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Abstract. Chemical reaction networks involving molecular species at
low copy numbers lead to stochasticity in protein levels in gene expres-
sion at the single-cell level. Mathematical modelling of this stochastic
phenomenon enables us to elucidate the underlying molecular mecha-
nisms quantitatively. Here we present a two-stage stochastic gene expres-
sion model that extends the standard model by an mRNA inactivation
loop. The extended model exhibits smaller protein noise than the orig-
inal two-stage model. Interestingly, the fractional reduction of noise is
a non-monotonous function of protein stability, and can be substantial
especially if the inactivated mRNA is stable. We complement the noise
study by an extensive mathematical analysis of the joint steady-state
distribution of active and inactive mRNA and protein species. We deter-
mine its generating function and derive a recursive formula for the protein
distribution. The results of the analytical formula are cross-validated by
kinetic Monte-Carlo simulation.

Keywords: Stochastic gene expression · Master equation · Analytical
distribution · Generating function · Stochastic simulation

1 Introduction

As many other biochemical mechanisms, gene expression in which protein syn-
thesis occurs is inherently stochastic due to random fluctuations in the copy
number of gene products, e.g. proteins [7]. From the viewpoint of biochemical
reactions, in simplest formulations, gene expression consists of two main steps:
transcription and translation. While RNA polymerase enzymes produce mRNA
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molecules in the former, protein synthesis takes place by ribosomes in the lat-
ter, each reaction corresponding to the production and decay of relevant species.
Additionally, the two-stage model can be extended by the regulation of tran-
scription factors, which affect gene expression by modulating the binding rate of
RNA polymerase [3].

Over the last decades, the two-stage model of gene expression has been exten-
sively studied to understand how the stochastic phenomenon in cellular processes
takes place [14, 17, 18]. Specifically, quantifying the number of species in terms
of probability distributions has become an interesting and challenging endeavour
due to the subtleties involved in finding a solution to the underlying problem.
On the other hand, the fluctuations in mRNA and protein levels are considered
as a major source of noise, leading to cell-to-cell variability in gene regulatory
networks [12, 15, 16]. The noise emerges from different sources, namely intrinsic

and extrinsic noise [23, 25]; yet, structural elements such as stem-loops can also
contribute to noise by binding to an untranslated region of mRNA [6]. The un-
translated regions of mRNAs often contain these stem-loops that can reversibly
change configurations making individual mRNAs translationally active/inactive.

Numerous modelling approaches have been proposed that are based on de-
terministic and stochastic frameworks, and recently also hybrid ones as a com-
bination of the preceding two [5, 10, 21]. Only a few of those provide an explicit
solution to the two-stage gene-expression model [4, 18]; most of the studies are
based on Monte Carlo simulations, which are usually computationally expensive.

As a generalisation of the two-state model, some studies in the literature
consider a set of multiple gene states and investigate the dynamics of stochastic
transitions among these states [11, 26]. Nevertheless, to the best of our knowl-
edge, none of these studies takes an mRNA inactivation into account. Here we
extend the two-stage model by an MRNA inactivation loop, by which we mean
that after transcription species can switch between active and inactive states. In
other words, there exists a pair of reversible chemical reactions occurring at con-
stant rates by turning active mRNA species into inactive ones, and vice versa.
Subsequently, the active mRNA is translated, while the inactive mRNA stays
dormant. The schematic of reactions describing the model is given in (1). Here
we thereafter refer to the aforementioned model as the extended model.

This paper is organised as follows. In Section 2, the stationary means of active
mRNA, inactive mRNA, and protein are obtained from a deterministic formula-
tion the model; the master equation of the stochastic model is formulated, and
transformed into a partial differential equation for the generating function. In
Section 3, the partial differential equation is transformed into one for the facto-
rial cumulant generation function and a power series solution is found; recursive
expressions for the coefficients — the factorial cumulants of the three molec-
ular species — are thereby provided. In Section 4, the protein Fano factor is
expressed in terms of the first two factorial cumulants, and the noise-reduction
effect of the mRNA inactivation loop is analysed. The generating function of the
stationary distribution of active mRNA, inactive mRNA and protein amounts is
represented in the special-function form in Section 5. The marginal protein and
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Protein noise and distribution in a two-stage gene-expression model 3

active and inactive mRNA distributions are derived in Section 6. The paper is
concluded in Section 7.

