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Plants are continuously challenged by pathogens including viruses, bacteria, and fungi.
The plant immune system recognizes invading pathogens and responds by activating an
immune response.These responses occur rapidly and often involve post-translational modi-
fications (PTMs) within the proteome. Protein phosphorylation is a common and intensively
studied form of these PTMs and regulates many plant processes including plant growth,
development, and immunity. Most well-characterized pattern recognition receptors (PRRs),
including Xanthomonas resistance 21, flagellin sensitive 2, and elongation factor-Tu recep-
tor, possess intrinsic protein kinase activity and regulate downstream signaling through
phosphorylation events. Here, we focus on the phosphorylation events of plant PRRs that
play important roles in the immune response. We also discuss the role of phosphorylation
in regulating mitogen-associated protein kinase cascades and transcription factors in plant
immune signaling.
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INTRODUCTION
Proteins can undergo various post-translational modifications
(PTMs) that affect their conformation, activity, stability, and local-
ization. These PTMs, which are often reversible, are highly specific
regulators of many cellular processes (Jensen, 2004). Currently,
more than 300 types of PTMs have been described includ-
ing ubiquitination, sumoylation, sulfation, glycosylation, and
phosphorylation (Stulemeijer and Joosten, 2008; Ghelis, 2011).
Phosphorylation is one of the most predominant PTMs and one-
third of all eukaryotic proteins are thought to be phosphorylated
(Olsen et al., 2006). Protein phosphorylation in eukaryotes pre-
dominantly occurs on serine (Ser) and threonine (Thr) residues,
whereas phosphorylation on tyrosine (Tyr) residues is much less
abundant (de la Fuente van Bentem and Hirt, 2009). Based on a
recent large-scale phosphorylation study, the relative abundances
of pSer, pThr, and pTyr were estimated to be 82.7, 13.1, and
4.2% in Arabidopsis and 84.8, 12.3, and 2.9% in rice (Sugiyama
et al., 2008; Nakagami et al., 2010). Phosphorylation occurring on
unusual residues such as histidine, lysine, and arginine (Besant
and Attwood, 2005; Ciesla et al., 2011) will not be reviewed,
because their involvement in plant immunity has not yet been
elucidated.

A large body of evidence demonstrates that phosphorylation is
essential for immune responses in animals and plants. For exam-
ple, in animals, nearly 7,000 phosphorylation sites on more than
1,800 phosphoproteins were identified in response to lipopolysac-
charide activation (Weintz et al., 2010). In Arabidopsis, more than
1,170 phosphopeptides from 472 phosphoproteins were identi-
fied after treatments with flg22 or xylanase, both of which elicit
immune responses in Arabidopsis cell cultures (Benschop et al.,

2007). These results indicate that many proteins are differentially
phosphorylated and that the phosphorylation events are essential
to both animal and plant immune responses. In this review, we
focus primarily on phosphorylation events mediated by plant pat-
tern recognition receptors (PRRs) that play important roles in the
immune response.

PATTERN RECOGNITION RECEPTORS IN RICE
AND ARABIDOPSIS
Plant innate immunity is controlled by a set of defined receptors
referred to as PRRs. A more detailed description of PRRs can be
found in recent reviews (Ronald and Beutler, 2010; Schwessinger
and Ronald, 2012). In general, recognition of conserved micro-
bial signatures (also called pathogen-associated molecular pat-
terns, PAMP) by PRRs triggers mitogen-associated protein kinase
(MAPK) activation, production of reactive oxygen species (ROS),
Ca2+ burst, transcriptional reprogramming, hormone biosynthe-
sis, and deposition of callose in the cell wall (Nurnberger et al.,
2004; Ronald and Beutler, 2010; Segonzac and Zipfel, 2011).

