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Protein-protein interaction plays key role in predicting the protein function of target protein and drug ability of molecules. �e
majority of genes and proteins realize resulting phenotype functions as a set of interactions. �e in vitro and in vivomethods like
a�nity puri
cation, Y2H (yeast 2 hybrid), TAP (tandem a�nity puri
cation), and so forth have their own limitations like cost, time,
and so forth, and the resultant data sets are noisy and have more false positives to annotate the function of drug molecules. �us,
in silicomethods which include sequence-based approaches, structure-based approaches, chromosome proximity, gene fusion, in
silico 2 hybrid, phylogenetic tree, phylogenetic pro
le, and gene expression-based approacheswere developed. Elucidation of protein
interaction networks also contributes greatly to the analysis of signal transduction pathways. Recent developments have also led to
the construction of networks having all the protein-protein interactions using computational methods for signaling pathways and
protein complex identi
cation in speci
c diseases.

1. Introduction

Protein-protein interactions (PPIs) handle a wide range of
biological processes, including cell-to-cell interactions and
metabolic and developmental control [1]. Protein-protein
interaction is becoming one of the major objectives of
system biology. Noncovalent contacts between the residue
side chains are the basis for protein folding, protein assembly,
and PPI [2]. �ese contacts induce a variety of interactions
and associations among the proteins. Based on their con-
trasting structural and functional characteristics, PPIs can be
classi
ed in several ways [3]. On the basis of their interaction
surface, they may be homo- or heterooligomeric; as judged
by their stability, they may be obligate or nonobligate; as
measured by their persistence, they may be transient or
permanent [4]. A given PPI may be a combination of these
three speci
c pairs. �e transient interactions would form
signaling pathways while permanent interactions will form
a stable protein complex.

Typically proteins hardly act as isolated species while per-
forming their functions in vivo [5]. It has been revealed that
over 80% of proteins do not operate alone but in complexes
[6]. �e substantial analysis of authenticated proteins reveals
that the proteins involved in the same cellular processes are

repeatedly found to be interacting with each other [7]. �e
study of PPIs is also important to infer the protein function
within the cell. �e functionality of unidenti
ed proteins can
be predicted on the evidence of their interaction with a pro-
tein, whose function is already revealed. �e detailed study
of PPIs has expedited the modeling of functional pathways
to exemplify the molecular mechanisms of cellular processes
[4]. Characterizing the interactions of proteins in a given
proteome will be phenomenal to 
gure out the biochemistry
of the cell [4]. �e result of two or more proteins interacting
with a de
nite functional objective can be established in
several ways. �e signi
cant properties of PPIs have been
marked by Phizicky and Fields [8].

PPIs can

(i) modify the kinetic properties of enzymes;

(ii) act as a general mechanism to allow for substrate
channeling;

(iii) construct a new binding site for small e�ector mole-
cules;

(iv) inactivate or suppress a protein;

(v) change the speci
city of a protein for its substrate
through interaction with di�erent binding partners;
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(vi) serve a regulatory role in either upstream or down-
stream level.

Uncovering protein-protein interaction information
helps in the identi
cation of drug targets [9]. Studies have
shown that proteins with larger number of interactions
(hubs) can include families of enzymes, transcription factors,
and intrinsically disordered proteins, among others [10, 11].
However, PPIs involve more heterogeneous processes and
the scope of their regulation is large. For more accurate
understanding of their importance in the cell, one has to
identify various interactions and determine the a�ermath of
the interactions [4].

In recent years, PPI data have been enhanced by guar-
anteed high-throughput experimental methods, such as two-
hybrid systems, mass spectrometry, phage display, and pro-
tein chip technology [4]. Comprehensive PPI networks have
been built from these experimental resources. However, the
voluminous nature of PPI data is imposing a challenge to lab-
oratory validation. Computational analysis of PPI networks
is increasingly becoming a mandatory tool to understand the
functions of unexplored proteins. At present, protein-protein
interaction (PPI) is one of the key topics for the development
and progress of modern system’s biology.

2. Classification of PPI Detection Methods

Protein-protein interaction detection methods are categor-
ically classi
ed into three types, namely, in vitro, in vivo,
and in silico methods. In in vitro techniques, a given pro-
cedure is performed in a controlled environment outside
a living organism. �e in vitro methods in PPI detection
are tandem a�nity puri
cation, a�nity chromatography,
coimmunoprecipitation, protein arrays, protein fragment
complementation, phage display, X-ray crystallography, and
NMR spectroscopy. In in vivo techniques, a given procedure
is performed on the whole living organism itself. �e in vivo
methods in PPI detection are yeast two-hybrid (Y2H, Y3H)
and synthetic lethality. In silico techniques are performed
on a computer (or) via computer simulation. �e in silico
methods in PPI detection are sequence-based approaches,
structure-based approaches, chromosome proximity, gene
fusion, in silico 2 hybrid, mirror tree, phylogenetic tree,
and gene expression-based approaches. �e diagrammatic
classi
cation was given in Table 1.