2 Model formulation

The extended model involves three species, mRNA, inactive mRNA (imRNA for
short), and protein, and consists of the reactions

∅
λ1−⇀↽−
γ1

mRNA, mRNA
α
−⇀↽−
β

imRNA, imRNA
γ̃1

−→ ∅,

mRNA
λ2−→ mRNA+ protein, protein

γ2

−→ ∅.

(1)

The reactions in (1) correspond to mRNA transcription and decay, mRNA acti-
vation and inactivation, inactive mRNA decay, protein translation, and protein
decay, respectively.

Due to the linearity of kinetics in (1), the mean levels of the mRNA (m),
inactive mRNA (m̃) and protein (n) exactly satisfy the system of deterministic
rate equations

d〈m〉

dt
= λ1 − (γ1 + α)〈m〉+ β〈m̃〉,

d〈m̃〉

dt
= α〈m〉 − (γ̃1 + β)〈m̃〉,

d〈n〉

dt
= λ2〈m〉 − γ2〈n〉.

(2)

Setting time derivatives in (2) to zero, and solving the resulting algebraic system,
the stationary means are obtained as

〈m〉 =
λ1
γeff1

, 〈m̃〉 =
α

γ̃1 + β
〈m〉, 〈n〉 =

λ2
γ2

〈m〉, (3)

for the mRNA, inactive mRNA, and protein respectively, where

γeff1 = γ1 +
αγ̃1
γ̃1 + β

(4)

denotes the effective rate of mRNA decay. Owing to the linearity of reaction
rates, one can find a closed system of differential equations not only for means,
but also for higher-order moments [19, 22]; however these equations are typically
less revealing than the mean dynamics. Here we take a different approach and
quantify the protein noise as a by-product of a generating-function analysis in
Section 4.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440897
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The probability pm,m̃,n(t) of having m mRNA, m̃ inactive mRNA, and n
protein molecules at time t satisfies the chemical master equation

dpm,m̃,n

dt
= λ1(pm−1,m̃,n − pm,m̃,n) + α((m+ 1)pm+1,m̃−1,n −mpm,m̃,n)

+ γ̃1((m̃+ 1)pm,m̃+1,n − m̃pm,m̃,n) + λ2m(pm,m̃,n−1 − pm,m̃,n)

+ γ2((n+ 1)pm,m̃,n+1 − npm,m̃,n) + γ1((m+ 1)pm+1,m̃,n −mpm,m̃,n)

+ β((m̃+ 1)pm−1, ˜m+1,n − m̃pm,m̃,n).

(5)

Equating the left-hand side of (5) to zero yields the steady-state master equation

0 =λ1(pm−1,m̃,n − pm,m̃,n) + α((m+ 1)pm+1,m̃−1,n −mpm,m̃,n)

+ γ̃1((m̃+ 1)pm,m̃+1,n − m̃pm,m̃,n) + λ2m(pm,m̃,n−1 − pm,m̃,n)

+ γ2((n+ 1)pm,m̃,n+1 − npm,m̃,n) + γ1((m+ 1)pm+1,m̃,n −mpm,m̃,n)

+ β((m̃+ 1)pm−1, ˜m+1,n − m̃pm,m̃,n),

(6)

We additionally require that the normalising condition
∑

m,m̃,n

pm,m̃,n = 1 (7)

hold.
We aim to find the moments of the probability distribution pm,m̃,n by using

the generating function approach [8]. In order to solve (6)–(7), we employ the
probability generating function

G(x, y, z) =
∑

m,m̃,n

xmym̃znpm,m̃,n (8)

for the probability distribution pm,m̃,n. Multiplying (6) by the factor xmym̃zn

and summing over m, m̃ and n yields

λ1(1− x)G =(λ2x(z − 1) + γ1(1− x) + α(y − x))
∂G

∂x

+ (γ̃1(1− y) + β(x− y))
∂G

∂y
+ γ2(1− z)

∂G

∂z
.

(9)

Equation (9) is subject to
G(1, 1, 1) = 1, (10)

which is implied by the normalisation condition (7).