The rice PRR, Xanthomonas resistance 21 (XA21), recognizes
a conserved sulfated peptide called AxYS22, derived from the
Xanthomonas oryzae pv. oryzae (Xoo) protein Ax21 (activator
of XA21-mediated immunity; Lee et al., 2009). In Arabidopsis,
two additional plant PRRs have been well-characterized. These
are flagellin sensitive 2 (FLS2) and elongation factor (EF)-Tu
receptor (EFR), which recognize the flg22 peptide from flag-
ellated bacteria and the EF-Tu-derived peptide elf18, respec-
tively (Gomez-Gomez and Boller, 2000; Zipfel et al., 2006).
These PRRs consist of an extracellular leucine-rich repeat (LRR)
domain, a transmembrane (TM) domain, a juxtamembrane
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(JM) domain, and an intracellular non-arginine–aspartate (non-
RD) kinase domain (Figure 1; Dardick and Ronald, 2006;
Schwessinger and Ronald, 2012).

Non-RD kinases typically carry a cysteine (C), or glycine (G)
before the conserved catalytic aspartate (D) residue. All plant
receptor kinases (RKs) characterized to date that carry the non-RD
kinase motif are involved in recognition of conserved microbial
signatures (Schwessinger and Ronald, 2012). In contrast, the larger
group of RD kinases have an arginine (R) immediately preced-
ing the conserved catalytic aspartate (D). RD kinases are known
to perform more diverse functions and are often associated with
developmental processes. RD kinases also work in partnership
with non-RD kinases to transduce immune responses. In Ara-
bidopsis, brassinosteroid insensitive 1 (BRI1)-associated kinase
1 (BAK1), an RD kinase, was initially identified as a positive
regulator of brassinosteroid responses. BAK1 forms an in vivo
ligand-dependent complex with the BRI1 receptor (Li et al., 2002;
Nam and Li, 2002). Further research revealed that BAK1 is also
involved in PRR-mediated signaling, physically interacting with
the non-RD kinases FLS2 and EFR (Chinchilla et al., 2007, 2009;
Schwessinger et al., 2011). BAK1 null mutants are compromised
in their responsiveness to several other conserved microbial signa-
tures including HrpZ (hypersensitive response and pathogenicity
Z), lipopolysaccharides, and peptidoglycans (Heese et al., 2007;
Shan et al., 2008). The rice ortholog of BAK1, XA21-associated
kinase 1 (XAK1), is required for XA21-mediated immunity (Chen
et al., unpublished). These results demonstrate that PRRs utilize
coregulatory receptors carrying RD kinases as signaling partners
to transduce the immune response.

PHOSPHORYLATIONS OF PATTERN RECOGNITION
RECEPTORS
In accordance with an essential role of phosphorylation in immune
signaling, phosphorylation of FLS2 is the first step in the FLS2-
mediated intracellular signaling events (Boller and Felix, 2009).
De novo phosphorylation of a FLS2/BAK1 complex is clearly
detectable in cells 15 s after the addition of flg22 using in vivo
labeling with short pulses of [33P]orthophosphate (Schulze et al.,
2010). Treatment with protein kinase inhibitors is able to block a
broad spectrum of early defense responses (Lecourieux et al., 2002;
Navazio et al., 2002; Kadota et al., 2004).

In animals, signal transduction is often regulated by phos-
phorylation of residues in the JM domain of RKs (Aifa et al.,
2006; Thiel and Carpenter, 2007). It is now becoming clear that
plant PRRs, at least XA21 and FLS2, are also phosphorylated
on residues in their JM domains (Figure 1; Table 1). Targeted
mutagenesis of the XA21 JM domain indicated that amino acids
Ser686, Thr688, and Ser689 are autophosphorylated and required
to maintain XA21 protein stability (Xu et al., 2006). Transgenic
rice carrying XA21 mutants with alanine replacement of these
three sites display partially compromised resistance compared to
wildtype XA21 plants (Xu et al., 2006). Thr705 in the XA21 JM
domain is also an important phosphorylation site and also affects
the autophosphorylation activity of XA21 (Chen et al., 2010b).
The XA21 mutant derivatives, XA21T705A and XA21T705E, are
both unable to transduce the XA21-mediated immune response.
The importance of the JM domain in XA21-mediated immu-
nity was also demonstrated through isolation of XA21-binding
proteins (XBs). For example, the protein phosphatase 2C XB15

