale graph partitioning [10, 31] that is
particularly suited to the analysis of structures, such as
proteins, with an intrinsic multi-scale organization. Sta-
bility uses a dynamical (Markov) process taking place
on the graph to establish its community structure. A
community is relevant over a particular time scale if the
dynamical process tends to be more contained inside that
group over that time scale than would otherwise be ex-
pected at stationarity. Hence, our method has an in-
trinsic Markov time associated with the dynamics that
reveals the community structure at different scales. The
analysis can be viewed as following the time evolution of
a linear probabilistic process on the graph and identifying
the subgraphs where the probabilistic flow gets trapped.
This is measured in terms of the Stability R(t), which
can be seen as a clustered autocovariance:

R(t) =
∑

C

∑

i,j∈C

[

(

e−t L/〈k〉
)

i,j

1

N
−

1

N2

]

, (1)

where C extends over the set of communities and i, j

extend over the N nodes of the graph. Each node of the
graph has a degree ki. Here 〈k〉 is the average degree,
and L is the Laplacian matrix: L = diag(ki)− A, where
A is the adjacency matrix of the graph. Hence, as the
Markov time increases, Stability follows the expanding
transient of this dynamics towards stationarity and, in
doing so, it allows us to reveal naturally a sequence of
coarser partitions that uncovers the multi-scale structure
of the graph, if it exists.

1. Application of multi-scale Stability partitioning to

proteins.

In our original work, we already indicated how this
generic methodology for graph analysis provides a route
for the analysis of the multi-scale organization of protein
structures [10]. Subsequently, the method has been re-
fined and tested extensively on a variety of protein struc-
tures encoded in terms of a weighted graph formalism
that is built bottom-up from the atomistic description of
the protein [11]. In this abstraction, each atom is rep-
resented by a node, and each covalent bond or weak in-
teraction (hydrogen bonds, hydrophobic tethers and salt
bridges) by an edge associated with a weight related to
the potential energy of that interaction.
The graph is generated as follows. We start from a

PDB file [32] containing the spatial coordinates of each
atom of the molecule and relax it through energy min-
imization using the molecular dynamics package GRO-
MACS [33]. When necessary, GROMACS is first used
to add missing hydrogens. The protein is then placed in
a cubic box of spc216 water separated from the walls of
the box by a distance of 0.6 nm, and an energy mini-
mization of the structure is carried out using the steep-
est descent and conjugate gradient algorithms included
in GROMACS. Once the structure is relaxed, we use the
software FIRST [34] to identify the bonds and interac-
tions present in the network. These constitute the edges
of the graph. The interaction potentials are here approx-
imated by mass-spring systems, with a specific spring
constant that defines the weight of the corresponding
edge [11, 35]. Ours is a distinct variation from other
approaches to generate network representations of pro-
teins [34, 36–38], in that most of those other approaches
generate unweighted graphs or graphs based on proximity
edges and often coarse-grain to the level of amino acids
(see also [39] and references therein). Our weighted net-
work of bonds and weak interactions includes full details
of the chemistry as well as information about the spatial
conformation since the location of edges partly encodes
the relative position of atoms and has proved to be an
efficient description for the study of biomolecules.
The structural and dynamical organization of the pro-

tein is then extracted by identifying the communities (i.e.,
groups of atoms) that are relevant at different time scales
according to the Stability (1) which, importantly, applies
directly to weighted graphs. Previous work [10, 11] has
shown that this approach is able to identify meaningful
partitions at different scales, from bonds and chemical
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groups to large functional domains, by sweeping the in-
trinsic Markov time of the algorithm. The Markov time
can be related monotonically to the biophysical time of
motion of the corresponding groups of atoms as compared
to experiment or atomistic simulation [11, 35]. Hence the
multi-scale groupings found through Stability establish
a link between substructures at particular spatial scales
and dynamics at time scales specified by the Markov time.
In particular, we then establish computationally the ef-
fect of mutations on this multiscale organization.
Chennubhotla and Bahar [37] studied allostery in the