3 Factorial cumulant generating function

In order to find a particular solution to (9)–(10), we change the variables ac-
cording to

x = 1 + u, y = 1 + v, z = 1 + w, G = exp(ϕ), (11)
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Protein noise and distribution in a two-stage gene-expression model 5

and obtain that the factorial cumulant generating function [9] ϕ = ϕ(u, v, w) is
a solution of the inhomogeneous linear partial differential equation (PDE),

λ1u = (−λ2(1+u)w+ γ1u+α(u− v))
∂ϕ

∂u
+(γ̃1v+β(v−u))

∂ϕ

∂v
+ γ2w

∂ϕ

∂w
(12)

subject to
ϕ(0, 0, 0) = 0. (13)

In order to solve (12)–(13) we shall employ the ansatz

ϕ(u, v, w) = ϕ00(w) + uϕ10(w) + vϕ01(w). (14)

We immediately obtain the partial derivatives

∂ϕ

∂u
= ϕ10(w),

∂ϕ

∂v
= ϕ01(w),

∂ϕ

∂w
= ϕ′

00(w) + uϕ′
10(w) + vϕ′

01(w). (15)

Inserting (15) into (12) and rearranging the terms yields an inhomogeneous
system of ODEs

γ2wϕ
′
00 − λ2wϕ10 = 0,

γ2wϕ
′
10 + (γ1 + α− λ2w)ϕ10 − βϕ01 = λ1,

γ2wϕ
′
01 + (γ̃1 + β)ϕ01 − αϕ10 = 0.

(16)

Let us assume that the functions ϕ00, ϕ10, and ϕ01 are of the power series form,
i.e.,

ϕ00(w) =
∞
∑

k=0

akw
k, ϕ10(w) =

∞
∑

k=0

bkw
k, ϕ01(w) =

∞
∑

k=0

ckw
k. (17)

The coefficients ak, bk, and ck give the factorial cumulants of the joint molecular
distribution [9]. Note that a0 = 0 follows immediately from the normalisation
condition (13). Evaluating the derivatives in (17) and substituting into (16), we
obtain the following recurrence equations:

ak =
λ2
kγ2

bk−1, k ≥ 1, (18)

(γ1 + α)b0 − βc0 − λ1+
∞
∑

k=1

(γ2kbk + (γ1 + α)bk − λ2bk−1βck)w
k = 0, (19)

(γ̃1 + β)c0 − αb0+
∞
∑

k=1

(γ2kck + (γ̃1 + β)ck − αbk)w
k = 0. (20)

Since we consider (17) as a solution to (12) then all the coefficients in (19)–(20)
must be zero. Thus, we get

(γ1 + α+ γ2k)bk − λ2bk−1 − βck = 0, (21)

(γ̃1 + β + γ2k)ck − αbk = 0, (22)
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for bk and ck. Solving the algebraic system (21)–(22) in bk, k ≥ 1, yields

(γ22k
2 + γ2(γ̃1 + γ1 + β + α)k + γ̃1γ1 + γ1β + γ̃1α)bk = λ2(γ̃1 + β + kγ2)bk−1,

i.e.

bk =
λ2(γ̃1 + β + kγ2)

γ22k
2 + γ2(γ̃1 + γ1 + β + α)k + γ̃1γ1 + γ1β + γ̃1α

bk−1, (23)

where the zeroth term of the sequence bk is obtained, by equating the terms out
of the sums in (19) and (20) to zero, as

b0 =
λ1(γ̃1 + β)

(γ1 + α)(γ̃1 + β)− βα
=

λ1
γeff1

. (24)

Equation (24) thus rederives the stationary mRNA mean (3) by means of fac-
torial cumulant analysis; similarly, c0 and a1 can be identified as the stationary
imRNA and protein means. Thus, the sequence bk can be calculated iteratively
from (23) starting from the initial condition (24). Having calculated bk, the
sequence ak and ck can be evaluated via (18) and (22). In Section 5, we will
utilise these formulas to obtain a special-function representation of the gener-
ating function. Before doing that, we show that the first two terms of these
sequences determine protein variability.