FIGURE 1 | Characterized Ser/Thr residues of pattern recognition

receptors in plants. Top: Identified and proposed autophosphorylation sites
on rice XA21 and Arabidopsis FLS2 and EFR are highlighted in red. The
conserved lysine that is essential for autophosphorylation is highlighted in
green. The JM, kinase, and catalytic domains are indicated by black brackets.
Center : The domain structure of rice XA21. Bottom: Alignment of the catalytic
domains of XA21, FLS2, and EFR. The cysteine that replaces the R in these

non-RD kinases is highlighted in blue. Putative autophosphorylation sites of
FLS2 are highlighted in red. Amino acids that are conserved between XA21,
FLS2, and EFR are marked as “*”. SP, signal peptide; LRR domain, 23
leucine-rich repeats domain; TM, transmembrane domain; JM,
juxtamembrane domain; non-RD kinase, non-arginine–aspartate kinase;
XA21, rice Xanthomonas resistance 21; FLS2, Arabidopsis flagellin sensitive
2; EFR, Arabidopsis elongation factor-Tu receptor.
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Table 1 | Summary of rice and Arabidopsis PRRs.

Organism PRR PRR class Phosphorylation

site

Ligand Interacting protein Protein class

Rice XA21 LRR RK, non-RD

kinase

S6861

T6881

S6891

T7052

Ax21

(AxYS22)3
XAK14

XB35

XB106

XB157

XB248

ROX19

ROX29

LRR RK

E3 ubiquitin ligase

WRKY transcription factor

Protein phosphatase 2C

ATPase

Thiamine pyrophosphokinase

NOL1/NOP2/sun protein

CEBiP LysM NA Chitin oligosaccharide10 OsCERK111,12 LysM RK, RD kinase

Arabidopsis FLS2 LRR RK, non-RD

kinase

T86713

S87813

T104013

T107213

Flagellin

(flg22)14

BAK115

BIK116

KAPP17

BKK1, SERK1, SERK218

PUB12, PUB1319

SCD120,21

ACA822

LRR RK

Cytoplasmic kinase

Protein phosphatase 2C

LRR RK

E3 ubiquitin ligase

DENN domain

Calcium ATPase

EFR LRR RK, non-RD

kinase

NA Elongation factor-Tu (elf18)23 BAK115

BIK1, PBL116,24

BKK1, SERK1, SERK218

SCD120,21

LRR RK

Cytoplasmic kinase

LRR RK

DENN domain

NA, not available; ACA, autoinhibited Ca2+-ATPase; BIK, Botrytis-induced kinase; BKK, BAK1-like kinase; NOL/NOP, nucleolar protein; CERK, chitin elicitor receptor
kinase; PBL, PBS1-like; PUB, plant U-box; ROX, regulator of XA21; SCD, stomatal cytokinesis-defective; SERK, somatic-embryogenesis receptor-like kinase; SUN,
Sad1-UNC-84 homology.
References: 1Xu et al. (2006), 2Chen et al. (2010b), 3Lee et al. (2009), 4Chen et al., unpublished, 5Wang et al. (2006), 6Peng et al. (2008), 7Park et al. (2008), 8Chen
et al. (2010c), 9Lee et al. (2011), 10Kaku et al. (2006), 11Shimizu et al. (2010), 12Schwessinger and Ronald (2012), 13Robatzek et al. (2006), 14Chinchilla et al. (2006),
15Chinchilla et al. (2007), 16Lu et al. (2010), 17Gomez-Gomez et al. (2001), 18Roux et al. (2011), 19Lu et al. (2011), 20Korasick et al. (2010), 21Monaghan and Zipfel (2012),
22Frei Dit Frey et al. (2012), 23Zipfel et al. (2006), and 24Zhang et al. (2010).

no longer interacts with XA21S697A, indicating that Ser697 in
the JM domain is critical for interaction with XB15 (Park et al.,
2008). Autophosphorylated XA21 is dephosphorylated by XB15
in vitro, suggesting that the function of XB15 is to attenuate the
XA21-mediated innate immune response. The ATPase XB24 also
associates with the XA21 JM domain and uses ATP to promote
phosphorylation of certain Ser/Thr sites on XA21, keeping the
XA21 protein in an inactive state. Upon recognition of sulfated
Ax21, the XA21 kinase disassociates from XB24 and is activated,
triggering downstream defense responses (Chen et al., 2010c;
Figure 2).