2.1. In Vitro Techniques to Predict Protein-Protein Interactions.
TAP tagging was developed to study PPIs under the intrinsic
conditions of the cell [12]. Gavin et al. 
rst attempted theTAP-
tagging method in a high-throughput manner to analyse the
yeast interactome [13]. �is method is based on the double
tagging of the protein of interest on its chromosomal locus,
followed by a two-step puri
cation process [14]. Proteins
that remain associated with the target protein can then be
examined and identi
ed through SDS-PAGE [15] followed by
mass spectrometry analysis [15], thereby identifying the PPI
collaborator of the original protein of interest. An important
dominance of TAP-tagging is its ability to identify a wide
variety of protein complexes and to test the activeness of

monomeric or multimeric protein complexes that exist in
vivo [14]. �e TAP when used with mass spectroscopy (MS)
will identify protein interactions and protein complexes.

�e advantage of the a�nity chromatography is that it
is highly responsive, can even detect weakest interactions in
proteins, and also tests all the sample proteins equally for
interaction with the coupled protein in the column. However,
false positive results also arise in the column due to high
speci
city among proteins, even though they do not get
involved in the cellular system.�us protein interaction stud-
ies cannot fully rely on a�nity chromatography and hence
require other methods in order to crosscheck and verify
results obtained. �e a�nity chromatography can also be
associated with SDS-PAGE technique andmass spectroscopy
in order to generate a high-throughput data.

Coimmunoprecipitation con
rms interactions using a
whole cell extract where proteins are present in their native
form in a complex mixture of cellular components that may
be required for successful interactions. In addition, use of
eukaryotic cells enables posttranslational modi
cation which
may be essential for interaction and which would not occur
in prokaryotic expression systems.

Protein microarrays are rapidly becoming established as
a powerful means to detect proteins, monitor their expres-
sion levels, and probe protein interactions and functions.
A protein microarray is a piece of glass on which various
molecules of protein have been a�xed at separate locations
in an ordered manner [16]. Protein microarrays have seen
tremendous progress and interest at the moment and have
become one of the active areas emerging in biotechnology.
�e objective behind protein microarray development is
to achieve e�cient and sensitive high-throughput protein
analysis, carrying out large numbers of determinations in
parallel by automated process.

Protein-fragment complementation assay is another
method of proteomics for the identi
cation of protein-
protein interactions in biological systems. Protein-fragment
complementation assays (PCAs) are a family of assays for
detecting protein-protein interactions (PPIs) that have been
introduced to provide simple and direct ways to study PPIs in
any living cell, multicellular organism, or in vitro [17]. PCAs
can be used to detect PPI between proteins of any molecular
weight and expressed at their endogenous levels. �e two
choices for protein identi
cation using a mass spectroscopy
are peptide 
ngerprinting and shotgun proteomics [18]. For
peptide 
ngerprinting, the eluted complex is separated using
SDS-PAGE. �e gel is either Coomassie-stained or silver-
stained and bands unique to the test sample and hope-
fully containing a single protein are excised, enzymatically
digested, and analyzed by mass spectrometry. �e mass of
these peptides is determined and matched to a peptide
database to determine the source protein. �e gel also
provides a rough estimate of the molecular weight of the
protein. Since only unique bands are cut out, background
bands are not identi
ed. Abundant background proteins may
obscure target proteins while less abundant proteins may fall
below the limits of detection by staining. �is method works
well with puri
ed samples containing only a handful of pro-
teins. Alternatively, for shotgun proteomics, the entire eluate,
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Table 1: Summary of PPI detection methods.

Approach Technique Summary

In vitro

Tandem a�nity puri
cation-mass
spectroscopy (TAP-MS)

TAP-MS is based on the double tagging of the protein of interest on
its chromosomal locus, followed by a two-step puri
cation process
and mass spectroscopic analysis

A�nity chromatography
A�nity chromatography is highly responsive, can even detect
weakest interactions in proteins, and also tests all the sample proteins
equally for interaction

Coimmunoprecipitation
Coimmunoprecipitation con
rms interactions using a whole cell
extract where proteins are present in their native form in a complex
mixture of cellular components

Protein microarrays (H)
Microarray-based analysis allows the simultaneous analysis of
thousands of parameters within a single experiment

Protein-fragment complementation
Protein-fragment complementation assays (PCAs) can be used to
detect PPI between proteins of any molecular weight and expressed at
their endogenous levels

Phage display (H)
Phage-display approach originated in the incorporation of the protein
and genetic components into a single phage particle

X-ray crystallography
X-ray crystallography enables visualization of protein structures at
the atomic level and enhances the understanding of protein
interaction and function

NMR spectroscopy NMR spectroscopy can even detect weak protein-protein interactions

In vivo

Yeast 2 hybrid (Y2H) (H)
Yeast two-hybrid is typically carried out by screening a protein of
interest against a random library of potential protein partners

Synthetic lethality
Synthetic lethality is based on functional interactions rather than
physical interaction