4 Protein variability

As outlined in the previous section, the first-order cumulants b0, c0, and a1 (a0 =
0 by normalisation condition), coincide with the stationary mRNA, imRNA,
and protein mean values. In this section, we use the second-order cumulants to
describe the stationary noise in our model. The noise in mRNA and imRNA is
Poissonian (see Section 6 for details) and therefore uninteresting: we focus on
the protein noise.

This section is divided into two parts: the first expresses the Fano factor
in terms of the first and second order cumulants (and is independent of the
specifics of the current model); the second part uses the formula to analyse the
noise reduction effect of the inactivation loop.

Expressing the Fano factor in terms of the cumulants. The generating function
is expanded by the Taylor formula as

G(1, 1, z) = G(1, 1, 1) +
∂G

∂z
(1, 1, 1)(z − 1) +

1

2

∂2G

∂z2
(1, 1, 1)(z − 1)2 +O(z − 1)3.

(25)
Differentiating (8) with respect to z and setting (x, y, z) = (1, 1, 1) links the
derivatives of the generating function to the factorial moments:

∂G

∂z
(1, 1, 1) = 〈m〉,

∂2G

∂z2
= 〈m(m− 1)〉. (26)
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Protein noise and distribution in a two-stage gene-expression model 7

Inserting (10) and (26) into (25), we have

G(1, 1, z) = 1 + 〈m〉(z − 1) +
〈m(m− 1)〉

2
(z − 1)2 +O(z − 1)3. (27)

On the other hand, (11), (14), and (17) imply

G(1, 1, z) = exp
(

a1(z − 1) + a2(z − 1)2 +O(z − 1)3
)

(28)

=

(

1 + a1(z − 1) +
a21
2
(z − 1)2

)

(

1 + a2(z − 1)2
)

+O(z − 1)3 (29)

= 1 + a1(z − 1) +

(

a2 +
a21
2

)

(z − 1)2 +O(z − 1)3. (30)

Comparing (27) and (28) gives

〈m〉 = a1, 〈m(m− 1)〉 = 2a2 + a21.

The Fano factor,

F =
〈m2〉

〈m〉
− 〈m〉 =

〈m(m− 1)〉

〈m〉
+ 1− 〈m〉 =

2a2
a1

+ 1, (31)

is thus expressed in terms of the first two factorial cumulants a1 and a2.

Noise reduction by mRNA inactivation loop. Substituting (18) and (23) into
(31) and simplifying gives

F = 1 +
b1
b0

= 1 +
λ2

γ2 + γ1 +
α(γ2+γ̃1)
γ2+γ̃1+β

. (32)

Formula (32) gives the steady-state protein Fano factor as function of the model
parameters (degradation rate constants γ1, γ̃1, γ2 of active/inactive mRNA and
protein; inactivation/activation rate constants α, β; translation rate constant
λ2).

In order to compare the protein noise in the current model to that exhibited
by the classical two-stage model (without the inactivation–activation loop) we
define the baseline Fano factor as

F0 = 1 +
λ2

γ2 + γeff1
= 1 +

λ2

γ2 + γ1 +
αγ̃1

γ̃1+β

, (33)

which can be obtained from (32) by first setting α = 0 (no inactivation) and
then replacing the mRNA decay rate γ1 by its effective value (4). Adjusting the
mRNA decay rate maintains the same species means in the baseline model like
in the full model extended by the inactivation loop.

The protein variability formulae (32) and (33) can equivalently be expressed
in terms of the squared coefficient of variation [13, 20] CV2 = F/〈n〉 and CV2

0 =
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Fig. 1: Fractional protein noise reduction by the mRNA inactivation loop as
function of protein stability. The ordinate gives the protein noise (the squared
coefficient of variation) in the two-stage model extended by the mRNA inacti-
vation loop relative to the protein noise in a baseline two-stage model without
the mRNA inactivation loop (adjusting the mRNA decay rate to obtain the
same species means). The protein mean is set to 〈n〉 = 500; the mRNA mean
is 〈m〉 = 10; the imRNA decay rate is either the same as that of active mRNA
(γ̃1 = γ1; dashed line) or set to zero (γ̃1 = 0; solid line). The inactivation and
activation rates are α = 3, β = 3 (left panel) or α = 1, β = 0.1 (right panel); we
thereby set γ1 = 1 without loss of generality.