complex GroEL-GroES using a coarse-graining algorithm
that preserves properties of the stationary distribution of
a Markov process on the network of residues. Sehti et
al. [40] constructed a network based on correlations of
fluctuations in 20 ns molecular dynamics simulations and
used graph partitioning based on another quality func-
tion, the modularity, to identify residues critical for al-
lostery. However, our work differs from these methods
in two important aspects: Firstly, the network in those
methods is coarse-grained at the level of residues, whereas
in our method amino acids emerge as a natural partition
from the network of atomistic interactions. Secondly, the
distinctive feature of our method (i.e., the uncovering of
the multi-scale spatial structure relevant over different
time scales) is not present in any of those methods.

2. Algorithm for the optimization of Stability.

Stability, as defined in (1), provides a measure to assess
the quality of a defined partition. However, the global op-
timization of Stability is computationally hard—a com-
mon occurrence in the study of complex landscapes. We
can use a variety of heuristic algorithms to obtain good
partitions which can then be ranked by Stability to pro-
vide us with near-optimal partitions at different time
scales. Different such algorithms exist, either greedy or
divisive, depending on whether nodes are progressively
grouped to form communities, or whether the whole
graph is gradually divided into smaller groups of nodes.
Here, we use a greedy agglomerative method, the Lou-

vain algorithm [41, 42], which has been shown to provide
an extremely efficient optimization of Stability. Briefly,
Louvain works as follows. Initially, each node is assigned
to its own community. The nodes are successively trans-
ferred into the neighboring community where the increase
of Stability is the biggest, as long as it improves the Sta-
bility of the overall partition. This step is repeated until
no transfer can increase the stability. At that point, a
new meta-graph of communities is generated, and the al-
gorithm repeats these two steps until a graph is obtained
where no further grouping can improve the stability. This
heuristic has been observed to require little computa-
tional effort and to find partitions close to the optimal
solution. Note that the method is deterministic but the
final solution found depends on the order in which the
different nodes are scanned for the grouping step. This
can be chosen at random every time the algorithm is run,
and we will refer to it in what follows as the Louvain ini-

tial condition. Indeed, we will use the variability of the
observed solution induced by our random choice of the
Louvain initial condition to estimate the robustness of a
partition, a measure of its relevance.

C. Robustness tools for Stability analysis

At each Markov time, a different partition with op-
timal Stability can potentially be obtained. However,
not all optimal partitions are meaningful. Therefore, the
question that now needs to be addressed is: which par-
titions, among all those generated across Markov times,
are relevant? In this paper, we introduce robustness tools
to address this issue, which is of general importance in
multi-scale analysis methods, and we provide specific ro-
bustness tools for the analysis of proteins.

1. Identification of relevant partitions and robustness

analysis.

As suggested by Karrer et al [43], the defining prop-
erty of a significant community structure should be its
robustness with regard to small perturbations. A parti-
tion is robust if, when introducing an alteration, either
of the graph itself or of the partitioning method, the new
partition found by any method is very similar to the one
obtained originally. In this sense, the “Markov lifetime”
of a partition, i.e., how long the partition is optimal in
terms of Stability, is a straightforward way to obtain an
initial assessment of its robustness and relevance [11, 44].
An alternative way of measuring the robustness, and

thus the significance, of a partition consists in quantify-
ing to what extent the result is changed by a perturba-
tion [43, 45, 46]. This can be done by measuring the
distance between the solutions found before and after
the perturbation. The distance between two partitions
can be measured by the variation of information, a true
metric of the amount of information not shared by two
partitions [47]. Consider a community Ck containing nk

nodes among the N of the whole network. Let fk = nk

N
be the fraction of the nodes belonging to community Ck.
The amount of information contained in a partition P
can then be defined by its Shannon entropy

H(P) = −
∑

k

fk log fk. (2)

The variation of information (VI) between two partitions
P and P ′, relating to how much information is not shared
by P and P ′, can be expressed as a function of their
marginal (H(P), H(P ′)) and joint (H(P ,P ′)) entropies

