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Abstract 

Background: Any two unrelated people differ by about 20,000 missense mutations 
(also referred to as SAVs: Single Amino acid Variants or missense SNV). Many SAVs have 
been predicted to strongly affect molecular protein function. Common SAVs (> 5% 
of population) were predicted to have, on average, more effect on molecular protein 
function than rare SAVs (< 1% of population). We hypothesized that the prevalence 
of effect in common over rare SAVs might partially be caused by common SAVs more 
often occurring at interfaces of proteins with other proteins, DNA, or RNA, thereby 
creating subgroup-specific phenotypes. We analyzed SAVs from 60,706 people through 
the lens of two prediction methods, one (SNAP2) predicting the effects of SAVs on 
molecular protein function, the other (ProNA2020) predicting residues in DNA-, RNA- 
and protein-binding interfaces.

Results: Three results stood out. Firstly, SAVs predicted to occur at binding inter-
faces were predicted to more likely affect molecular function than those predicted as 
not binding (p value < 2.2 × 10–16). Secondly, for SAVs predicted to occur at binding 
interfaces, common SAVs were predicted more strongly with effect on protein function 
than rare SAVs (p value < 2.2 × 10–16). Restriction to SAVs with experimental annota-
tions confirmed all results, although the resulting subsets were too small to establish 
statistical significance for any result. Thirdly, the fraction of SAVs predicted at binding 
interfaces differed significantly between tissues, e.g. urinary bladder tissue was found 
abundant in SAVs predicted at protein-binding interfaces, and reproductive tissues 
(ovary, testis, vagina, seminal vesicle and endometrium) in SAVs predicted at DNA-
binding interfaces.

Conclusions: Overall, the results suggested that residues at protein-, DNA-, and RNA-
binding interfaces contributed toward predicting that common SAVs more likely affect 
molecular function than rare SAVs.
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Background

Focus on SAVs, binding proteins/DNA/RNA, and predictions

Single nucleotide variants (SNVs; prior to modern sequencing referred to as SNPs) 

constitute the most frequent form of human genetic variation [1]. Non-synonymous or 

missense SNVs (also referred to as missense SNVs, nsSNVs, nsSNPs, or SAAVs) are one 

of the best-studied groups of variants in human diseases. �ese are SNVs altering the 

amino acid sequence of the encoded protein, now often termed Single Amino acid Vari-

ant (SAV) or missense variant [2]. �e vast amount of known unique SAVs are rare, i.e. 

observed in fewer than 1% of the population; only about 0.5% of the unique SAVs are 

common, i.e. observed in over 5% of the population [1]. For simplicity, we referred to the 

subset of the residues in a protein interface that bind to either DNA, RNA, or other pro-

teins as to ProNA-binding residues.

Experimental ProNA-binding annotations exist for few human proteins (Table 1). For 

instance, only about 1% of all SAVs considered in this study had PDB-based annotations 

(Method [3]) about ProNA-binding (Table 1). Although this number has increased sub-

stantially since our original analysis [1], 1% was still too small for a representative analy-

sis, in particular given that only 18 residue positions were observed at ProNA-binding 

Table 1 Data sets with experimental annotations

Map of the 6,698,149 SAVs from the ExAC representing ~ 60 k individuals [5] onto high resolution (≤ 2.5 Å) structures from 
the PDB [3] to check how many SAVs are experimentally annotated at binding interfaces (labelled as interface in the 2nd 
column: closest residue atom within < 6 Å to substrate atom), with the three substrates being other proteins, DNA and RNA. 
PDB indicated usage of additional experimental data (Methods; all residues NOT explicitly annotated in a particular protein 
as binding were considered as “other”; in contrast to the ProNA2020 prediction method, this does not imply non-binding). 
The row labelled SUM ProNA binding summed over all annotations in each protein (due to possible double-binding, e.g. to 
DNA and RNA, the sum can be smaller than the parts). Overall 9212 SAVs (0.14%; 18 + 9194) had at least one positive ProNA-
binding annotation in the PDB, and for another 63,230 SAVs (0.94%) there was some negative ProNA-binding annotation 
(the macro-molecule binding was in that experiment not found to bind at that position; note the total over all positive and 
negative ProNA-binding summed to 72,442 SAVs). The last row “E�ect annotation” mapped variants from three databases 
annotating variant e�ects, namely OMIM [19], HumVar [20], and PMD [21] onto ExAC SAVs. For instance, 149 common SAVs 
and 7198 rare occurred at a residue position with an experimental e�ect (sum 0.11% of all SAVs). The total over both types of 
experimental annotations (binding/e�ect) provided the upper limit for SAVs with an experimental annotation about either 
binding or e�ect or both, namely 79,397 SAVs (1.2%): 404 of these for common SAVs and 78,993 for rare SAVs (2nd to last 
row labelled SUM experimental)

Type of annotation Database Common SAVs 
(LDAF > 5%)

Rare SAVs 
(LDAV < 1%)

Protein–protein binding

 Interface PDB 16 7710

 Other PDB 219 56,312

Protein-DNA binding

 Interface PDB 0 1182

 Other PDB 22 5706

Protein-RNA binding

 Interface PDB 2 420

 Other PDB 9 2488

SUM ProNA binding

 Interface PDB 18 9194

 Other PDB 247 62,983

Effect OMIM|HumVar|PMD 149 7198

SUM experimental PDB| OMIM|HumVar|PMD 404 78,993

Variant (SAV) ExAC 34,309 6,639,624
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interfaces with common SAVs (18 of 34,309, i.e. 0.05%).�erefore, results had to be based 

on a prediction method, namely ProNA2020, predicting DNA- RNA- and protein–pro-

tein binding interface residues [4]. �e same rationale held with respect to the predic-

tion of effects upon molecular protein function (Table 1) [5].