F0/〈n〉. Combining (3) and (32)–(33), we find

CV2 =
1

〈n〉
+

1

〈m〉

γ2

γ2 + γ1 +
α(γ2+γ̃1)
γ2+γ̃1+β

, (34)

CV2
0 =

1

〈n〉
+

1

〈m〉

γ2

γ2 + γ1 +
αγ̃1

γ̃1+β

(35)

for the protein coefficient of variation and its baseline value (no activation loop).
Comparing (34) to (35), we see that CV2 < CV2

0, allowing us to conclude that
the inclusion of the mRNA inactivation loop decreases protein noise. However,
the two coefficients will be very close in many parameter regimes; the necessary
conditions for observing a significant difference are given by

γ̃1 . min{β, γ2}, max{γ1, γ2} . α, (36)

where by “.” we mean smaller than or of similar magnitude. Thus, in order
to obtain significant reduction of noise, we require that an individual active
mRNA molecule be more likely to be inactivated than degraded, and that an
individual inactive mRNAmolecule be more likely to be activated than degraded.
Additionally, we require that inactive mRNA be more stable than protein (which
is possible if inactivation protects the mRNA from decay).

One particular consequence of the necessary conditions (36) is that the frac-
tion protein noise reduction, CV2/CV2

0, is a non-monotonous function of protein
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Protein noise and distribution in a two-stage gene-expression model 9

stability: it tends to one for highly unstable or highly stable proteins, and is less
than one for proteins of optimal stability (cf. Figure 1). The optimal value of
protein stability critically depends on the rate constant β of mRNA activation.
In case of fast mRNA activation, the optimum noise reduction is achieved by
unstable proteins (less stable than mRNA; Figure 1, left panel. In case of slow
mRNA activation, the optimum can be achieved by stable proteins (Figure 1,
right panel). However, slow activation (β ≪ 1) imposes, via (36), a stringent
condition on the stability of inactivated mRNA. Indeed, the right panel of Fig-
ure 1 demonstrates that there is hardly any reduction of noise if the inactive
mRNA is unstable.

In the next section, we go beyond the mean and noise statistics (the first and
second order factorial cumulants), using the higher order cumulants to find a
special-function representation of the generating function of the joint distribution
of mRNA, imRNA, and protein copy numbers.

5 Special-function representation

Factorising the second-order polynomial in k in the denominator of (23) gives

bk = λ2
γ̃1 + β + kγ2

γ22(k + r1)(k + r2)
bk−1 for k ≥ 1, (37)

where

r1,2 =
γ1 + α+ γ̃1 + β ±

√

(γ̃1 + β − γ1 − α)2 + 4βα

2γ2
.

Note that the sequence bk in (37) can be rewritten as

bk = b0
(1 + τ)k

(1 + r1)k(1 + r2)k

(

λ2
γ2

)k

, k ≥ 1, (38)

where we set τ = (γ̃1 + β)/γ2 for the sake of simplicity and the polynomial

(x)k = x(x+ 1)(x+ 2) . . . (x+ k − 1), (x)0 = 1

represents the rising factorial, also called the Pochammer symbol.
We next find the remaining sequences ak and ck. Inserting (38) into (18)

gives

ak =
b0r1r2
τ

(τ)k
k(r1)k(r2)k

(

λ2
γ2

)k

, k ≥ 1. (39)

Similarly, substituting (38) into (22) yields

ck =
αb0
γ̃1 + β

(τ)k
(1 + r1)k(1 + r2)k

(

λ2
γ2

)k

, k ≥ 1, (40)

where c0 = αb0
γ̃1+β

, which can be obtained by combining (20) and (24).
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Having found the sequences in (17), we next return to the original variables
in (11) to obtain the generating function of the stationary distribution of active
mRNA, inactive mRNA, and protein amounts, which is given by

G(x, y, z)

= exp





∑

k≥1

ak(z − 1)k + (x− 1)
∑

k≥0

bk(z − 1)k + (y − 1)
∑

k≥0

ck(z − 1)k



 .