VI(P ,P ′) = 2H(P ,P ′)−H(P)−H(P ′), (3)

where

H(P ,P ′) = −
∑

k

∑

k′

fk,k′ log fk,k′ . (4)



5

As defined, this measure depends on the size of the net-
work: larger networks contain more information. There-
fore, in this work, we use a normalized version of the VI
by dividing it by its maximum, logN .
As stated above, the perturbation used here consists

in changing the Louvain initial condition. By computing
the partitions with 100 different initial conditions, the
distances between all pairs of solutions are calculated,
and the average is used as a measure of how much the
partitions are affected by the perturbation, which we then
use as an estimate of their robustness.

2. Surrogate random graph models.

The normalized variation of information does not, in
itself, give an absolute value of the robustness of the
partitions since the number of possible partitions varies
with the number of communities found, which changes
with the Markov time. This problem can be overcome by
comparing the VI at each Markov time against a surro-
gate control group, obtained from a random graph model.
The use of random graph surrogate models is a classical
bootstrapping tool in graph theory [48] to test the emer-
gence of particular statistical properties in a certain type
of graph, to classify graphs into different categories, or to
highlight differences in the properties of different types
of graphs. Here we use the z-score statistic to compare
the robustness of the partitions of a particular graph with
an ensemble of graphs from the random graph model, as
follows. For each Markov time t, generate K surrogate
graphs from the random model. For each of those K
graphs, obtain the average VI(t) computed between all
pairs of partitions obtained by starting from 100 Louvain
initial conditions. Then compute the mean µ(t) and stan-
dard deviation σ(t) over the K average VI values of the
surrogates. The z-score of the variation of information
then reads:

Z(t) =
V I(t)− µ(t)

σ(t)
, (5)

which we can then use as an estimate of the robustness
of the partition independent from the number of commu-
nities detected.

III. RESULTS AND DISCUSSION

A. Biochemical null models to estimate the

robustness of protein partitions at different scales

We introduce our extended method through the anal-
ysis of an example that has been well studied both ex-
perimentally and computationally [2], namely the adeny-
late kinase (AdK) from Escherichia coli. The analysis
proceeds as described in section II. We start from the
corresponding PDB file, relax the structure through en-
ergy minimization, and then obtain a weighted graph

representation with edges based on identifying physico-
chemical interactions. We then find partitions that op-
timize Stability at different Markov times. In Fig. 2 we
show that as the Markov time increases, the optimal par-
tition gets coarser: at very small values, each atom is
identified as a distinct community; at very large times,
the graph is partitioned into two large communities. Both
at low times and large times, it is apparent that certain
partitions have long persistence, i.e., they remain optimal
over long intervals of the Markov time. This persistence
is an indication of their relevance at the corresponding
time scales.

However, it is difficult to establish the persistence of
partitions in the intermediate regime of the Markov time.
This is partly due to the fact that the number of possible
partitions of intermediate size grows combinatorially. In
order to refine the evaluation of the robustness of the par-
titions, we calculate, at each Markov time, the variation
of information (VI) between 100 optimal solutions found
starting from 100 random Louvain initial conditions and
compare it with the VI of surrogate random graph mod-
els using a z-score statistic. The ensemble of surrogate
models can be designed to test the null hypothesis.

In this particular case, we use our intrinsic structural
knowledge of the physico-chemical structure of proteins
to formulate surrogates that can probe the emergence of
biochemically relevant substructures at different scales.
Indeed, the multi-scale organization observed in the case
of proteins is particularly interesting because communi-
ties at different levels are linked to the presence of edges
of different biophysical origin. For instance, the organi-
zation of the protein in the form of a chain of amino acids
is only defined by the network of covalent bonds, while
higher levels of organization, such as conformational and
tertiary structures, only depend on the position of the
weak interactions and are essentially independent from
the organization of the covalent bonds. The biophysical
origin of the different forms of structural organizations,
which can either be chemical or spatial, leads to the defi-
nition of two types of surrogate random graph models for
the robustness analysis.