In Arabidopsis, the FLS2 JM residue Thr867 appears to be analo-
gous to Thr705 in XA21 (Figure 1; Table 1; Chen et al., 2010b) and
is also essential for the function of FLS2 (Robatzek et al., 2006).
FLS2T867V inhibits FLS2 internalization and response to flg22,
indicating that both processes are intimately connected (Robatzek
et al., 2006). Although the FLS2T867V mutation had no effect on
flg22-binding, FLS2T867V mutant lines were insensitive to flg22
and displayed an enhanced disease susceptibility phenotype when
challenged with pathogenic Pseudomonas syringae. Microscopic
analysis of transgenic plants expressing FLS2T867V-GFP showed
normal cell membrane localization of the mutant FLS2 protein.

However, FLS2T867V endocytosis is strongly reduced after flg22
treatment, suggesting that phosphorylation of FLS2T867 plays an
important role in endocytosis. Further study is needed to deter-
mine if Thr867 of FLS2 is essential for FLS2 autophosphorylation in
Arabidopsis and if Thr705 of XA21 is critical for XA21 endocytosis
in rice.

Four FLS2 amino acids were shown to be critical to FLS2 func-
tion using site-directed mutagenesis. Seedling growth of Arabidop-
sis transgenic lines expressing FLS2T867V, FLS2T1040A, FLS2S878A,
and FLS2T1072A were inhibited by flg22 treatment. Three of these
mutations (FLS2T867V, FLS2T1040A, and FLS2T1072A) also abol-
ished flg22-induced generation of ROS (Robatzek et al., 2006). It is
not known if these sites are phosphorylated or if they are required
for kinase activity.

In all protein kinases, it is well known that a conserved lysine
residue is responsible for a phosphotransfer reaction (Carrera
et al., 1993). The importance of this lysine for kinase function has
been demonstrated for plant PRRs. For example, the Lys736 residue
inside the XA21 kinase domain is essential for XA21 autophospho-
rylation (Liu et al., 2002). However, although catalytic activity of
XA21 is essential for full resistance levels, the catalytically impaired
XA21 mutant maintains partial resistance activity (Andaya and
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FIGURE 2 | Models for pattern recognition receptor-mediated

phosphorylation pathways in Arabidopsis and rice. Left : Arabidopsis FLS2
and BAK1 associate with the membrane-associated cytoplasmic kinase
Botrytis-induced kinase 1 (BIK1) in vitro and in vivo (Lu et al., 2010). In the
resting state, Arabidopsis FLS2 interacts with BIK1. Flg22 perception induces
FLS2 and BAK1 association and phosphorylation. Activated BAK1
phosphorylates BIK1, which in turn transphosphorylates the FLS2/BAK1
complex. Phosphorylated BIK1 is released from the FLS2/BAK1 complex to
activate downstream intracellular signaling. No direct phosphorylation targets
of FLS2 have yet been identified. At least two MAPK cascades are initiated
downstream of activated FLS2, leading to the phosphorylation of the adaptor
protein MKS1 and the transcription factors, AtWRKY33 and ERF104.
Kinase-associated protein phosphatase (KAPP), a PP2C, blocks the activated
FLS2 signaling and attenuates the downstream immune response.
EFR-mediated immunity is believed to trigger the same MAPK cascades as
FLS2. Right : In the resting state, rice XA21 forms an in vivo complex with the

ATPase, XB24, and the XA21-associated kinase, XAK1. Association of XAK1
and XA21 requires the XA21 JM and kinase domains. Binding of AxYS22 to
XA21 induces dissociation of XA21 from XB24 and activates XA21, triggering
autophosphorylation. Activated XA21 likely activates a MAPK cascade that
includes MPK17-1, leading to the phosphorylation of the transcription factors,
OsWRKY33 and OsEREBP1. Recruitment of XB15 to the XA21 JM domain
and subsequent dephosphorylation of phosphorylated residue(s) attenuates
XA21 signaling. Cleavage of XA21 and translocalization of the intracellular
kinase domain to the nucleus is required for the XA21-mediated immune
response (Park and Ronald, 2012). Unlike other well-characterized PRRs, the
rice receptors CEBiP and OsCERK1 contain extracellular LysM (lysine motif)
domains in place of LRR domains (Kaku et al., 2006; Shimizu et al., 2010).
Upon chitin perception, the CEBiP and OsCERK1 complex activates MAPK
cascades. In Arabidopsis and rice, phosphorylation of transcription factors
leads to large-scale transcriptional reprogramming, including the activation of
WRKY s, PAD3, PAL, PRs, PDF1.2, and camalexin biosynthetic genes.