Common SAVs more likely than rare SAVs to a�ect molecular function

SAVs can impact protein function in many ways. Molecular mechanisms altering func-

tion include direct changes of binding sites [6, 7], or indirect impacts upon protein 

stability [7–10]. Genes and their products, the proteins, function as components of com-

plex networks of macromolecules through biochemical or physical interactions [11]. 

Binding residues are important for disease pathology, e.g. 20% of the mutations on the 

surface of known cancer genes affect the protein–protein interaction (PPI) interface, for 

both tumor suppressors and oncogenes [12]. For a small subset of SAVs in regions for 

which some experimental annotations about protein function exist, it has been shown 

that SAVs are less often observed in residues important for function than expected by 

chance [7]. Most residues important for function considered in that study [7] related 

to the binding of large molecules (DNA, RNA, and protein). �is suggested a selection 

against observing SAVs in ProNA-binding residues.

Predicting the effect of SAVs on molecular protein function for the ExAC data set of 

60,706 exosomes [5], it has been shown that a higher fraction of all common than of all 

rare SAVs affect molecular protein function [1]. One possible explanation is that pro-

teins function differently in sub-populations; an example for this are G-coupled recep-

tors (GPCR) [13] (in fact, all proteins with seven transmembrane helices such as GPCRs 

stand out in the difference of effect between common and rare SAVs [14]).

Here we hypothesized that the higher fraction of common than rare SAVs with effect 

on molecular protein functions might be explained by residues at the interfaces that bind 

DNA, RNA, or proteins (collectively referred to as ProNA-binding residues). �e ration-

ale is the follow-up assumption that differences in binding might lead to different phe-

notypes in sub-populations, i.e. all those who have the variant have specifically different 

binding. We tried to falsify our hypothesis using SAVs with experimental annotations 

but had too little data to even distinguish between common and rare SAVs (Table  1). 

�erefore, we included all known 6,699,150 SAVs from 60,706 people [5]. For all SAVs 

two prediction methods were applied: SNAP2 [15, 16] predicted the effect of each SAV 

on molecular protein function, and ProNA2020 [4] predicted whether or not that SAV is 

in a ProNA-binding interface.

For each SAV, SNAP2 predicts a score scaled between − 100 (strongly predicted as 

neutral) and + 100 (strongly predicted as effect). �e higher the absolute value of the 

score, the more reliable the prediction, i.e. the more likely to be correct. Positive values 

also partially correlate with the magnitude of an effect [17, 18], i.e. stronger effects are 

predicted more reliably. Typically, we observed differences in the distributions of com-

mon versus rare, binding versus non-binding, and strongly predicted with effect/neutral 

(and all combinations of those three alternatives). However, for simplicity, we frequently 

shortened the results to statements such as “common binding SAVs were predicted with 

higher effect than rare binding SAVs”, to summarize the more technically correct but 

more complex observation that “the fraction of all common SAVs observed at residue 
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positions that were predicted by ProNA2020 as binding, for which the SNAP2-score 

exceeded a certain threshold over all common SAVs was higher than the fraction of all 

rare SAVs observed at residue positions that were predicted by ProNA2020 as binding, 

for which the SNAP2-score exceeded a certain threshold over all rare SAVs”. Although 

such shortcuts were essential for the readability of the manuscript, we tried to remain 

more verbose wherever deemed possible.

Results

ProNA-binding ratios similar for residues with and without known SAVs

ProNA2020 predicted residues in the binding interface of the query protein to DNA, 

RNA, or other proteins for all 6,698,149 SAVs (Single Amino acid Variants; or mis-

sense SNVs) from 60,706 individuals [5] with SNAP2 predictions available for their 

impact upon molecular function [1]. For simplicity, we referred to all those residues as 

to ProNA-binding residues. �e 6.7  M SAVs hit 5,561,332 different residues in 64,301 

human proteins; 75% of the residues in the same proteins were not covered by any 

observed SAV. All SAVs observed in fewer than one percent of the 60.7 K people were 

considered as rare (< 1%); common SAVs were observed in over five percent of the popu-

lation (> 5%); all SAVs in between these two extremes were ignored to avoid problems 

with choosing a particular threshold in the distinction of common/rare. Overall, about 

22.5 ± 0.1% of the SAVs hit ProNA2020 predicted binding interface residues (± one 

standard error; protein-binding: 9.6 ± 0.1%, DNA-binding: 12.4 ± 0.1%, RNA-binding: 

8.0 ± 0.1%). �is low standard error resulted from bootstrapping on a data set with over 

one million points suggesting that any sufficiently large subset would give the same 

result (at 95% confidence interval: between 22.3% and 22.7%). In the same set of pro-

teins, overall 75% of the residues were not covered by observed SAVs. For these residues 

without observed SAVs, the fraction predicted as ProNA-binding was similar, namely 

22.6 ± 0.1%.