In silico

Ortholog-based sequence approach
Ortholog-based sequence approach based on the homologous nature
of the query protein in the annotated protein databases using
pairwise local sequence algorithm

Domain-pairs-based sequence
approach

Domain-pairs-based approach predicts protein interactions based on
domain-domain interactions

Structure-based approaches
Structure-based approaches predict protein-protein interaction if two
proteins have a similar structure (primary, secondary, or tertiary)

Gene neighborhood
If the gene neighborhood is conserved across multiple genomes, then
there is a potential possibility of the functional linkage among the
proteins encoded by the related genes

Gene fusion

Gene fusion, which is o�en called as Rosetta stone method, is based
on the concept that some of the single-domain containing proteins in
one organism can fuse to form a multidomain protein in other
organisms

In silico 2 hybrid (I2H)
�e I2H method is based on the assumption that interacting proteins
should undergo coevolution in order to keep the protein function
reliable

Phylogenetic tree
�e phylogenetic tree method predicts the protein-protein interaction
based on the evolution history of the protein

Phylogenetic pro
le
�e phylogenetic pro
le predicts the interaction between two
proteins if they share the same phylogenetic pro
le

Gene expression

�e gene expression predicts interaction based on the idea that
proteins from the genes belonging to the common
expression-pro
ling clusters are more likely to interact with each
other than proteins from the genes belonging to di�erent clusters
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containing many proteins, is digested. Shotgun proteomics
is currently the most powerful strategy for analyzing such
complicated mixtures.

�ere are di�erent implementations of the phage display
methodology as well as di�erent applications [19]. One of
the most common approaches used is the M13 
lamentous
phage. �e DNA encoding the protein of interest is ligated
into the gene encoding one of the coat proteins of the virion.
Normally, the process is followed by computational identi-

cation of potential interacting partners and a yeast two-
hybrid validation step, but themethod is a new born one [20].

X-ray crystallography [21] is essentially a form of very
high resolution microscopy, which enables visualization of
protein structures at the atomic level and enhances the under-
standing of protein function. Speci
cally it shows how pro-
teins interact with other molecules and the conformational
changes in case of enzymes. Armed with this information,
we can also design novel drugs that target a particular target
protein.

In the recent past, the researchers have shown interest
in the analysis of protein-protein interaction by nuclear
magnetic resonance (NMR) spectroscopy [21]. �e loca-
tion of binding interface is a crucial aspect in the protein
interaction analysis. �e basis for the NMR spectroscopy is
that magnetically active nuclei oriented by a strong magnetic

eld absorb electromagnetic radiation at characteristic fre-
quencies governed by their chemical environment [22, 23].

2.2. In Vivo Techniques to Predict Protein-Protein Interactions.
Y2Hmethod is an in vivomethod applied to the detection of
PPIs [24]. Two protein domains are required in the Y2H assay
which will have two speci
c functions: (i) a DNA binding
domain (DBD) that helps binding to DNA, and (ii) an acti-
vation domain (AD) responsible for activating transcription
of DNA. Both domains are required for the transcription of a
reporter gene [25]. Y2H analysis allows the direct recognition
of PPI between protein pairs.However, themethodmay incur
a large number of false positive interactions. On the other
hand, many true interactions may not be traced using Y2H
assay, leading to false negative results. In an Y2H assay, the
interacting proteins must be localized to the nucleus, since
proteins, which are less likely to be present in the nucleus
are excluded because of their inability to activate reporter
genes. Proteins, which need posttranslational modi
cations
to carry out their functions, are unlikely to behave or interact
normally in an Y2H experiment. Furthermore, if the proteins
are not in their natural physiological environment, they may
not fold properly to interact [26]. During the last decade, Y2H
has been enriched by designing new yeast strains containing
multiple reporter genes and new expression vectors to facil-
itate the transformation of yeast cells with hybrid proteins
[27]. Other widely used techniques, such as biolumines-
cence resonance energy transfer (BRET), �uorescence reso-
nance energy transfers (FRET), and bimolecular �uorescence
complementation (BiFC), require extensive instrumentation.
FRET uses time-correlated single-photon counting to predict
protein interactions [28].

Synthetic lethality is an important type of in vivo genetic
screening which tries to understand the mechanisms that

allow phenotypic stability despite genetic variation, envi-
ronmental changes, and random events such as mutations.
�is methodology produces mutations or deletions in two
or more genes which are viable alone but cause lethality
when combined together under certain conditions [29–
33]. Compared with the results obtained in the aforesaid
methods, the relationships detected by synthetic lethality
do not require necessity of physical interaction between the
proteins. �erefore, we refer to this type of relationships as
functional interactions.

2.3. In Silico Methods for the Prediction of Protein-Protein
Interactions. �e yeast two-hybrid (Y2H) system and other
in vitro and in vivo approaches resulted in large-scale devel-
opment of useful tools for the detection of protein-protein
interactions (PPIs) between speci
ed proteins that may
occur in di�erent combinations. However, the data generated
through these approaches may not be reliable because of
nonavailability of possible PPIs. In order to understand the
total context of potential interactions, it is better to develop
approaches that predict the full range of possible interactions
between proteins [4].