Ronald,2003). The partial resistance is comparable to that of trans-
genic lines expressing XA21D, an XA21 family member consisting
of an LRR domain but lacking a kinase domain, indicating that
XA21 catalytic activity is not absolutely required for function. In
Arabidopsis, a mutation in Lys898 of FLS2, which is analogous to

Lys736 in XA21, abolishes MPK3 and MPK6 activation by flg22
when transiently overexpressed in protoplasts (Asai et al., 2002).
Similarly, a kinase inactive mutation at Lys741 of EFR is unable
to confer elf18-triggered ROS burst when transiently expressed in
Nicotiana benthamiana (Schwessinger et al., 2011).
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MITOGEN-ACTIVATED PROTEIN KINASES SERVE AS
INTERNODES IN PRR-MEDIATED IMMUNITY
Mitogen-associated protein kinase cascades are important for
transmitting signals generated by receptors into cellular responses.
Multiple studies support central roles for MAPK cascades in the
immunity of Arabidopsis, parsley, tobacco, tomato, and rice (Frye
et al., 2001; Zhang and Klessig, 2001; Cardinale et al., 2002; del
Pozo et al., 2004; Pitzschke et al., 2009; Jung et al., 2010). Gener-
ally, MAP kinase kinase kinases (MAP3Ks, also called MEKKs)
are activated by RKs. MAP3Ks activate downstream MAP kinase
kinases (MAP2Ks, also called MKKs or MEKs) that in turn acti-
vate MAPKs (also called MPKs). MAPKs then target various
proteins, which include other kinases, enzymes, and transcrip-
tion factors (Khokhlatchev et al., 1998; Rodriguez et al., 2010).
Genome-sequencing of Arabidopsis and rice have revealed the
existence of approximately 60 MAP3Ks, 10 MAP2Ks, and 20
MAPKs in Arabidopsis (Group, 2002) and at least 75 MAP3Ks,
8 MAP2Ks, and 17 MAPKs in rice (Reyna and Yang, 2006;
Rao et al., 2010).

In Arabidopsis, many studies have shown that activated FLS2
triggers MAPK signaling cascades (Asai et al., 2002; Chinchilla
et al., 2007; Pitzschke et al., 2009; Figure 2). Initially, MEKK1
activates MPK4 which was previously shown to negatively reg-
ulate the defense response (Andreasson et al., 2005). At the MAPK
kinase level, flg22-induced activation of MPK3/4/6 is dependent
on MKK1/2, while MPK3 and MPK6 are also activated by MKK4
(Meszaros et al., 2006; Gao et al., 2008; Qiu et al., 2008b). Thus,
two simultaneous MAPK cascades are postulated. The first con-
sists of an unknown MEKK–MKK4/5–MPK3/6 and acts positively
on FLS2-mediated signaling. The other consists of MEKK1–
MKK1/2–MPK4 and acts negatively on the pathway (Nicaise et al.,
2009). A physical interaction between MEKK1 and FLS2 has not
been observed. Therefore, researchers are searching for signaling
intermediates that function upstream of MEKK1 that would link
FLS2 with the key MAPK cascades.

Elongation factor-Tu receptor-mediated signaling in Arabidop-
sis is thought to utilize a similar signal transduction pathway with
FLS2. In-gel assays detect a rapid activation of MAPKs in EFR-
mediated immune response after elf18 treatment (Zipfel et al.,
2006). Treatment with both flg22 and elf18 at the same time
induces the same MAPKs without an additive effect, indicating
that these kinases belong to the same cellular pool of enzymes.
These results suggest that PRR-mediated signaling induced by the
two conserved microbial signatures, elf18 and flg22, converge at a
step upstream of these kinases.