Mapping ExAC SAVs to proteins of known experimental 3D structure from the PDB 

(Table 1) revealed that 72,442 common or rare SAVs could be mapped to structures with 

ProNA-binding. Of these, 9212 SAVs had positive evidence for binding, while for 63,230 

the particular PDB structure suggested no binding to the molecule (protein, DNA, or 

RNA) tested. Since the absence of evidence for binding under particular conditions 

(optimal for binding the molecule shown bound in the structure) is not evidence for the 

absence of binding to any molecular under any condition, we could only consider the 

9212 SAVs as explicit experimental evidence. �ese constituted 0.14% of all SAVs (0.05% 

for common, and 0.14% for rare SAVs). For 7198 (0.11%) SAVs experimental effect anno-

tations were available from OMIM [19], HumVar [20], or PMD [21] (Table 1; common: 

0.43%; rare: 0.11%).

SAVs binding residues under-represented

SAVs predicted to be at ProNA-binding interfaces differed from randomly chosen posi-

tions (technically sampled from all residues in the proteins with observed SAVs). Com-

putation of Fisher’s exact test showed that SAVs were observed less than expected at 

ProNA2020-predicted binding interface residues (odds ratio = 0.98, p value = 2.2 × 10–16,  

Additional File 1: Table  S2, Supporting Online Material, SOM). �is trend was 
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underscored by tests distinguishing different types of SAVs (common/rare) and different 

binding classes (protein-, DNA-, RNA-binding). Both common and rare SAVs were pre-

dicted less often than expected on ProNA-binding interface residues (Fig. 1a, Additional 

File 1: Fig. S1, p  valuecommon = 5.5 × 10−11and p  valuerare = 2.2 × 10–16; Additional File 1: 

Fig. 1 Macro-molecular binding SAVs. All results were based on the ExAC data from 60 k individuals [5]; 
SNAP2 [15, 16] predicted effects on molecular protein function, and ProNA2020 [4] predicted residues at 
ProNA-binding interfaces (binding either other proteins, DNA, or RNA). (a demonstrates the degree to which 
SAVs (Single Amino acid Variants) are predicted more or less often than expected by chance (Methods) 
in ProNA-binding interfaces by the method ProNA2020 [4]. In particular, common SAVs (observed in > 5% 
of population) and rare SAVs (observed in < 1% of population) were significantly under-represented in 
ProNA-binding. The lines below and above the bars for the odds ratios marked the 95% confidence intervals 
taken from Fisher’s exact test computed on the number of SAVs predicted as binding/non-binding in each 
class (common or rare; note the error bar for the rare SAVs is so small that it appears as a single horizontal 
line). b Zooms into the subset of all SAVs predicted as ProNA-binding. The y-axis gives the cumulative 
percentage of SAVs predicted above a certain SNAP2-score (x-axis) [15, 16] predicted to be in ProNA-binding 
interfaces. This score reflects the strength of predicting SAVs to affect molecular protein function (+ 100 
strongest prediction of effect) or to be neutral (− 100 strongest prediction of neutrality). Random (gray 
line) was based on the average over all possible 19-non-native mutations computed in silico (Method). 
Computing Kolmogorov–Smirnov p values between all pairs of lines revealed that the differences between 
common and all others were extremely significant (common vs. rare: p value < 2.2 × 10–16 and common 
vs. random: p value < 2.7 × 10–15). The p value between random and rare was not quite significant (p 
value < 2 × 10–2, Additional File 1: Table S1; c, d distinguish distributions between SAVs at residue positions 
predicted in ProNA-binding interfaces (dubbed binding) and non-binding (dubbed other) for different 
SNAP2-score thresholds. While c shows the raw distribution, c highlighted the cumulative distribution (as 
in b). The differences between all pairwise curves were statistically significant (Additional File 1: Table S1). 
For instance, for very reliable effect predictions with SNAP2-scores ≥ 50 (dashed vertical lines), about 40% of 
all common SAVs were predicted to affect molecular function and to be in a residue predicted or observed 
(ProNA2020 [4] uses whatever is available, either a homology-based inference from experimental information 
or machine learning prediction) to be in an interface binding a large molecule (protein, DNA, or RNA)
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Table S3, note this defined the limit of the calculation using the software environment 

R [22]). �e same trend held for each of the type of ProNA-binding, namely for protein, 

DNA, and RNA binding (Additional File 1: Table S3).

All SAVs existing in the human population might sample almost all human residues. 

In particular rare SAVs may ultimately sample all positions comprehensively. If so, rare 

SAVs should be observed in ProNA-binding interfaces exactly as expected by chance. 

Our results did not contradict this assumption. Although given the data set size, an odds 

ratio of 0.98 was distinctly below 1, this might be explained by the fact that not all SAVs 

can be observed in healthy individuals. ExAC sampled only people who survived to the 

point of becoming sequenced, i.e. SAVs so deleterious that their cells would not repli-

cate were already selected against. While the direction of this effect (< 1) is evident, its 

magnitude cannot be measured by our analysis, i.e. there might be some other effect to 

explain the difference between 0.98 and 1. However, the ProNA-binding positions pre-

dicted with the highest SNAP2-scores were clearly avoided by rare SAVs (black curve 

for random binding shifted to right of blue curve for rare binding in Fig. 1c and upwards 

in Fig.  1d). �e fact that common SAVs were substantially less likely to be at ProNA-

binding interfaces than expected by chance (odds ratio 0.92, Fig. 1a) was again extremely 

significant, as was the difference between rare and common, the latter appeared selected 

for avoiding ProNA-binding.