A variety of in silico methods have been developed to
support the interactions that have been detected by exper-
imental approach. �e computational methods for in silico
prediction include sequence-based approaches, structure-
based approaches, chromosome proximity, gene fusion, in
silico 2 hybrid, mirror tree, phylogenetic tree, gene ontology,
and gene expression-based approaches. �e list of all web-
servers of in silicomethods was given in Table 2.

2.3.1. Structure-Based Prediction Approaches. �e idea
behind the structure-based method is to predict protein-
protein interaction if two proteins have a similar structure.
�erefore, if two proteins A and B can interact with each
other, then there may be two other proteins A� and B� whose
structures are similar to those of proteins A and B; then it is
implied that proteins A� and B� can also interact with each
other. Butmost proteinsmay not be having known structures;
the 
rst step for this method is to guess the structure of the
protein based on its sequence. �is can be done in di�erent
ways. �e PDB database o�ers useful tools and information
resources for researchers to build the structure for a query
protein [34]. Using the multimeric threading approach, Lu et
al. [35] have made 2,865 protein-protein interactions in yeast
and 1,138 interactions have been con
rmed in the DIP [36].

Recently, Hosur et al. [37] developed a new algorithm
to infer protein-protein interactions using structure-based
approach. �e Coev2Net algorithm, which is a three-step
process, involves prediction of the binding interface, evalu-
ation of the compatibility of the interface with an interface
coevolution based model, and evaluation of the con
dence
score for the interaction [37]. �e algorithm when applied to
binary protein interactions has boosted the performance of
the algorithm over existing methods [38]. However, Zhang et
al. [39] have used three-dimensional structural information
to predict PPIs with an accuracy and coverage that are
superior to predictions based on nonstructural evidence.



International Journal of Proteomics 5

Table 2: �e list of web servers with their references.

S. number Web server Function Reference

1 Struct2Net

�e Struct2Net server makes
structure-based computational
predictions of protein-protein
interactions (PPIs)

http://groups.csail.mit.edu/cb/struct2net/webserver/

2 Coev2Net

Coev2Net is a general framework to
predict, assess, and boost con
dence in
individual interactions inferred from a
high-throughput experiment

http://groups.csail.mit.edu/cb/coev2net/

3 PRISM PROTOCOL

PRISM PROTOCOL is a collection of
programs that can be used to predict
protein-protein interactions using protein
interfaces

http://prism.ccbb.ku.edu.tr/prism protocol/

4 InterPreTS
InterPreTS uses tertiary structure to
predict interactions

http://www.russell.embl.de/interprets

5 PrePPI
PrePPI predicts protein interactions
using both structural and nonstructural
information

http://bhapp.c2b2.columbia.edu/PrePPI/

6 iWARP
iWARP is a threading-based method to
predict protein interaction from protein
sequences

http://groups.csail.mit.edu/cb/iwrap/

7 PoiNet
PoiNet provides PPI 
ltering and network
topology from di�erent databases

http://poinet.bioinformatics.tw/

8 PreSPI
PreSPI predicts protein interactions using
a combination of domains

http://code.google.com/p/prespi/

9 PIPE2
PIPE2 queries the protein interactions
between two proteins based on speci
city
and sensitivity

http://cgmlab.carleton.ca/PIPE2

10 HomoMINT
HomoMINT predicts interaction in
human based on ortholog information in
model organisms

http://mint.bio.uniroma2.it/HomoMINT

11 SPPS
SPPS searches protein partners of a
source protein in other species

http://mdl.shsmu.edu.cn/SPPS/

12 OrthoMCL-DB

OrthoMCL-DB is a graph-clustering
algorithm designed to
identify homologous proteins based on
sequence similarity

http://orthomcl.org/orthomcl/

13 P-POD
P-POD provides an easy way to 
nd and
visualize the orthologs to a query
sequence in the eukaryotes

http://ppod.princeton.edu/

14 COG
COG shows phylogenetic classi
cation of
proteins encoded in genomes

http://www.ncbi.nlm.nih.gov/COG/

15 BLASTO
BLASTO performs BLAST based on
ortholog group data

http://oxytricha.princeton.edu/BlastO/

16 PHOG
PHOG web server identi
es orthologs
based on precomputed phylogenetic trees

http://phylogenomics.berkeley.edu/phog/

17 G-NEST
G-NEST is a gene neighborhood scoring
tool to identify co-conserved,
coexpressed genes

https://github.com/dglemay/G-NEST

18 InPrePPI
InPrePPI predicts protein interactions in
prokaryotes based on genomic context

http://inpreppi.biosino.org/InPrePPI/index.jsp

19 STRING
STRING database includes protein
interactions containing both physical and
functional associations

http://string.embl.de

20 MirrorTree

�e MirrorTree allows graphical and
interactive study of the coevolution of
two protein families and asseses their
interactions in a taxonomic context

http://csbg.cnb.csic.es/mtserver/
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Table 2: Continued.