a. Robustness analysis at short scales: the chemical

configuration model. Our first surrogate set is based
on a random graph that preserves the local chemistry
of the protein while randomizing all other interactions.
This can be used as a chemical null model that should be
identical to our original graph at short time and length
scales but will highlight the differences that emerge with
the longer scale organization. The random graph model
is designed to preserve the chemical attributes of the pro-
tein including the chemical composition of the molecule
preserving the valence of the atoms, encoded in the degree
of the nodes, and the energies of the bonds and interac-
tions, encoded in the weights of the edges. All the basic
chemical properties of the graph can be kept using a sim-
ple randomization scheme similar to the one proposed by
Maslov and Sneppen [49], in which pairs of bonds cho-
sen at random exchange one of the two nodes they link.
By doing this repeatedly, a new random graph keeping
the number but also the weights of the connections of
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each node is generated. The same method is used here,
with the additional constraints that the pairs of bonds
are of the same kind (covalent bonds of the same energy,
or weak interactions of the same nature), and that the
exchange keeps the whole network of covalent bonds con-
nected. This randomization thus also keeps the chemical
nature of the neighbors of each atom. Consequently, from
a chemical point of view, the small chemical groups are
kept, and, from a graph theoretical point of view, the de-
gree of each node is also maintained. In that respect, this
model is similar to the configuration model [50] and can
be thought of as the “chemical configuration model”.

b. Robustness analysis at long scales: randomized

weak interactions. The large-scale spatial organization
of the protein is mainly determined by the weak inter-
actions such as hydrogen bonds, hydrophobic tethers or
salt bridges. The second type of surrogate random graph
therefore conserves the whole network of covalent bonds
defining the primary structure of the protein, but ran-
domizes the positions of the weak interactions which de-
termine the secondary and tertiary structures. The ran-
domization of these interactions is carried out preserv-
ing the necessary chemical constraints: hydrogen bonds
should only bind oxygen or nitrogen with hydrogen atoms
and hydrophobic tethers, carbon and sulphur atoms. The
weak interactions are then re-positioned between nodes
of the required nature selected at random.

c. Application to AdK. Results of the partition-
ing and robustness analysis for AdK are summarized in
Fig. 2. At each Markov time, the Stability was optimized
a hundred times with different Louvain initial conditions.
For each Markov time, the optimal partition is shown in
the top panel of Fig. 2(a) by its number of communities,
and the variation of information between all the parti-
tions found at this Markov time is shown in the bottom
panel. Partitions at very small and very high Markov
times remain optimal for extended Markov times and cor-
respond to biochemically meaningful components: small
chemical groups (small times) or the three functional
domains (LID, NMP and CORE domains) [10, 11, 35].
This is confirmed by our robustness analysis, which shows
small values of VI for the long-lived partitions.

Fig. 2 also shows the comparison of the robustness of
the partitions of the protein against that of ensembles of
random graphs from our surrogate models. As expected,
the random graphs obtained from the chemical config-
uration model are indistinguishable from the protein at
short Markov times, since their local chemical structure
is identical. However, at longer times the comparison
reveals two additional partitions of strong biochemical
significance corresponding to the peptide bonds between
the amino acids (at Markov times around 10−2) and to
the emergence of amino acids at Markov times around
10−1. At the local minimum of VI, 63% of the amino
acids were grouped as a community, while most of the
others, essentially small amino acids, were grouped with
another residue due to the slight tendency of Stability to
find communities of about the same size.