SAVs with higher e�ect prediction scores more likely to bind

SNAP2 [15, 16] predicts the impact of SAVs upon molecular protein function. SNAP2-

scores range from + 100 implying strong predictions of effect on molecular protein 

function and correlating with strong effects [17] to SNAP2-scores = − 100 implying 

strong predictions of neutrality/no effect on molecular protein function. For increasing 

SNAP2-scores, the fractions of the residues predicted to be at ProNA-binding interface 

increased (Fig. 1b, Additional File 1: Table S1). �e curve for rare SAVs remained above 

the random background, while that for common SAVs remained below random (Fig. 1b). 

For instance, at SNAP2-scores ≥ 50 (highly reliable effect prediction/strong effect), 34% 

of the rare SAVs were predicted to be at ProNA-binding interface residues. For these 

rare SAVs with strongly predicted effect, all types of ProNA-binding were highly over-

represented with respect to random (Odds ratios clearly above 1 with Fisher’s exact 

test p values consistently extremely significant, Additional File 1: Table S4). �e situa-

tion was largely inverted for common SAVs: all odds ratios for common SAVs (ProNA, 

protein, DNA, and RNA) were statistically significantly below 1 (implying that binding 

predictions were under-represented with respect to chance) and 28% of the common 

SAVs were predicted at ProNA-binding interface residues for SNAP2-scores ≥ 50 (Addi-

tional File 1: Table S4). �ese two results indicated that, on the one hand, the SNAP2-

score distributions differed substantially (and statistically significantly, Additional File 

1: Table S1) between binding SAVs and non-binding SAVs for both common and rare 

SAVs (Fig. 1c, Additional File 1: Table S1). On the other hand, the difference in the distri-

butions between binding and non-binding was smaller for common than for rare SAVs 

(Fig. 1b, rare curve above common curve). Over half of all SAVs predicted with very high 

SNAP2-scores (≥ 95) were predicted by ProNA2020 as binding (Fig.  1b: rare SAVs in 

blue dominate the count). We also confirmed the above results for the subset of all SAVs 
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with very strong ProNA2020 predictions for binding (|ProNA2020-scores|≥ 50, Addi-

tional File 1: Fig. S1) �is finding was consistent with results suggesting cancer SAVs to 

frequently hit protein-binding sites leading to loss-of function [12].

ProNA-binding SAVs stronger predicted with e�ect than non-binding

Next we analyzed the distribution of SAVs according to the strength of the effect predic-

tion (SNAP2-score). Firstly, for residues predicted at ProNA-binding interfaces, the aver-

age over all possible SAVs (representing random; 19-non-native), largely, had the highest 

SNAP2-scores (Fig.  1d dark line highest except for SNAP2-scores above 65); the 2nd 

highest was the curve for common binding SAVs (Fig. 1d). �e difference between the 

two curves was statistically highly significant (Kolmogorov–Smirnov p value < 2.2 × 10–16,  

Additional File 1: Table S1). SAVs so deadly that they kill the carrier before birth are a 

subset of 19-non-native, but are removed from all ExAC SAVs. �us, the random curves 

including such disruptive SAVs are expected to be shifted to the right for the distribu-

tion (Fig.  1c) and upward for the cumulative distribution (Fig.  1d). Secondly, we con-

firmed earlier findings [1] that common SAVs were predicted to affect molecular protein 

function more often than rare SAVs (Fig. 1d: common_binding higher than rare_bind-

ing and common_non-binding higher than rare_non-binding; Kolmogorov–Smirnov p 

value < 2.2 × 10–16 for both common and rare SAVs, Additional File 1: Table  S1). Lim-

iting the analysis to residues predicted as ProNA-binding with highest reliability, i.e. 

those predicted more strongly (|ProNA2020-scores|≥ 50), confirmed the same tendency 

(Additional File 1: Fig. S1D).

Both for common and rare SAVs, SAVs at binding interfaces were predicted with 

stronger effect scores than non-binding SAVs (Fig. 1d: red above magenta and blue above 

cyan; Kolmogorov–Smirnov p value < 2.2 × 10–16 for common and rare SAVs, Additional 

File 1: Table S1). Although most common SAVs were predicted not at binding interfaces 

(Fig. 1d: magenta), the common SAVs predicted as ProNA-binding were predicted with 

higher SNAP2-scores than rare SAVs predicted as ProNA-binding (Fig. 1d: red higher 

than blue for SNAP2-scores > − 25; Kolmogorov–Smirnov p value < 2.2 × 10–16, Addi-

tional File 1: Table S1). Only rare non-binding SAVs were predicted with levels of effect 

below that for random SAVs (Fig. 1d, only cyan below green, Additional File 1: Table S1). 

�e combination of the findings that SAVs were predicted to be under-represented in 

binding interface residues (Fig.  1a) and that SAVs at binding interfaces were strongly 

predicted to have effect (Fig.  1d) both confirmed one aspect of our initial hypothesis: 

SAVs avoid ProNA-binding interface residues and when they hit those, they are likely to 

affect molecular protein function.