S. number Web server Function Reference

21 TSEMA
TSEMA predicts the interaction between
two families of proteins based on Monte
Carlo approach

http://tsema.bioinfo.cnio.es/

2.3.2. Sequence-Based Prediction Approaches. Predictions of
PPIs have been carried out by integrating evidence of known
interactions with information regarding sequential homol-
ogy.�is approach is based on the concept that an interaction
found in one species can be used to infer the interaction in
other species. However, recently, Hosur et al. [37] developed
a new algorithm to predict protein-protein interactions using
threading-based approach which takes sequences as input.
�e algorithm, iWARP (Interface Weighted RAPtor), which
predicts whether two proteins interact by combining a novel
linear programming approach for interface alignment with a
boosting classi
er [37] for interaction prediction. Guilherme
Valente et al. introduced a new method called Universal In
Silico Predictor of Protein-Protein Interactions (UNISPPI),
based on primary sequence information for classifying pro-
tein pairs as interacting or noninteracting proteins [40].
Kernelmethods are hybridmethodswhich use a combination
of properties like protein sequences, gene ontologies, and so
forth [41]. However, there are two di�erent methods under
sequence-based criterion.

(1) Ortholog-Based Approach. �e approach for sequence-
based prediction is to transfer annotation from a functionally
de
ned protein sequence to the target sequence based on the
similarity. Annotation by similarity is based on the homol-
ogous nature of the query protein in the annotated protein
databases using pairwise local sequence algorithm [42].
Several proteins from an organism under study may share
signi
cant similarities with proteins involved in complex
formation in other organisms.

�e prediction process starts with the comparison of a
probe gene or protein with those annotated proteins in other
species. If the probe gene or protein has high similarity to the
sequence of a gene or proteinwith known function in another
species, it is assumed that the probe gene or protein has
either the same function or similar properties. Most subunits
of protein complexes were annotated in that way. When
the function is transferred from a characterized protein to
an uncharacterized protein, ortholog and paralog concepts
should be applied. Orthologs are the genes in di�erent species
that have evolved from a common ancestral gene by specia-
tion. In contrast, paralogs usually refer to the genes related by
duplication within a genome [43]. In broad sense, orthologs
will retain the functionality during the course of evolution,
whereas paralogs may acquire new functions. �erefore, if
two proteins—A and B—interact with each other, then the
orthologs of A and B in a new species are also likely to interact
with each other.

(2) Domain-Pairs-Based Approach. A domain is a distinct,
compact, and stable protein structural unit that folds inde-
pendently of other such units. But most of times, domains are

de
ned as distinct regions of protein sequence that are highly
conserved in the process of evolution. As individual struc-
tural and functional units, protein domains play an important
role in the development of protein structural class prediction,
protein subcellular location prediction, membrane protein
type prediction, and enzyme class and subclass prediction.

Conventionally, protein domains are used for basic
research and also for structure-based drug designing. In
addition, domains are directly involved in the intermo-
lecular interaction and hence must be fundamental to
protein-protein interaction.Multiple studies have shown that
domain-domain interactions (DDIs) from di�erent exper-
iments are more consistent than their corresponding PPIs
[44]. So, it is quite reliable to use the domains and their
interactions for prediction of the protein-protein interactions
and vice versa [45].

2.3.3. Chromosome Proximity/Gene Neighbourhood. With
the ever increasing number of the completely sequenced
genomes, the global context of genes and proteins in the
completed genomes has provided the researchers with the
enriched information needed for the protein-protein interac-
tion detection. It is well known that the functionally related
proteins tend to be organized very closely into regions on
the genomes in prokaryotes, such as operons, the clusters of
functionally related genes transcribed as a single mRNA. If
the neighborhood relationship is conserved across multiple
genomes, then it will bemore relevant for implying the poten-
tial possibility of the functional linkage among the proteins
encoded by the related genes. And this evidence was applied
to study the functional association of the corresponding
proteins. �is relationship was con
rmed by the experimen-
tal results and shown to be more independent of relative
gene orientation. Recently, it has been found that there
is functional link among the adjacent bidirectional genes
along the chromosome [46]. Interestingly, in most cases,
the relationship among adjacent bidirectionally transcribed
genes with conserved gene orientation is that one gene
encodes a transcriptional regulator and the other belongs to
nonregulatory protein [47]. It has been found that most of
the regulators control the transcription of the diver gently
transcribed target gene/operon and automatically regulate
their own biosynthesis as well. �is relationship provides
another way to predict the target processes and regulatory
features for transcriptional regulators. One of the pitfalls of
this method is that it is directly suitable for bacterial genome
since gene neighboring is conserved in the bacteria.

2.3.4. Gene Fusion. Gene fusion, which is o�en called as
Rosetta stone method, is based on the concept that some
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of the single-domain containing proteins in one organism
can fuse to form a multidomain protein in other organisms
[48, 49]. �is domain fusion phenomenon indicates the
functional association for those separate proteins, which are
likely to form a protein complex. It has been shown that
fusion events are particularly common in those proteins
participating in the metabolic pathway [50, 51]. �is method
can be used to predict protein-protein interaction by using
information of domain arrangements in di�erent genomes.
However, it can be applied only to those proteins in which
the domain arrangement exists.