The robustness of the protein is indistinguishable from
the ensemble of graphs obtained by randomization of

weak interactions until Markov times of around 2. This
establishes the spatial and time scale at which the weak
interactions start having an influence on the communities,
and, by extension, on the conformation of the protein in
space. Interestingly, the communities found at this scale
usually contain four amino acids, which is the number of
residues usually found in one turn of an α-helix.
At long Markov times, Stability finds partitions into a

few subunits that are much more robust for the protein
than for the random surrogates. The study of their ro-
bustness indicates the relevance of partitions into 2, 3,
4, and 8 communities, which can be linked to the well-
known folding of AdK and to an existent hinge analy-
sis [2, 11]. As expected, the two random models converge
at long Markov times since in both cases the composi-
tion of the molecule is conserved, and the weak interac-
tions have been randomized. At Markov times above 30
we observe an increase in the variability and a decay in
the value of the VI for the surrogates from the weak in-
teraction randomization. This indicates the point where
weak interactions placed at random begin to induce ro-
bust compact subgroups in the structure in an effect akin
to undirected packing. In contrast, the specific location
of the weak interactions in the structure of the protein in-
duces robust and reproducible partitions that reveal the
specific organization of the protein conformation.

B. The succession of partitions of PfMTIP suggests

a rigid cluster and the dynamics of the closing

mechanism

We have used the methodology introduced above to
study the structure and dynamics of PfMTIP/MyoA[803-
817], i.e., PfMTIP in complex with a peptide of the last
15 amino acids of the MyoA tail (PDB ID code 2QAC).
Again, at small Markov times, we find partitions of high
robustness corresponding to peptide bonds and amino
acids (Fig. 3). The relevant partitions at long Markov
times are summarized in Fig. 4(a). Starting from the de-
tection of the secondary structure, the different α-helices
and β sheets are progressively incorporated in a quasi-
hierarchical manner into bigger clusters as the Markov
time increases. Some of the groupings lead to a marked
increase in the robustness of the partition. This is the
case for the first community to appear that incorpo-
rates two secondary structures: helices α6 and α7. This
community is conserved across a broad range of Markov
times, more than any other community of multiple el-
ements of secondary structure. This suggests a strong
dynamical linkage between these two α-helices over an
extended time scale of motion. This is in agreement
with the PkMTIP crystal structure from Bosch et al [17],
where these helices keep the same relative position in
all three conformations observed, thereby suggesting the
presence of a rigid cluster.
Another important community is the one formed by

helices α5 and α8, which also leads to an increase in the
robustness of the partition. Together with the α6 − α7
cluster, they divide the C-terminal domain into two lobes
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(a)

(b)

(c)

FIG. 2. (a) Multi-scale partitioning of AdK as a function
of the Markov time. The comparison of the robustness of
the protein structure with the two types of biological ran-
dom graph surrogates allows us to detect partitions which are
biochemically meaningful at different scales, such as peptide
bonds, amino acids, the emergence of single helical turns and
the appearance of functional domains. The shaded area on
the left corresponds to the Markov times for which both null
models and the protein give the same partitions due to the
fact that the local chemistry is preserved. Error bars repre-
sent the standard deviation of the optimal partitions from the
different random graphs. (b) Relevant partitions of AdK at
large Markov times. The partition into 8 communities relates
to previous hinge analyses [2, 11], while the 3-way partition
corresponds to the functional domains. (c) Using the z-score
to compare partitions with the same number of communities
between AdK and the ensemble of graphs with randomized
weak interactions, the partition into three communities, which
divides AdK into its functional domains, is indeed identified
as the most meaningful. Protein structures drawn with Py-
MOL [51].

FIG. 3. Using the z-score, the comparison across Markov
times of the robustness of the partitions of PfMTIP and ran-
dom graphs from the chemical configuration model identifies
amino acids and peptide bonds as biochemically relevant com-
munities.

that wrap around the MyoA peptide. The next rise in the
z-score appears at Markov times around 500, at which
point MTIP is divided into three domains: the two lobes
of the C-terminal domain and the entire N-terminal do-
main (Fig. 4(c)). The strong robustness of this partic-
ular partition reflects its significance for the function-
ing of the protein itself. This again supports hypotheses
from Bosch et al [27] concerning the closing mechanism
of MTIP around MyoA, suggested to be in the form of a
clamp, with the two lobes of the C-terminal domain wrap-
ping around the MyoA tail, and the N-terminal domain
fortifying the binding by bending towards the C-terminal
domain to close the clamp.