The role of MAPK cascades in PRR-mediated immunity has
also been investigated in rice. For example, OsMPK3 [previously
named OsBIMK1 (Song and Goodman, 2002)] and OsMPK17-
1 [previously named OsBWMK1 (He et al., 1999)] both interact
with XBs, suggesting that these MAP kinases are components of
the XA21-mediated signaling pathway (Seo et al., 2011). OsMPK3
suppressing plants display enhanced resistance to Xoo, suggest-
ing that it serves as negative regulator in the XA21-mediated
response. In contrast, OsMPK17-1 knockouts displayed increased
susceptibility to Xoo, suggesting a positive role in XA21-mediated
immunity. OsMPK3/6 and OsMKK4 are activated by chitin
(Kishi-Kaboshi et al., 2010; Kim et al., 2012).

MAPKs PHOSPHORYLATE TRANSCRIPTION FACTORS
Transcriptional reprogramming of immune responses in the
nucleus is regulated by transcription factors including the
WRKY and ethylene-responsive factor [ERF, also called ethylene-
responsive element binding protein (EREBP)] families (Gutterson
and Reuber, 2004; Ishihama and Yoshioka, 2012). In animals,
MAPKs are activated and then often translocate to the nucleus
where MAPKs will directly or indirectly phosphorylate transcrip-
tion factors (Harding et al., 2005; Rodriguez et al., 2010). Examples
of nuclear localization of MAPKs have been reported in Arabidop-
sis and rice (Cheong et al., 2003; Yoo et al., 2008; Koo et al., 2009).
Therefore, WRKY proteins and EREBPs constitute an important
link between pathogen-activated MAPK signaling pathways and
downstream transcriptional reprogramming.

High-density protein microarrays, employed to identify down-
stream factors of MAPKs in Arabidopsis, revealed that many
WRKYs are directly regulated by MAPKs (Popescu et al., 2009).
For example, Arabidopsis WRKY33 (AtWRKY33) is induced by
conserved microbial signatures, such as the oomycete-derived pep-
tide Pep25 (Lippok et al., 2007). Subsequent experiments showed
that AtWRKY33 is phosphorylated by MPK3/MPK6 in vivo in
response to Botrytis cinerea infection and by MPK4 at least in
vitro (Mao et al., 2011). Phosphorylation of AtWRKY33 inhibits
the growth of pathogenic fungi and bacteria by promoting the
production of camalexin, a major antimicrobial phytoalexin.
Mutation of MPK3/MPK6 phosphorylation sites in AtWRKY33
compromises its ability to complement the camalexin induction
in the AtWRKY mutant. Another transcription factor, ethylene
response factor (ERF104), is directly associated and phosphory-
lated by MPK6 but not MPK3 (Bethke et al., 2009). Perception of
flg22 via FLS2 induces disruption of the MPK6/ERF104 complex,
releasing ERF104 to its target promoters including PDF1.2 (plant
defensin 1.2).

There is an increasing body of evidence that suggests MAPKs
also regulate transcription factors indirectly. Two WRKY tran-
scription factors AtWRKY25 and AtWRKY33 interact with MPK4
substrate 1 (MKS1) in yeast, suggesting that these WRKYs reg-
ulate gene expression downstream of MPK4 (Andreasson et al.,
2005). It was later reported that AtWRKY33 also forms an in
vivo complex with MPK4 and MKS1 (Qiu et al., 2008a). How-
ever, although MKS1 is directly associated with AtWRKY33 and
is phosphorylated by MPK4, no interaction has been detected
between AtWRKY33 and MPK4 (Andreasson et al., 2005; Qiu
et al., 2008a). This suggests MPK4 and AtWRKY33 associate indi-
rectly and require the adaptor protein MKS1 for their interaction
(Qiu et al., 2008a). Following pathogen perception, the MKS1–
AtWRKY33 complex binds the phytoalexin deficient 3 (PAD3)
promoter, which promotes camalexin synthesis.