2.3.5. In Silico Two-Hybrid (I2h). �e method is based on
the assumption that interacting proteins should undergo
coevolution in order to keep the protein function reliable. In
other words, if some of the key amino acids in one protein
changed, the related amino acids in the other protein which
interacts with the mutated counter partner should also make
the compulsory mutations as well. During the analysis phase,
the common genomes containing those two proteins will
be identi
ed through multiple sequence alignments and a
correlation coe�cient will be calculated for every pair of
residues in the same protein and between the proteins [52].
Accordingly, there are three di�erent sets for the pairs: two
from the intraprotein pairs and one from the interprotein
pairs. �e protein-protein interaction is inferred based on
the di�erence from the distribution of correlation between
the interacting partners and the individual proteins. Since
I2h analysis is based on the prediction of physical closeness
between residue pairs of the two individual proteins, the
result from this method automatically indicates the possible
physical interaction between the proteins.

2.3.6. Phylogenetic Tree. Another important method for
detection of interaction between the proteins is phylogenetic
tree. �e phylogenetic tree gives the evolution history of
the protein. �e mirror tree method predicts protein-protein
interactions under the belief that the interacting proteins
show similarity in molecular phylogenetic tree because of
the coevolution through the interaction [53]. �e underlying
principle behind the method is that the coevolution between
the interacting proteins can be re�ected from the degree
of similarity from the distance matrices of corresponding
phylogenetic trees of the interacting proteins [54]. �e set
of organisms common to the two proteins are selected from
the multiple sequence alignments (MSA) and the results are
used to construct the corresponding distance matrix for each
protein. �e BLAST scores could also be used to 
ll the
matrices. �en the linear correlation is calculated among
these distance matrices. High correlation scores indicate the
similarity between the phylogenetic trees and therefore the
proteins are considered to have the interaction relationship.
�e MirrorTree method is used to detect the coevolution
relationship between proteins and the results are used to infer
the possibility of their physical interaction.

2.3.7. Phylogenetic Pro
le. �e notion for this method is that
the functionally linked proteins tend to coexist during the

evolution of an organism [55]. In other words, if two proteins
have a functional linkage in a genome, there will be a strong
pressure on them to be inherited together during evolution
process [51]. �us, their corresponding orthologs in other
genome will be preserved or dropped. �erefore, we can
detect the presence or absence (cooccurrence) of proteins in
the phylogenetic pro
le. A phylogenetic pro
le describes an
occurrence of a certain protein in a set of genomes: if two
proteins share the same phylogenetic pro
ling, this indicates
that the two proteins have the functional linkage. In order to
construct the phylogenetic pro
le, a predetermined threshold
of BLASTP �-value is used to detect the presence or absence
of the homological proteins on the target genome with the
source genomes. �is method gives promising results in the
detection of the functional linkage among the proteins and, at
the same time, assigns the functions to query proteins. Even
though the phylogenetic pro
le has shown great potential for
building the functional linkage network on the full genome
level, the following two pitfalls should be mentioned: one
is that this method is based on full genome sequences and
the other is that the functional linkage between proteins is
detected by their phylogenetic pro
ling, so it is di�cult to
use the method for those essential proteins in the cell where
no di�erence can be detected from the phylogenetic pro
le.
Moreover, even though the increasing number in the source
genome set can improve the prediction accuracy, there may
be an upper limit for this method.

Many genomic events contribute to the noise during the
coevolution, such as gene duplication or the possible loss of
gene functions in the course of evolution, which could cor-
rupt the phylogenetic pro
le of single genes. Phylogenetic-
pro
le-based methods conceded satisfactory performance
only on prokaryotes but not on eukaryotes [56].

2.3.8. Gene Expression. �e method takes the advantage of
high-throughput detection of the whole gene transcription
level in an organism. Gene expression means the quanti
ca-
tion of the level at which a particular gene is expressed within
a cell, tissue or organism under di�erent experimental con-
ditions and time intervals. By applying the clustering algo-
rithms, di�erent expression genes can be grouped together
according to their expression levels, and the resultant gene
expression under di�erent experimental conditions can help
to enunciate the functional relationships of the various genes.
A lot of research has also been carried out to investigate the
relationship between gene coexpression and protein interac-
tion [57]. Based on the yeast expression data and proteome
data, proteins from the genes belonging to the common
expression-pro
ling clusters are more likely to interact with
each other than proteins from the genes belonging to di�erent
clusters. In other studies, it has been con
rmed that adjacent
genes tend to be expressed both in the eukaryotes and
prokaryotes. �e gene coexpression concept is an indirect
way to infer the protein interaction, suggesting that itmay not
be appropriate for accurate detection of protein interactions.
However, as a complementary approach, gene coexpression
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can be used to validate interactions generated from other
experimental methods.