At long Markov times, the complex is partitioned into
N- and C-terminal domains, with the MyoA peptide clus-
tered with the C-terminal domain. This is also in agree-
ment with results from Kd analyses [18], which suggest
that the MyoA tail should be more tightly bound to the
C-terminal than to the N-terminal domain. In addition,
the fact that the two lobes of the C-terminal domain clus-
ter at an earlier Markov time suggests that the wrapping
of the C-terminal domain around the MyoA tail should
take place more rapidly than the closing motion of the
N-terminal domain.

C. The partitions of PkMTIP suggest a stabilizing

role of the MyoA tail and a strong similarity

between PkMTIP and PfMTIP structures

We have used our methodology to study the changes
in the structural organization of MTIP induced by the
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FIG. 4. (a) Multi-scale partitioning of PfMTIP/MyoA as a
function of Markov time. The elements of the secondary struc-
ture are progressively grouped into larger communities as the
Markov times evolves. Although in general our methodology
does not pre-impose a hierarchical community structure, in
this case the succession of community groupings is close to
a strict hierarchy. Clusters kept for a long range of Markov
times, such as the group of helices α6 and α7 are well-defined
partitions. The identification of the rigid cluster, and of the
functional domains leads to an increase in the robustness (z-
score) of the partitions. (b) The comparison of the z-score
per number of communities suggests that the partitions into
9 communities, where the rigid cluster is found, and the par-
tition into two communities, where the N and C-terminal do-
mains are identified, are significant. (c) Detection of the func-
tional domains in the four-way partition of PfMTIP/MyoA.
Protein structures drawn with PyMOL [51].

presence of the MyoA peptide by comparing unliganded
(free) conformations of MTIP (PkMTIP1 and PkMTIP2)
with ‘liganded’ conformations of MTIP (PkMTIP3 and
PfMTIP), which are obtained from MTIP-MyoA com-
plexes by deleting the MyoA peptide together with all its
interactions when generating the graph. Liganded con-
formations thus reflect the change of shape induced by
the MyoA peptide with none of the direct constraints.
Fig. 5(a) and 5(b) show that the partitions for the lig-
anded conformations obtained from the complexed forms
are in general much more robust than the partitions of
the two unliganded structures, especially at the level of
the secondary structure (8, 9, and 10 communities) and
of functional domains (3 communities). Such increase of
the robustness of the partitions in the liganded confor-
mations emerges naturally from the change in the spatial
structure induced by the MyoA peptide.

Importantly, although the partitions differ significantly
in their robustness and the Markov time of their predom-
inance, they are very similar among the different confor-
mations, especially between the two liganded forms. In
particular, the important communities identified in sec-
tion III B, such as the α6−α7 cluster and the functional
domains (Fig. 4(c)), are also detected in all three con-
formations with high robustness (the only exception be-
ing the functional domains of PkMTIP2). The fact that
the similar partitions are found in all structures suggests
that the overall organization of the protein is not changed
much between the conformations and corroborates the
idea that the space of conformations that can be taken
by a proteins is inscribed within its own structure [1].
However, changes in the robustness and Markov lifetime
of the partitions suggests that the secondary and tertiary
structures get better structured upon binding with the
MyoA tail since the corresponding partitions are better
defined in this case. Note also that in comparing the
liganded conformations, PfMTIP has more robust parti-
tions than PkMTIP3, possibly a result of the stabilizing
role of the N-terminal domain, which in PfMTIP also
binds the peptide and closes the clamp. On the other
hand, the unliganded form PkMTIP2 possesses the least
robust partitions, in accordance with the hypothesis [17]
that it should be an intermediate conformation between
the fully opened and fully closed forms.