(41)

Equation (41) can be rewritten as

G(x, y, z) = exp

(

b0λ2
γ2

∫ z

1
2F2

(

1, 1 + τ

1 + r1, 1 + r2
;
λ2
γ2

(s− 1)

)

ds

+b0(x− 1)2F2

(

1, 1 + τ

1 + r1, 1 + r2
;
λ2
γ2

(z − 1)

)

+
αb0
γ̃1 + β

(y − 1)2F2

(

1, τ

1 + r1, 1 + r2
;
λ2
γ2

(z − 1)

))

(42)

in terms of the generalised hypergeometric functions defined by [2]

pFq

(

a1, . . . , ap
b1, . . . , bq

; z̃

)

=
∞
∑

n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

z̃n

n!
. (43)

Equation (41) provides the sought-after special function representation of the
joint generating function. In the following section, we focus on specific one-
dimensional sections of the joint generating function that give the generating
functions of the three marginal distributions.

6 Marginal distributions

In this section, we use the analytic formula (42) for the generating function to
determine the marginal active and inactive mRNA, and protein distributions.
To do so, we first set y = z = 1 in (42) and obtain

G(x) = G(x, 1, 1) = exp(b0(x− 1))

for the marginal active mRNA distribution. Similarly, setting x = z = 1 in (42)
yields the marginal inactive mRNA distribution

G(y) = G(1, y, 1) = exp

(

αb0
γ̃1 + β

(y − 1)

)

.

Finally, we set x = y = 1 in (42) and get the marginal protein generating function
G(z) as

G(z) = G(1, 1, z) = exp(ψ(z)),
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where ψ is given by

ψ(z) =
b0λ2
γ2

∫ z

1
2F2

(

1, 1 + τ

1 + r1, 1 + r2
;
λ2
γ2

(s− 1)

)

ds. (44)

In order to obtain the marginal protein distribution, we exploit its generating
function

p
·,·,n =

Dn(G(z))

n!

∣

∣

∣

∣

z=0

, (45)

where D stands for the differential operator d/dz and pst
·,·,z gives the probability

of having z protein molecules and any number of active and inactive amount of
mRNA. The first derivative of the composite function G(z) in (45) is obtained
by chain rule as

dG(z)

dz
= G(z)

dψ(z)

dz
. (46)

For the n-th derivative, we evaluate the (n − 1)th derivative of (46) according
to the Leibniz rule, thus we have

Dn(G(z)) =
n−1
∑

i=0

(

n− 1

i

)

Di(G(z))Dn−i(ψ(z)). (47)

Next, we determine the rth–r is an arbitrary positive integer–derivative of the
function ψ(z), which is given by

Dr(ψ(z)) = b0

(

λ2
γ2

)r
(r − 1)!(1 + τ)r−1

(1 + r1)r−1(1 + r2)r−1
2F2

(

r, τ + r

r1 + r, r2 + r
;
λ2
γ2

(z − 1)

)

,

(48)

in which we used the formula

ds

dz̃s
pFq

(

a1, . . . , ap
b1, . . . , bq

; z̃

)

=

∏p
i=1(ai)s

∏q
j=1(bj)s

pFq

(

a1 + s, . . . , ap + s

b1 + s, . . . , bq + s
; z̃

)

for the s-th derivative of the generalised hypergeometric function pFq. Inserting
the derivatives in (48) into (47), taking z = 0, and rearranging the resulting
equation according to (45) gives the formula for the marginal protein probabili-
ties

p
·,·,n =

b0λ2
nγ2

n−1
∑

i=0

(

λ2
γ2

)n−i−1
(1 + τ)n−i−1

(1 + r1)n−i−1(1 + r2)n−i−1

× 2F2

(

n− i, τ + n− i

n− i+ r1, n− i+ r2
;−

λ2
γ2

)

p
·,·,i,

(49)

where the first term of the series is given by

p
·,·,0 = G(0) = exp

(

−
b0λ2
γ2

∫ 1

0
2F2

(

1, 1 + τ

1 + r1, 1 + r2
;
λ2
γ2

(s− 1)

)

ds

)

. (50)
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12 Candan Çelik et al.