3. Comparison of Protein-Protein
Interaction Methods

Each of the above methods has been applied to detect
the protein-protein interaction in both the prokaryotes and
eukaryotes. �e results show that most of them 
t better
for the prokaryotes than eukaryotes [14]. �e signi
cant
increase for the coverage among those studies during the
past several years could be mainly because of the increase
in the number of genomes being decoded. �is is because
the more the number of genomes used in the study, the
higher the coverage that the methods can reach. With the
accumulation of fully sequenced genomes, the information
content in the reference genome set is expected to increase.
Accordingly, the prediction accuracy would increase with
more genomes incorporated in the study. It can be anticipated
that, withmore andmore genomes available in the future, the
prediction potential will be improved and the corresponding
combined methods will get higher coverage and accuracy.
One thing that should be mentioned is that the selection
of the standard used for the evaluation of the methods
has a great impact on the coverage and accuracy. Besides
the Operon and Swiss-Prot key word recovery used in the
above studies, the KEGG has been used as the standard in
Search Tool for the Retrieval of Interacting Genes (STRING)
database [58]. It can be expected that the prediction coverage
and accuracywill be di�erent for eachmethodunder di�erent
standards. Obviously, the achieved highest coverage for the
gene order method based on the operon standard indicates
that the method is strongly related to operon.

Recent technological advances have allowed high-
throughput measurements of protein-protein interactions
in the cell, producing protein interaction networks for
di�erent species at a rapid pace. However, high-throughput
methods like yeast two-hybrid, MS, and phage display have
experienced high rates of noise and false positives. �ere are
some veri
cation methods to know the reliability of these
high throughput interactions. �ey are Expression Pro
le
Reliability (EPR index), Paralogous Veri
cation Method
(PVM) [59] Protein Localization Method (PLM) [60], and
Interaction Generalities Measures IG1 [61] and IG2 [62]. EPR
[63] method compares protein interaction with RNA expres-
sion pro
les whereas PVM analyzes paralogs of interactors
for comparison. �e IG1 measure is based on the idea that
interacting proteins that have no further interactions beyond
level-1 are likely to be false positives.�e IG2measure uses the
topology of interactions. Bayesian approaches have also been
used for calculation of reliability [64–66]. �e PLM gives the
true positives (TP) as interacting proteins, which need to be
localized in the same cellular compartment or annotated to
have a common cellular role. So, in order to counter these
errors, many methods have been developed which provides
con
dence scores with each interaction. Also, the methods
that assign scores to individual interactions generally
perform better than those with the set of interactions
obtained from an experiment or a database [67].

4. Computational Analysis of PPI Networks

A PPI network can be described as a heterogeneous network
of proteins joined by interactions as edges.�e computational
analysis of PPI networks begins with the illustration of
the PPI network arrangement. �e simplest sketch takes
the form of a mathematical graph consisting of nodes and
edges [68]. Protein is represented as a node in such a
graph and the proteins that interact with it physically are
represented as adjacent nodes connected by an edge. An
examination of the network can yield a variety of results.
For example, neighboring proteins in the graph probably
may share more the same functionality. In addition to the
functionality, densely connected subgraphs in the network
are likely to form protein complexes as a unit in certain
biological processes. �us, the functionality of a protein
can be inferred by spotting at the proteins with which it
interacts and the protein complexes to which it resides. �e
topological prediction of new interactions is a novel and
useful option based exclusively on the structural information
provided by the PPI network (PPIN) topology [69]. Some
algorithms like random layout algorithm, circular layout
algorithm, hierarchical layout algorithm, and so forth are
used to visualize the network for further analysis. Precisely,
the computational analysis of PPI networks is challenging,
with these major barriers being commonly confronted [4]:

(1) the protein interactions are not stable;

(2) one protein may have di�erent roles to perform;

(3) two proteins with distinct functions periodically
interact with each other.

5. Role of PPI Networks in Proteomics

Predicting the protein functionality is one of the main objec-
tives of the PPI network. Despite the recent comprehensive
studies on yeast, there are still a number of functionally
unclassi
ed proteins in the yeast database which re�ects the
impending need to classify the proteins.�e functional anno-
tation of human proteins can provide a strong foundation for
the complete understanding of cell mechanisms, information
that is valuable for drug discovery and development [4]. �e
increased availability of PPI networks has developed various
computational methods to predict protein functions. �e
availability of reliable information on protein interactions
and their presence in physiological and pathophysiologi-
cal processes are critical for the development of protein-
protein-interaction-based therapeutics. �e compendium of
all known protein-protein interactions (PPIs) for a given cell
or organism is called the interactome.

Protein functions may be predicted on the basis of
modularization algorithms [4]. However, predictions found
in this way may not be accurate because the accuracy of the
modularization process itself is typically low. �ere are other
methods which include the neighbor counting, Chi-square,
Markov random 
eld, Prodistin, and weighted-interactions-
based method for the prediction of protein function [77].
For greater accuracy, protein functions should be predicted
directly from the topology or connectivity of PPI networks
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Table 3: Protein interaction databases.