The similarity between the partitions of the complexed
forms of PfMTIP and PkMTIP supports the expectation
that their structural organization should not be very dif-
ferent. However, there is a current open debate in the
literature regarding the difference in the hinge region be-
tween the N- and C-terminal domains, with PkMTIP
presenting a long central α-helix where PfMTIP only
has a loop (Fig. 5(a)). The classification of this cen-
tral domain in PkMTIP as a helix is however contro-
versial since the structure of PkMTIP was measured at
a non-physiological pH and does not correspond to the
structure observed in other MLCs [17]. Interestingly, our
partitioning consistently divides the central α-helix of
PkMTIP into two different communities at all Markov
times. Furthermore, in the partitions, the separation be-
tween the two halves of this central α-helix is constrained
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(b)

FIG. 5. (a) Robustness of the partitions of MTIP in different
conformations as a function of the Markov time. The liganded
conformations (PfMTIP and PkMTIP3) show better proper-
ties of robustness than the unliganded ones at the level of the
secondary structures and of the functional domains, suggest-
ing a stabilizing role of the binding with MyoA. Partitions are
very similar between the three conformations, in particular
for the functional domains, although the grouping of helices
α5 and α8 only occurs at long Markov times for PkMTIP2.
Protein structures drawn with PyMOL [51]. (b) The z-score
of the partitions with the same number of communities com-
pared across different conformations of MTIP shows that the
liganded forms have better defined partitions.

within the region that corresponds to the central loop in
PfMTIP (from residues H135 to N140). This partition-
ing is thus consistent with the central α-helix of PkMTIP
being partly identified as a loop by the partitioning al-
gorithm. To further support this observation, we have
carried out an analysis of the robustness of loops and α-
helices with the same number of nodes (50 atoms) across
Markov times. Fig. 6 shows that the central region of the

FIG. 6. Variation of information of the partitions detected in
different secondary structures. The variation of information
of the central region of the central α-helix (continuous red
line) is very high and behaves similarly to other loop regions
of the protein. This suggests that the algorithm effectively
recognizes this region as a loop, despite its α-helical secondary
structure. Filled symbols correspond to loops, empty symbols
correspond to α-helices and the continuous line corresponds to
the hinge region. Protein structure drawn with PyMOL [51].

central α-helix of PkMTIP has a robustness much lower
than the typical α-helix with a trend similar to that of
loops. These results demonstrate the insights that our
method can bring into the analysis of the structural or-
ganization of a protein beyond its pre-assigned secondary
or tertiary structure.

D. The analysis of residue sensitivity suggests six

residues of particular importance for the structure

and dynamics of the complex

The last part of the analysis aims to identify residues
in the MyoA tail that have a strong impact on the multi-
scale organization of the protein complex and can there-
fore be considered to play a significant role in its struc-
ture and dynamics. This analysis does not evaluate the
influence of a mutation on the binding energy; rather,
the expectation is that residues with a large influence on
the structural organization of the protein will affect the
global dynamics of the binding events. Indeed, hotspots
are known experimentally to be related to the global me-
chanical properties of the protein such as flexibility and
intrinsically disordered regions [2, 52, 53]. Furthermore,
various computational methods have demonstrated the
high influence of hotspots on large-scale attributes such
as the distribution of conformations [54], the network
of cooperativity between residues measured in terms of
coupled fluctuations [55], or their propensity of being lo-
cated at hinge sites measured by their mobility in the slow
modes [56]. To assess the connection between the effect
on the binding energy and on the structural and dynam-
ical features detected by our method, we have compared
our computational results with the outcome of binding
assays of MTIP with mutated MyoA tail peptides.
Our computational setup mimics the standard alanine

scanning mutagenesis : each residue is ‘mutated’ in turn
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FIG. 7. (a) The partition most influenced by computational mutagenesis is the one into 3 communities. (b) Residues R806,
A809, H810, K813, R814, and V816 have the biggest influence on the three-way partition. There is a strong coincidence with
the residues identified experimentally [18] to have a strong effect on the binding affinity (indicated by arrows). (c) and (d) Front
and side view of the positions of the key residues found. Structures drawn with PyMOL [51].

by removing from the graph all the edges corresponding
to the weak interactions it makes with other residues.
The mutated graph is then analyzed with our multi-scale
methodology, and the partitions are compared with those
of the original graph using the VI. For each mutation, we
compute the VI between all the partitions found with the
same number of communities from the original and mu-
tated protein averaged over 10 different Louvain initial
conditions and normalized by the average VI of the orig-
inal graph. Using this scheme, partitions which are the
most affected by a particular mutation will give a high
value of the variation of information.