0 10 20 30 40 50
Protein counts n

0.00

0.02

0.04

0.06

Pr
ob

ab
ilit

y

Gillespie simulation
Exact distribution

0 10 20 30 40 50
Protein counts n

10−5

10−4

10−3

10−2

Pr
ob

ab
ilit

y

Gillespie
Exact

Fig. 2: Left: Comparison of the probability mass function (49) of the marginal
protein distribution and the probability calculated by Gillespie’s stochastic sim-
ulation algorithm (the solid line). Right: A logarithmic scale plot of the prob-
ability, out of 105 repeats, obtained by the two approaches. Parameter values:

The kinetic parameters are: λ1 = 5, α = γ1 = β = γ̃1 = γ2 = 1, λ2 = 5.

In order to calculate and compare the marginal protein probabilities (49)
with those obtained by stochastic simulations based on Gillespie’s algorithm,
we implement the recursive formula (49) in a high-level programming language,
Python, together with using its numerical computing library NumPy and plot-
ting library Matplotlib. The probabilities in (49) are calculated iteratively start-
ing from its first term given by (50) up to n = 50. In Figure 2, the right panel
compares the theoretical probability distribution (49) (blue bars) with the one
obtained using stochastic simulations (solid line) at the timepoint t = 100, while
the left panel shows the same comparison but on a logarithmic scale. The num-
ber of Gillespie iterations was set to 105 in the Python package GillesPy2 [1].
The initial number of active and inactive mRNA and protein was set to 5. A
Python routine mpmath.hyp2f2 used to calculate the generalised hypergeometric
function 2F2 in (49)–(50).

7 Conclusion

In this paper, we analysed a formulation of the two-stage model for gene expres-
sion that extends the classical version [4, 24] by an mRNA inactivation loop.
The principal results of our analysis are the characterisation of the mean and
noise behaviour, as well as the underlying probability distribution. The princi-
pal tool is the factorial cumulant generating function and the factorial cumulant
expansion.

The incorporation of the mRNA inactivation loop into the classical two-stage
model for gene expression reduces the protein noise. However, in order for the
reduction be substantial, several restrictions on the parameter rates have to be in
place. In particular, the protein cannot be too stable or unstable, but its stability
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has to be optimally chosen. The resulting optimal value of protein stability is
typically unrealistically low (lower than mRNA stability, in particular). In order
to obtain an optimal stability that is greater than mRNA stability, one has to
assume that inactivation protects the mRNA from degradation and activation
is slow. Thus, our noise analysis points towards a potential role of the mRNA
inactivation loop in gene expression noise control; at the same time, it delineates
the limits of its application.

In addition to the noise analysis, we provide a comprehensive classification
of the underlying probability distributions. Unsurprisingly, the distributions of
the active/inactive mRNA are Poissonian. On the other hand, the protein dis-
tribution is highly non-trivial, and is characterised in terms of the generalised
hypergeometric series. The characterisation is used to derive a recursive expres-
sion for the protein probability mass function. The recursive formula is found
to be consistent with kinetic Monte-Carlo simulation (by means of the Gillespie
direct method).

In summary, the paper provides a systematic mathematical analysis of an
mRNA–protein model for gene expression extended by an inactive mRNA species,
and hints at possible functional roles of mRNA inactivation loop in the control
of low copy number gene-expression noise.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440897
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bibliography

[1] Abel, J.H., Drawert, B., Hellander, A., Petzold, L.R.: Gillespy: A python
package for stochastic model building and simulation. IEEE Life Sci. Lett.
2, 35–38 (2016).

[2] Abramowitz, M., Stegun, I.A., Romer, R.H.: Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables. American
Journal of Physics 56(10), 958–958 (1988).

[3] Bartman, C.R., Hamagami, N., Keller, C.A., Giardine, B., Hardison, R.C.,
Blobel, G.A., Raj, A.: Transcriptional burst initiation and polymerase pause
release are key control points of transcriptional regulation. Molecular cell
73(3), 519–532 (2019).

[4] Bokes, P., King, J.R., Wood, A.T.A., Loose, M.: Exact and approximate
distributions of protein and mRNA levels in the low-copy regime of gene
expression. J. Math. Biol. 64(5), 829–854 (2012).