Common non-binding SAVs were predicted, on average, with higher SNAP2-scores 

(more likely as effect) than rare non-binding SAVs (Fig.  1d; statistical significance of 

difference: Kolmogorov–Smirnov p value < 2.2 × 10–16, Additional File 1: Table S1) and 

common non-binding SAVs reached effect predictions close to random SAVs (Fig. 1d: 

gray vs. magenta). Some of those common non-binding SAVs might be crucial for bind-

ing small molecules, i.e. be involved in signaling, or they might be related to protein 

stability. In fact, I-Mutant2 [10] predicted the fraction of stability-affecting SAV to be 

almost the same between residues predicted by ProNA2020 as binding (84.8%) and non-

binding (84.6%).
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Common SAVs predicted with effect but not predicted at ProNA-binding interfaces 

explained why rare SAVs remained below common SAVs for increasing SNAP2-scores 

(Fig. 1b: red below blue): rare binding SAVs tended to be predicted with higher SNAP2-

scores than rare non-binding, leading to a big difference in the SNAP2-distributions for 

rare SAVs (Fig. 1c: blue and cyan differ; Fig. 1b: cyan highest, Additional File 1: Table S1). 

In contrast, common SAVs tend to have stronger effects, binding or not binding, leading 

to a small difference in the SNAP2-curves (Fig. 1c: red and magenta similar, Fig. 1b: red 

curve lowest—essentially the quotient between red and magenta in Fig. 1c, Additional 

File 1: Table S1). �e same observation explained the under-representation of binding 

SAVs for very strong predictions (SNAP2-scores ≥ 50) reflected by Fisher’s exact tests 

(Additional File 1: Table S4).

�e trend that the strongest effect predictions were obtained for ProNA-binding resi-

dues, was most pronounced for protein binding (Additional File 1: Fig. S3). Of the SAVs 

occurring at multiple macro-molecules binding interfaces, those SAVs at protein, DNA 

and RNA binding interfaces, were predicted with the strongest SNAP2-scores (Addi-

tional File 1: Fig. S3, blue line, Kolmogorov–Smirnov p value < 2.2 × 10–16).

Validation of approach through experimental annotations

Our basic hypothesis was that SAVs at ProNA-binding interfaces more likely affect 

molecular protein function than those of non-binding residues. As proof of principle, we 

analyzed experimental annotations using proteins for which high-resolution structures 

of macro-molecule binding interfaces were available from the PDB [3] and superposed 

SAVs affecting molecular function so strongly that they cause disease (OMIM [19]). 

First, we mapped the SAVs from ExAC [5] upon proteins with experimentally known 3D 

structures [3] and experimentally known ProNA-binding sites. �is procedure matched 

about 70 K SAVs (~ 1%, Table 1). For those, the fraction of ProNA-binding interface resi-

dues with predicted effect was higher than that for non-binding. Furthermore, higher 

fractions of common than of rare SAVs were predicted with effect, and common SAVs at 

binding interfaces were predicted, on average, with higher SNAP2-scores (three panels 

in the last row of Additional File 1: Fig. S4). �e high difference between the SNAP2-

score distributions of rare binding/non-binding SAVs was confirmed for the subset of 

SAVs with PDB annotations (first panels in the first and last row of Additional File 1: 

Fig. S4). �is implied that the 1% of the data with high-resolution 3D information about 

ProNA-binding interfaces completely confirmed the trends cast by the ProNA2020 pre-

diction method (Additional File 1: Fig. S4), but they were not statistically significant due 

to the small amount of data (Additional File 1: Table S5). For SAVs with experimental 

effect annotations (from OMIM, HumVar and PMD), rare binding SAVs were over-

represented, while common binding SAVs were under-represented (Additional File 1: 

Table S6) confirming the finding for predictions with SNAP2-scores ≥ 50 (Fig. 1b, Addi-

tional File 1: Fig S2).

Amongst the ExAC SAVs with experimental annotations, only 392 SAVs had experi-

mental annotations for both binding and effect (of about 6.7 m, i.e. < 0.006%); none of 

those fell into the class common + binding. For rare SAVs, 25.4% were at protein-, 13.3% 

RNA-, and 29.8% DNA-binding interfaces. All these fractions exceeded those obtained 

for ProNA2020 and SNAP2 (at SNAP-score ≥ 50; three panels in first row of Additional 
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File 1: Fig S2: protein binding:17%, RNA binding: 12% and DNA binding:17.9%). �e 

crystal structure of BRAF kinase domain in complex with MEK1 (PDB identifier 4MNF 

[23]) gave an example, how to imagine such an over-representation of binding residues 

(Fig. 2): almost 86% of the SAVs with very strong effect predictions were observed on 

binding interface residues.

Overall, the experimental annotations suggested the same conclusions as the pre-

diction methods SNAP2 (for effect) and ProNA2020 (for binding). However, due to 

the small data size, none of those results were statistically significant (Additional File 

1: Tables S5, S6), and the distinction between rare and common SAVs could not be 

resolved, at all. Although this cannot prove the validity of our approach, even slightly 

differing results could have been taken as proof-of-principle given the tiny overlaps 

(e.g. fraction of ExAC SAVs with experimental annotations of binding interface and 

effect < 0.6*10–4, i.e. fewer than one in ten thousands).