S.
number

Database name
Total number of
interactions
(to date)

References Source link Number of species/organisms

1 BioGrid 7,17,604 [70] http://thebiogrid.org/ 60

2 DIP 76,570 [36] http://dip.doe-mbi.ucla.edu/dip/Main.cgi 637

3 HitPredict 2,39,584 [71] http://hintdb.hgc.jp/htp/ 9

4 MINT 2,41,458 [72] http://mint.bio.uniroma2.it/mint/ 30

5 IntAct 4,33,135 [73] http://www.ebi.ac.uk/intact/ 8

6 APID 3,22,579 [74] http://bioinfow.dep.usal.es/apid/index.htm 15

7 BIND >3,00,000 [75] http://bind.ca/ —

8 PINA2.0 3,00,155 [76] http://cbg.garvan.unsw.edu.au/pina/ 7

[4]. Several topology-based approaches that predict protein
function on the basis of PPI networks have been introduced.
At the simplest level, the “neighbor counting method” pre-
dicts the function of an unexplored protein by the frequency
of known functions of the immediate neighbor proteins [78].
�e majority of functions of the immediate neighbors can be
statistically assessed [79]. Recently, the number of common
neighbors of the known protein and the unknown protein has
been taken as the basis for the inference of function [80].�e
weighted-graph-mining-based protein function prediction
[81] is a novel approach in the area.

Protein-protein complex identi
cation is the crucial step
in 
nding the signal transduction pathways. Protein-protein
complexes mostly consist of antibody-antigen and protease-
inhibitor complexes [82]. Crystallography is the major tool
for determining protein complexes at atomic resolution.

�e complete analysis of PPIs can enable better under-
standing of cellular organization, processes, and functions.
�e other applications of PPI Network include biological
indispensability analysis [4], assessing the drug ability of
molecular targets from network topology [4], estimation of
interactions reliability [83], identi
cation of domain-domain
interactions [84], prediction of protein interactions [85],
detection of proteins involved in disease pathways [86],
delineation of frequent interaction network motifs [87],
comparison betweenmodel organisms and humans [88], and
protein complex identi
cation [89].

6. Protein Interaction Databases

�e massive quantity of experimental PPI data being gener-
ated on steady basis has led to the construction of computer-
readable biological databases in order to organize and to
process this data. For example, the biomolecular interaction
network database (BIND) is created on an extensible speci-

cation system that permits an elaborate description of the
manner in which the PPI data was derived experimentally,
o�en including links directly to the concluding evidence from
the literature [75]. �e database of interacting proteins (DIP)
is another database of experimentally determined protein-
protein binary interactions [36].�ebiological general repos-
itory for interaction datasets (BioGRID) is a database that
contains protein and genetic interactions among thirteen

di�erent species [70]. Interactions are regularly added
through exhaustive curation of the primary literature to the
databases. Interaction data is extracted from other databases
including BIND and MIPS (Munich Information Center for
protein se quences) [90], as well as directly from large-scale
experiments [72]. HitPredict is a resource of high con
dence
protein-protein interactions from which we can get the total
number of interactions in a species for a protein and can view
all the interactions with con
dence scores [71].

�e Molecular Interaction (MINT) database is another
database of experimentally derived PPI data extracted from
the literature, with the added element of providing the weight
of evidence for each interaction [72]. �e Human Protein
InteractionDatabase (HPID)was designed to provide human
protein interaction information precomputed from exist-
ing structural and experimental data [91]. �e information
Hyperlinked over Proteins (iHOP) database can be searched
to identify previously reported interactions in PubMed for a
protein of interest [92]. IntAct [73] provides an open source
database and toolkit for the storage, presentation, and anal-
ysis of protein interactions. �e web interface provides both
textual and graphical representations of protein interactions
and allows exploring interaction networks in the context of
the GO annotations of the interacting proteins. However,
we have observed that the intersection and overlap between
these source PPI databases is relatively small. Recently, the
integration has been done and can be explored in the web
server called APID (Agile Protein Interaction Data Analyzer)
which is an interactive bioinformatics’ web tool developed to
allow exploration and analysis of currently known informa-
tion about protein-protein interactions integrated anduni
ed
in a common and comparative platform [74]. �e Protein
Interaction Network Analysis (PINA2.0) platform is a com-
prehensiveweb resource, which includes a database of uni
ed
protein-protein interaction data integrated from sixmanually
curated public databases and a set of built-in tools for network
construction, 
ltering, analysis, and visualization [76]. �e
databases and number of interactions were tabled in Table 3.

7. Conclusion

While available methods are unable to predict interactions
with 100% accuracy, computational methods will scale down
the set of potential interactions to a subset of most likely
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interactions. �ese interactions will serve as a starting point
for further lab experiments. �e gene expression data and
protein interaction data will improve the con
dence of
protein-protein interactions and the corresponding PPI net-
work when used collectively. Recent developments have also
led to the construction of networks having all the protein-
protein interactions using computational methods for signal
transduction pathways and protein complex identi
cation in
speci
c diseases.
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