To date, there are only a few reports suggesting that MAPKs
phosphorylate rice transcription factors in response to pathogen
infection. For example, OsMPK17-1 phosphorylates OsWRKY33
in vitro, which binds to the W-box element in the OsPR1 gene
promoter (Koo et al., 2009). OsMPK17-1 also phosphorylates the
transcription factor OsEREBP1 in vitro (Cheong et al., 2003).
Transient co-expression of OsMPK17-1 and OsEREBP1 in Ara-
bidopsis protoplasts elevates the expression of the β-glucuronidase
reporter gene driven by the ethylene-responsive element GCC box
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in several basic PR gene promoters. Thus, OsMPK17-1 is involved
in rice defense signal transduction and is responsible for the direct
phosphorylation of a transcription factor(s).

Although a role for MAPK-mediated phosphorylation of
WRKYs has not been demonstrated for XA21-mediated immu-
nity, several WRKYs interact directly with XA21 in yeast. For
example, OsWRKY62, identified as XB10 in a yeast two-hybrid
screen using the XA21 intracellular domain as bait, interacts
with the XA21 kinase domain in rice protoplasts (Park and
Ronald, 2012) and negatively regulates XA21-mediated immu-
nity (Peng et al., 2008). Transgenic rice plants overexpressing
OsWRKY62 are compromised in XA21-mediated immunity and
are impaired in the activation the defense-related genes OsPR1
and OsPR10 (Peng et al., 2008). Additionally, OsWRKY76 was
recently shown to negatively regulate XA21-mediated immu-
nity when challenged with Xoo (Seo et al., 2011). Although
these studies indicate a functional link between OsWRKYs and
XA21-mediated immunity, XA21 has not been shown to directly
phosphorylate the WRKYs, thus the role of phosphorylation is
unknown.

CONCLUSION AND PERSPECTIVES
Recognition of conserved microbial signatures by PRRs is critical
to plant survival. PRR activation induces rapid autophosphoryla-
tion, leading to phosphorylation of many other proteins. Despite
the importance of phosphorylation in PRR-mediated immunity,
only a few phosphorylation sites of PRRs have been identified.
Those phosphorylation sites were initially found by targeted muta-
genesis. Although recent advances in phosphoproteomic analyses
using mass spectrometry have greatly expanded our capability
to identify phosphopeptides (Benschop et al., 2007; Nuhse et al.,
2007; Stulemeijer and Joosten, 2008; Kersten et al., 2009), this
approach has not yet lead to the identification of additional in
vivo PRR phosphosites. This lack of success may be due to the
observed rapid endocytosis and/or degradation of PRRs follow-
ing perception of conserved microbial signatures (Robatzek et al.,
2006; Robatzek, 2007; Chen et al., 2010a), which likely serves as a

barrier to identifying PRR phosphorylation sites using mass spec-
trometry. Progress in mass spectrometric technology to enhance
sensitivity of detection of low abundance phosphopeptides is
needed to overcome this limitation. Once identified, such sites can
be confirmed using independent techniques such as immunoblot-
ting with anti-phospho-specific antibodies and in vivo genetic
studies.

In addition to slow progress in identifying residues phospho-
rylated on the PRR itself, other proteins that could serve as targets
of PRR phosphorylation have not yet been identified. There-
fore, there is still a gap in our understanding of how precisely
PRRs are able to initiate early signaling events such as activa-
tion of MAPKs, a rapid calcium influx and an oxidative burst.
To answer these fundamental questions, it will be essential to
identify such target proteins and to determine how these proteins
regulate downstream events. Phosphoproteomic comparison is
one method that can identify proteins that become phosphory-
lated during PRR-mediated immunity. For example, quantitative
phosphoproteomic analyses performed on flg22- or xylanase-
treated Arabidopsis cells successfully revealed several differentially
phosphorylated proteins such as auxin efflux carriers and respira-
tory burst oxidase protein D (Nuhse et al., 2007; Stulemeijer and
Joosten, 2008).

Another important goal is to identify the substrates of MAPKs
that are phosphorylated during PRR-mediated immunity. To date,
only a few transcription factors have been shown to be phosphory-
lated by MAPKs during PRR-mediated immune responses. Studies
utilizing protein microarrays, protein complex immunoprecipita-
tions, and phosphoproteomic analyses will continue to uncover
additional transcription factors and other potential MAPK tar-
gets, further contributing to our understanding of the role of
phosphorylation in plant immune responses.
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