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Protein–protein interactions, a key to almost any biological process, are mediated by molecular mechanisms that are
not entirely clear. The study of these mechanisms often focuses on all residues at protein–protein interfaces. However,
only a small subset of all interface residues is actually essential for recognition or binding. Commonly referred to as
‘‘hotspots,’’ these essential residues are defined as residues that impede protein–protein interactions if mutated. While
no in silico tool identifies hotspots in unbound chains, numerous prediction methods were designed to identify all the
residues in a protein that are likely to be a part of protein–protein interfaces. These methods typically identify
successfully only a small fraction of all interface residues. Here, we analyzed the hypothesis that the two subsets
correspond (i.e., that in silico methods may predict few residues because they preferentially predict hotspots). We
demonstrate that this is indeed the case and that we can therefore predict directly from the sequence of a single
protein which residues are interaction hotspots (without knowledge of the interaction partner). Our results suggested
that most protein complexes are stabilized by similar basic principles. The ability to accurately and efficiently identify
hotspots from sequence enables the annotation and analysis of protein–protein interaction hotspots in entire
organisms and thus may benefit function prediction and drug development. The server for prediction is available at
http://www.rostlab.org/services/isis.
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Introduction

Interactions of proteins are at the heart of almost every
biological process. Thus, the understanding of biological
mechanisms requires the knowledge of protein–protein
interactions and the molecular principles that underlie them.
Large-scale studies unravel networks of protein–protein
interactions in cells and identify interacting pairs of proteins
[1–5]. However, to fully understand these interactions, and to
manipulate them, we need to identify the residues that
account for binding of the proteins and stabilizing the
complexes. It has been postulated that only very few of the
residues in protein–protein interfaces are absolutely essential
for the interaction (in a typical 1,200- to 2,000-Å2 interface,
less than 5% of interface residues contribute more than 2
kcal/mol to binding. In small interfaces, this can mean as few
as one amino acid on each protein) [6]. These residues may be
instrumental in understanding the interaction and could be
desired drug targets [7].

The ability to predict hotspots on a large scale may assist in
identifying, analyzing, and comparing binding sites for drugs.
Given a detailed 3-D structure of a complex, the residues
crucial for binding are often identifiable. The Hendrickson
lab, for instance, identified the most essential binding
residues from their 3-D structure of HIV glycoprotein
(gp120) and CD4 receptor [8]. Unfortunately, 3-D structures
are available for less than 1% of all known pairs of interacting
proteins. In the absence of 3-D structures, the most
conclusive way to probe the importance of particular
residues for interaction is to experimentally mutate them,
typically to alanine, and measure the effect of this sub-
stitution on the interaction [9,10]. Many experiments have
demonstrated that most interface residues could be mutated

without affecting the affinity of the protein to its partners
[11,12]. Those few residues that, upon mutation, change the
affinity are often assumed to be the most essential for the
interaction and are deemed ‘‘hotspots’’ [6]. The limited
overlap between interface residues and hotspots is demon-
strated in Figure 1, which depicts the complex of the human
growth hormone and its receptor [13]. In the bound state
(Figure 1A), a large patch on the surface of the receptor is
buried in the interface. There are 31 residues on the receptor
that are in physical contact with a hormone (Figure 1B).
However, mutation experiments indicate that only six of
these residues are energetically crucial for the interaction
(Figure 1B).
The ways to identify hotspots have been subject to

theoretical debates. It has been pointed out that given the
structural and physicochemical complexity of proteins, the
physicochemical features of a protein are not a simple sum of
the features of its individual residues [14]. Therefore, single
mutations may not always convey accurate assessments of the
contribution of a residue to the interaction [15,16]. The
theoretical validity of this argument notwithstanding, alanine
scans have become the most widely used tool for identifying
binding sites. While single mutations may not be tantamount
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to isolating the contribution of a single residue to the
interaction, they are still considered a good approximation.
Here, we adopt the following operational definition: if a
mutation of a residue in a protein–protein interface changes
the binding energy of the protein to its binding partner

substantially (DDG . 2.5 kcal/mol), then this residue is a
hotspot residue.
To the best of our knowledge, there is currently no method

that was designed to identify hotspots from sequence.
However, many methods attempt to use sequence or
structure to identify which residues are located in the
interface between proteins [17–32]. Many of the methods
that identify residues in protein–protein interfaces reach
impressive levels of positive accuracy (residues correctly
predicted to be in protein–protein interfaces as a fraction
of all residues predicted to be in protein–protein interfaces;
often also referred to as selectivity, or precision; Equation 1).
However, their coverage (residues correctly predicted in
interfaces as percentage of observed interface residues; often
also referred to as sensitivity, or recall; Equation 2) remains
fairly low. In other words, although these methods attempt to
identify all interface residues (all the residues that are colored
blue or red in Figure 1B), they capture only a small fraction of
them (e.g., only the green residues in Figure 1C). We
hypothesized that the reason for the low coverage of many
prediction methods might be that the residues that are missed
are more similar to the general population of surface residues
than to the essential residues (i.e., they are inconsequential
for the interaction). Therefore, a machine-learning algorithm
trained on all protein–protein interface residues may learn to
disregard the non-hotspot residues as noise, and identify only
hotspot residues as the signal to be learned.