SAVs at binding interfaces di�er substantially between tissue types

Suspecting that the type of binding might differ between tissues, we investigated all 

proteins expressed differentially according to the Human Protein Atlas (HPA [24]). For 

proof-of-principle, we focused on SAVs strongly predicted to affect molecular function 

(SNAP2 > 50). For these, the distribution of SAVs predicted by ProNA2020 at binding 

interfaces, differed substantially between common and rare SAVs for all three binding 

classes (Fig. 3). For instance, rare SAVs predicted with strong effect occurred more often 

at predicted binding interfaces than expected by chance in leukocytes which play an 

Fig. 2 SAVs in ProNA-binding interfaces predicted strongly with effect. The crystal structure of the BRAF 
kinase domain in complex with MEK1 (PDB identifier 4MNF [36]) illustrated a typical example for residues 
predicted to bind with known and predicted effect. Residues in magenta-colored dots were predicted as 
ProNA-binding; residues in gray and black spheres marked effect variants (SAVs/missense SNVs/missense 
mutations) annotated by experiments (from either OMIM [21], HumVar [22], or PMD [23]); the gray/black 
shading was proportional to the SNAP2-score (prediction of effect), from white (SNAP2-score around 0, 
i.e. low likelihood of effect) to black (SNAP2-score > 90, i.e. high likelihood of effect predicted). For this 
representative example, 86% of the SAVs predicted strongly to have effect (SNAP2-score > 90) were predicted 
on binding residues, i.e. were covered by magenta-colored dots
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import role for the immune response. An intact immune response includes contribu-

tions from many subsets of leukocytes [25], e.g. from the B-cells that produce immuno-

globulins (Ig) also known as antibodies. �e N-termini (amino termini) of the heavy and 

light chains of vary between lg molecules, this variability is crucial for binding bacterial 

and viral pathogens. In other words, we expect to observe many binding SAVs in these 

regions to differ in function to adopt to many pathogens, and many of those differences 

would be rare as they differ between people.

Common SAVs predicted at DNA binding interfaces were enriched in skin, skeletal 

muscle, thyroid gland, leukocytes and testes. On the other hand, rare SAVs predicted at 

DNA binding interfaces were over-represented in the tissues of the reproductive system 

(ovaries, testes, vagina, seminal vesicle and endometrium). �e latter might be explained 

by those tissues being more active in gene expression regulation [26, 27]. Common 

SAVs predicted at RNA binding interfaces were enriched in leukocytes, vagina, skin, 

and adrenal gland, while rare SAVs predicted at RNA binding interfaces were not over-

represented in any tissue. With respect to the respiratory system, we found rare protein 

binding SAVs were slightly over-represented in lung.

Fig. 3 Predicted ProNA-binding interface SAVs differed between human tissues. The sketches capture to 
which extent SAVs at residues predicted in the interfaces of protein-binding (left column), DNA-binding 
(middle column), or RNA-binding (right column) were over-represented in particular human tissue types 
(taken from HPA, the Human Protein Atlas [24]). Top row: common SAVs (> 5% of population); bottom 
row: rare SAVs (< 1% of population; note non-extremes between 1 and 5% were ignored). The values 
in each tissue were calculated as:  (PERCtissue-PERCoverall)/PERCoverall (Methods). Values around 0 (white) 
represented observations as expected by chance, values < 0 (yellow) indicated under-representation, and 
values > 0 (red) over-representation. For instance, common SAVs predicted in DNA-binding interfaces were 
under-represented in lung tissue, but over-represented in the skin
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Overall, both common and rare effect SAVs predicted at macro-molecular binding inter-

faces were under-represented in most of internal organs such as stomach, colon and lung 

but over-represented in skin and leukocytes. Only SAVs at nucleotide binding (DNA or 

RNA) interfaces were over-represented in reproductive organs. Protein binding SAVs were 

over-represented in urinary bladder and brain.

Discussion

Approach limited by privacy concerns preventing access to individual genomes

Our approach had two major limitations. Due to privacy and data security the ExAC data 

does not allow the analysis for an individual. �is has two implications: firstly, we cannot 

investigate compensatory mutations [28–32], i.e. instances in which two effect SAVs cancel 

each other out. Secondly, we cannot analyze anything such as the sum over all SAVs in a 

binding site. Given that we needed to base our analysis on sequence-based predictions to 

ascertain results of statistical significance and that SNAP2 predictions fail to identify bind-

ing sites and evolutionary couplings [33] for almost 99% of the data, these limitations did 

not matter for our findings. However, if we could drop privacy concerns and if we had more 

3D structures, it seems almost evident by definition that random changes—as rare SAVs are 

expected to be—are less likely to be evolutionarily coupled than common SAVs that have 

been selected for in evolution. �us dropping the limitations would most likely increase 

the evidence that some fraction of the difference in effect on molecular protein function 

between common and rare SAVs was explained by ProNA-binding.

Conclusion

A higher fraction of common SAVs (single amino acid/missense variants observed 

in > 5% of the population) has been predicted by the method SNAP2 [16] to affect molec-

ular protein function than that of rare SAVs (< 1%) [1]. We hypothesized that this might 

be caused by common SAVs affecting interfaces binding other proteins, DNA, or RNA 

(dubbed ProNA-binding) in order to change some aspects of molecular protein function 

in a sub-population specific manner. Using predictions from the method ProNA2020 

that combined machine learning and homology-based inference [4], we tested our 

hypothesis. Overall, SAVs were less likely to occur at predicted ProNA-binding interfaces 

than expected by chance (Fig. 1a: odds ratios < 1 with statistically extremely significant p 

values, Additional File 1: Tables S2–S4), common even less so than rare SAVs (Fig. 1a, 

b). �e under-representation of common SAVs in ProNA-binding was even more pro-

nounced for the subset of most reliably predicted binding residues (Additional File 1: 

Fig. S1: odds ratio 0.88). At the same time, SAVs predicted to affect molecular function 

by SNAP2 often coincided with ProNA-binding. Importantly, common SAVs predicted 

at ProNA-binding interfaces were more likely to be predicted with high SNAP2-scores 

than other SAVs (Fig.  1d: red curve highest for SNAP2-score > 60). In terms of bind-

ing type protein-binding SAVs were predicted with higher SNAP2-scores than nucleo-

tide-binding SAVs, and SAVs predicted at interfaces to more than one type of binding 