Fig. 7(a) shows that the partitions into 3 communi-
ties are the most affected by the mutations. This is not
surprising since the 3-way partition is the first where the
MyoA peptide is grouped with part of the MTIP molecule
(Fig. 4(a)). Consequently, the mutations essentially af-
fect the strength of the association between the MyoA tail
and the portion of MTIP that includes the hinge region
and the helices α5 and α8 from the C-terminal domain.
More specifically, the mutations that cause the largest

changes in the 3-way partition are those in residues R806,
A809, H810, K813, R814, and V816 (Fig. 7(b)). These
results are in accordance with experimental binding as-
says for MyoA peptides of different lengths [18], crystal-
lographic data and yeast two-hybrid experiments [27]. In
particular, residues R806 and K813 have been observed
to be essential for complex formation; H810 and R814
provide key contacts for tight binding; and V816 also
improves the binding. On the other hand, our method
does not single out a significant contribution of residue
M815, which has been found to influence binding affin-
ity. A possible explanation is that the importance of this
residue might be related to effects that are not directly
addressed by our method, such as intermediate states in
the folding pathway or modification of binding energies.
Finally, our method finds one residue, A809, predicted to
have an important effect on the multi-scale organization
which has not been investigated experimentally to date.
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IV. CONCLUSION AND OUTLOOK

We have presented the application of an efficient and
computationally inexpensive method to extract informa-
tion about the structural and dynamical organization of
proteins across time and spatial scales starting bottom-
up from the full atomistic information. The methodology
is based on multi-scale graph partitioning methods that
establish a series of increasingly coarser partitions that
can reveal the structure of the graph. This paper in-
troduces new graph theoretical tools, specifically the use
of the robustness of partitions as a measure of their bi-
ological significance and the quantification of robustness
through the introduction of biochemically-motivated sur-
rogate random graph models.
Our analysis has uncovered important features of the

MTIP/MyoA complex that agree well with experimental
data. The rigid cluster formed by helices α6 and α7, as
suggested by the crystal structures of PkMTIP [17], was
observed to form a well-defined community, conserved
across a broad range of Markov times and associated with
very robust partitions. The functional domains suggested
by the analysis of crystal structures of different confor-
mations across species [17, 27] have been detected by the
partitioning and also showed strong robustness and con-
servation across Markov times. The robustness analysis
of the hinge region of PkMTIP confirms these similarities
between species and therefore suggests that their dynam-
ical behavior should be similar. Furthermore, it supports
the hypothesis [27] that the reported differences between
PkMTIP and PfMTIP in the the hinge region could re-
sult from the particularities of the crystallization. Fi-
nally, a computational tool for mutational analysis was
introduced and used to identify five out of the six residues
known from binding assays [18] to have a strong influence
on the binding of MyoA. It also suggested one additional
residue, A809, which has not yet been investigated ex-
perimentally, to be particularly important.

Together, these results provide a better understanding
of the possible dynamical behavior of MTIP and other
myosin light chains. The broad agreement with a vari-
ety of experimental results underlines the intrinsic inter-
est of methods that study the multi-scale organization
of proteins. Our method includes atomistic detail en-
coded in a graph representation and allows to extract
information about the global organization of the struc-
ture and dynamics of the protein, but also about how
individual residues can affect them. Future work will in-
clude the experimental verification of these predictions,
such as binding assays with alanine mutations of some of
the key residues identified. A deeper study of the role of
each residue of the MyoA tail could also be carried out by
computationally analyzing their effect on individual com-
munities, rather than on the whole partitioning. On the
theoretical side, although the two random graph models
proposed here were shown to generate relevant null hy-
potheses, other forms of randomization such as geometric
random graphs could also be tested in the future. Fi-
nally, using the communities detected by our method to
coarse-grain molecular dynamics simulations could pro-
vide an efficient method to get insight into the folding
and closing pathway.
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