[5] Bokes, P., King, J.R., Wood, A.T.A., Loose, M.: Transcriptional bursting
diversifies the behaviour of a toggle switch: hybrid simulation of stochastic
gene expression. Bulletin of mathematical biology 75(2), 351–371 (2013).

[6] Dacheux, E., Malys, N., Meng, X., Ramachandran, V., Mendes, P., Mc-
Carthy, J.E.G.: Translation initiation events on structured eukaryotic mR-
NAs generate gene expression noise. Nucleic Acids Research 45(11), 6981–
6992 (2017).

[7] Elowitz, M.B., Levine, A.J., Siggia, E.D., Swain, P.S.: Stochastic gene ex-
pression in a single cell. Science 297(5584), 1183–1186 (2002).

[8] Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social
Sciences. Springer Series in Synergetics, Springer-Verlag, Berlin Heidelberg,
4th ed. (2009).

[9] Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions.
John Wiley & Sons, 3rd ed. (2005).

[10] Kurasov, P., Mugnolo, D., Wolf, V.: Analytic solutions for stochastic hybrid
models of gene regulatory networks. J. Math. Biol. 82(1), 1–29 (2021).

[11] Li, J., Ge, H., Zhang, Y.: Fluctuating-rate model with multiple gene states.
J. Math. Biol. 81(4), 1099–1141 (2020).

[12] Munsky, B., Neuert, G., van Oudenaarden, A.: Using gene expression noise
to understand gene regulation. Science 336(6078), 183–187 (2012).

[13] Paulsson, J.: Summing up the noise in gene networks. Nature 427(6973),
415–418 (2004).

[14] Pendar, H., Platini, T., Kulkarni, R.V.: Exact protein distributions for
stochastic models of gene expression using partitioning of Poisson processes.
Physical Review E 87(4), 042720 (2013).

[15] Raser, J.M., O’Shea, E.K.: Noise in Gene Expression: Origins, Conse-
quences, and Control. Science 309(5743), 2010–2013 (2005).

[16] Sanchez, A., Choubey, S., Kondev, J.: Regulation of noise in gene expres-
sion. Annual Review of Biophysics 42, 469–491 (2013).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440897
http://creativecommons.org/licenses/by-nc-nd/4.0/


Protein noise and distribution in a two-stage gene-expression model 15

[17] Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference
methods for stochastic biochemical kinetics–a tutorial review. Journal of
Physics A: Mathematical and Theoretical 50(9), 093001 (2017).

[18] Shahrezaei, V., Swain, P.S.: Analytical distributions for stochastic gene ex-
pression. P. Natl. Acad. Sci. USA (2008).

[19] Singh, A., Hespanha, J.P.: Approximate Moment Dynamics for Chemically
Reacting Systems. IEEE Transactions on Automatic Control 56(2), 414–
418 (2011).

[20] Singh, A., Bokes, P.: Consequences of mRNA Transport on Stochastic Vari-
ability in Protein Levels. Biophysical Journal 103(5), 1087–1096 (2012).

[21] Singh, A., Hespanha, J.P.: Stochastic hybrid systems for studying biochem-
ical processes. Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 368(1930), 4995–5011 (2010).

[22] Soltani, M., Vargas-Garcia, C.A., Singh, A.: Conditional moment closure
schemes for studying stochastic dynamics of genetic circuits. IEEE trans-
actions on biomedical circuits and systems 9(4), 518–526 (2015).

[23] Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contribu-
tions to stochasticity in gene expression. P. Natl. Acad. Sci. USA 99(20),
12795–12800 (2002).

[24] Thattai, M., Oudenaarden, A.v.: Intrinsic noise in gene regulatory networks.
P. Natl. Acad. Sci. USA 98(15), 8614–8619 (2001).

[25] Thomas, P.: Intrinsic and extrinsic noise of gene expression in lineage trees.
Scientific Reports 9(1), 474 (2019).

[26] Zhou, T., Liu, T.: Quantitative analysis of gene expression systems. Quan-
titative Biology 3(4), 168–181 (2015).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 22, 2021. ; https://doi.org/10.1101/2021.04.22.440897doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.22.440897
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Protein noise and distribution in a two-stage gene-expression model extended by an mRNA inactivation loop