(protein&DNA | protein&RNA | DNA&RNA | protein&DNA&RNA) were shifted most 

toward effect (Additional File 1: Fig. S3, blue line). All results obtained for prediction 

methods were essentially confirmed by explicitly using experimental annotations. How-

ever, results based on experimental data remained statistically insignificant, as fewer 
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than 2‰ (0.14%) of the ExAC SAVs had reliable experimental annotations about bind-

ing interfaces (Table 1: 18 + 9194); and even fewer had experimental effect annotations 

(0.11%) (Table 1: 149 + 7198). Finally, we observed that ProNA-binding SAVs occurred 

differentially between tissue types (Fig. 3). Rare SAVs were predicted more than expected 

in protein-binding residues of urinary bladder tissue, and in nucleotide-binding residues 

of the reproductive system (ovary, testis, vagina, seminal vesicle and endometrium). 

Overall, the results supported our initial hypothesis that the higher fraction of common 

than rare SAVs with effect is partially explained by ProNA-binding (strictly speaking: the 

results did not refute the hypothesis). Essentially, the complex finding was that while, 

common SAVs were under-represented in ProNA-binding interfaces, common bind-

ing SAVs had the highest odds of affecting function. According to our hypothesis, they 

are the primary candidate for explaining different phenotypes in sub-populations. Rare 

binding SAVs also had very strong effects, consistent with the interpretation that they 

are not selected for in evolution (they are rare) because they disrupt binding. One exam-

ple for the extraordinary importance of common SAVs was the differential expression of 

RNA-binding, in particular, in skin tissues (Fig. 3).

Methods

Data variants (SAVs)

SAVs (single amino acid variant; abbreviations found in the literature for the same 

include: nsSNV, nsSNP, and SAAV) were collected by the Exome Aggregation Consor-

tium (ExAC) at the Broad Institute from 60,706 exomes [5]. We extracted all SAVs from 

ExAC release 0.3.1 that were labelled as ‘missense variant’ and ‘SNV’ in the ‘CSQ’ infor-

mation field. In total, these summed to 10,474,468 SAVs; for 6,699,150 of these results 

from both prediction methods, SNAP2 [15, 16] (impact on molecular protein function) 

and ProNA2020 (ProNA-binding residues), were available. 34,309 were classified as 

common (linkage disequilibrium allele frequency: LDAF ≥ 0.05), 25,217 as uncommon 

(0.01 ≤ LDAF < 0.05), and 6,639,624 as rare (LDAF < 0.01).

Experimental annotations

To motivate our analysis based on predictions, we began with a collection of SAVs with 

experimental binding annotations based on the PDB [3]. SIFTS [34] was used to map 

UniProtKB sequences [35] onto PDB annotations. Binding interface residues were con-

sidered only when the closest pair of atoms between two proteins (or between protein 

and DNA/RNA) was within 6 Å (0.6 nm; Table 1).

A combination of OMIM, HumVar and PMD provided variant effect annotations. We 

extracted 22,858 human disease-associated variants/SAVs in 3537 proteins from OMIM 

[19] and HumVar [20], and another 3192 from PMD [21]. We mapped those variants 

onto ExAC SAVs. Overall 7347 variants/SAVs were experimentally annotated as effect 

(Table 1).

Implicitly, the PDB annotations of ProNA-binding interface residues (all residues 

observed in interfaces between the protein analyzed and another protein, DNA, or 

RNA) were used to compare trends between ProNA-binding residues experimentally 

known and predicted by ProNA2020 [4]. Similarly, experimental annotated SAVs from 

OMIM [19], HumVar [20] and PMD [21] served to compare observed SAV effects to 
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those predicted by SNAP2 [15, 16]. Results based exclusively on experimental annota-

tions did not provide statistically significant differences due to small counts (~ 1% of the 

SAVs had experimental binding annotations—Table 1; 0.3% had effect annotations, and 

0.006% had experimental annotations for binding and effect, corresponding to 392 resi-

due positions with observed SAVs). In particular, only ten (10!) common SAVs had anno-

tations for effect and binding/non-binding (Table  1), rendering comparisons between 

common and rare SAVs impossible without predictions.

Tissue-enriched variants

Tissue-enriched variants were defined by protein expression data from �e Human 

Protein Atlas (HPA https ://www.prote inatl as.org) [24, 36]. As tissue-enriched variants, 

we considered all SAVs with an expression levels ≥ 1 (TPM or FPKM) which also were 

at least four-fold enriched in a particular tissue compared to the average over all other 

tissues. �e percentage of ProNA-binding variants in each tissue were normalized as: 

 (PERCtissue-PERCoverall)/PERCoverall. For common DNA binding variants in heart, for 

example,  PERCtissue was the percentage of enriched common SAVs predicted as DNA-

binding in proteins expressed in heart and  PERCoverall was the percentage of all enriched 

common SAVs predicted as DNA-binding (in any of the tissues considered).

E�ect predictions (SNAP2

Effect scores for SAVs in all sets were computed using SNAP2 [15, 16]. SNAP2 uses a 

protein sequence and a list of SAVs as input to predict the effect of each substitution 

on molecular protein function. SNAP2 is based on a standard feed-forward neural net-

work (often referred to as ANN) using as input biophysical amino acid properties, pre-

dicted 1D structure (incl. secondary structure, solvent accessibility from PROF [37] and 

ReProf [38], residue flexibility [39]), and—most importantly—evolutionary information 

from multiple sequence alignments generated by PSI-BLAST [40]. Cross-validated on 

about 100 k experimentally annotated variants, SNAP2 significantly outperformed other 

methods, attaining a two-state accuracy (effect/neutral) of 83% [16]. �e prediction 

scores range from − 100 (strongly predicted as neutral) to + 100 (strongly predicted as 

effect). Generally, the least reliable predictions have SNAP2-scores around 0, while the 

most reliable ones have SNAP2-scores closer to |100|, and higher scores correlate with 

stronger effects [17]. �is implies that the higher the SNAP2-score, the more likely the 

SAV with this score is (1) predicted correctly, (2) likely to have a stronger effect than 

another correctly predicted effect-SAV with lower score, and (3) more likely to have an 

effect than an effect-SAV with lower score. Largely, SNAP2 captures effects upon molec-

ular protein function much better than effects on biological processes, and less likely 

over-predicts disease-affecting SAVs than other methods [16, 18, 41], although capturing 

OMIM-like variants with high specificity [41, 42]. Assessing the performance of SNAP2 

against data from DMS studies (deep mutational scanning), suggests that the method 

tends to over-predict effect when assessed using a binary threshold at SNAP2-score > 0 

as effect prediction [18, 43]. �is had been noted earlier [44] and suggested using higher 

thresholds (SNAP2-score > 20) in order to distinguish effect/neutral. In our analysis, 

we have addressed this by mostly consider the entire spectrum of the SNAP2-score, or 

using thresholds even higher than this (SNAP2-score ≥ 50) for binary analyses.

https://www.proteinatlas.org


Page 14 of 17Qiu et al. BMC Bioinformatics          (2020) 21:452 

ProNA-binding predictions (ProNA2020

�e ProNA2020 [4] method predicted for each SAV whether or not the amino acid 

“native” at the corresponding residue position (according to the UniProtKB/Swiss-

Prot sequence [35]) is in a ProNA-binding interface, i.e. binding either to another pro-

tein, DNA, or RNA (or any combination of the three). ProNA2020 is a state-of-the-art 

sequence-based prediction method trained on data for binding taken from low- and 

high-resolution experiments on the per-protein level (protein binds or not), and from 

high-resolution 3D structures on the per-residue level (which residue binds). It uses a 

combination of different machine-learning devices and homology-based inference (if 

the protein is sequence similar to proteins for which experimental knowledge about 

binding is available). �e per-residue modules learned to identify all residues in the 

query protein close to any atom of another protein, DNA, or RNA (closest atom within 

6.5 Å = 0.6 nm of substrate; note: we referred to all of those as to ProNA-binding resi-

dues). �e part of the method based on machine learning cannot identify binding sites, 

i.e. it cannot distinguish between two residues predicted to bind that are in the same or 

in two different binding sites. Overall, the machine-learning-based part of ProNA2020 

reached sustained performance levels of a two-state per-residue accuracy of Q2 = 81% 

for DNA, Q2 = 80% for RNA, and Q2 = 69% for protein–protein interactions. In anal-

ogy to SNAP2, ProNA2020 also puts out a score ranging from − 100 (strongly pre-

dicted as non-binding) to + 100 (strongly predicted as binding). �e default threshold 

for ProNA2020 [35] (ProNA2020 score > 0: binding) stroke a balance between over- or 

under-prediction. Consequently, the ratio of false positives/false negatives (number of 

residues expected to be incorrectly predicted as binding/number of residues expected 

to be incorrectly predicted as non-binding for ProNA2020-score > 0). For the three per-

residue prediction tasks, the ratios were: 1.02 for protein-binding (minute over-predic-

tion), 0.99 for DNA-binding (tiny under-prediction), and 0.94 for RNA-binding (slight 

under-prediction).

Random background predictions

We experimented with a variety of models for the random background, i.e. for estab-

lishing how much an observation differed from the expected. �e problem was that all 

models for random sampling maintained bias from the extreme difference in the number 

of rare and common SAVs. Ultimately, the only viable solution was to compute all pos-

sible SAVs, i.e. all amino acid variants (all 19 non-native amino acids) at each SAV posi-

tion (dubbed: 19 non-native). �ese 19 non-native SAVs constituted the background. 

Although Deep Mutational Scanning (DMS) experiments test the effect of 19 non-native 

SAVs [43], not all these 19 can be accessed by changing a single nucleotide, i.e. by a SNV.

Fisher’s exact test

Fisher’s exact test was applied to the per-residue predictions in the following way. For 

instance, for DNA binding: with Ncb as the number of common SAVs predicted to bind 

DNA (3731), Ncn that of common SAVs not to bind DNA (30,018), Nrb the number of 

rare SAVs predicted to bind DNA (2,776,214), and Nrn that of rare SAVs not to bind 

DNA (19,661,312), we obtain:
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�e resulting p value for Fisher’s exact test was calculated by the standard function 

fisher.test in the R package [22].

Error estimates

Error rates for the evaluation measures were estimated by bootstrapping [45] (with-

out replacement to render more conservative estimates), i.e. by re-sampling the set of 

residues used for the evaluation 1000 times and calculating the standard deviation over 

those 1000 different results. Each of these sample sets contained 50% of the original resi-

dues (picked randomly, again: without replacement).
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