Figure 1. Protein–Protein Interfaces, Hotspots, and Predictions

Residues that are part of protein–protein interfaces often constitute a large fraction of the protein. Hotspot residues, namely residues that upon
mutation hamper the interaction, are only a small fraction of these interface residues. Interestingly, methods designed to predict interface residues
usually capture only a small fraction of them.
(A) Human growth hormone (yellow) bound to the extracellular portion of its homodimeric receptor.
(B) The chains of the receptor (gray) are 201 residues long. The protein–protein interface covers 31 of these residues (blue and red) on each of the
chains. Mutating one of the six residues colored in red abrogates or severely hampers the interaction.
(C) A prediction method (ISIS; see text) that was designed to identify all interface residues managed to capture only five of the interface residues
(colored green).
doi:10.1371/journal.pcbi.0030119.g001
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Author Summary

Interactions between proteins underlie all biological processes.
Hence, to fully understand or to control biological processes we
need to unravel the principles of protein interactions. The quest for
these principles has focused predominantly on the entire interfaces
between two interacting proteins. However, it has been shown that
only few of the interface residues are essential for the recognition
and binding to other proteins. The identification of these residues,
commonly referred to as binding ‘‘hotspots,’’ is a first step toward
understanding the function of proteins and studying their
interactions. Experimentally, hotspots could be identified by
mutating single residues—an expensive and laborious procedure
that is not applicable on a large scale. Here, we show that it is
possible to identify protein interaction hotspots computationally on
a large scale based on the amino acid sequence of a single protein,
without requiring the knowledge of its interaction partner. Our
results suggest that most protein complexes are stabilized by similar
basic principles. The ability to accurately and efficiently identify
hotspots from sequence enables the annotation and analysis of
protein–protein interaction hotspots in an entire organism and thus
may benefit function prediction and drug development.

Predicting Hotspots from Sequences



To test this hypothesis, we applied ISIS, a prediction
method developed for the prediction of all interface residues
[28], to the task of predicting only hotspots. ISIS was never
trained on hotspots (Methods). Instead, we trained on all
interface residues found in Protein Data Bank (PDB)
complexes (i.e., all interface residues were labeled ‘‘positive,’’
and all other residues were labeled ‘‘negative’’). The features
on which ISIS was trained included the sequence environ-
ment of each residue (four residues on each side), the
evolutionary profile of all nine residues in that window, the
predicted solvent accessibility of the residue and the solvent
accessibility of its immediate sequence environment (one
residue on each side), the predicted secondary structure state
of the residue and its immediate sequence environment (one
residue on each side), and a conservation score for each
residue. Like several other methods mentioned above, ISIS
predicts residues in protein–protein interfaces very accu-
rately (;90% accuracy). However, at this high level of
accuracy, ISIS identifies fewer than 5% of the residues that
were experimentally mapped to the interface.
The novelty here is that we applied a generic interface-

prediction method to the specific task of identifying only the
residues that are crucial for stabilizing the interactions (i.e.,
the hotspots). The results demonstrated a surprising overlap
between two principally unrelated datasets, namely on the
one hand the subset of residues that was identified by
experimental alanine mutations as hotspots, and on the other
hand the subset of residues predicted by ISIS to be protein–
protein interface residues. We obtained a large dataset of
hotspots that were determined experimentally through
alanine scans (Methods) and assessed the performance of
ISIS on these hotspots. The results confirmed our hypothesis
that the residues predicted by the machine-learning method
are, in fact, the hotspots. Analysis of the results indicated that
accurate predictions of hotspots required the combination of
sequence features, evolutionary information, and predicted
structural features; all this information was generated from
the amino acid sequence, suggesting that the commonalities
of hotspots have been imprinted clearly onto amino acid
sequences in the course of evolution.

Results

Using 296 point mutations from 30 proteins, we compared
the residues predicted by ISIS with the ones experimentally
identified to be hotspots (Methods). We first analyzed the
results for two representative examples. Then, we assessed the
performance in predicting hotspots based on the analysis of
the entire dataset of 296 mutations. Note that although the 3-
D structures for most of these proteins were experimentally
known, ISIS predicted interface residues from sequence

Figure 2. Accuracy of Prediction of Hotspots

The ability to identify the residues that account for most of the energy of
binding is assessed both on particular proteins and on a large dataset of
alanine scans.
(A) Alanine scans and predictions of essential interface residues in the V1
domain of CD4. The red rectangles (above sequence) mark positions that
were shown to have significant effect on the affinity of the binding
between CD4 to gp120 upon substitution to alanine [33]; the same
residues are colored in red on the lower left surface representation of
CD4 (PDB ID 1wiq_A). The green rectangles (below sequence) mark
positions predicted to participate in a protein–protein interaction; these
residues are also colored in violet on the lower right. Note that five of the
residues predicted in interfaces were not mutated in the alanine scan.
Thus, we cannot evaluate their correctness and left them out of this
analysis.
(B) Hotspots experimentally observed and predicted for the shaker
voltage-gated potassium channel. All predictions and experimental
substitutions [34] for this stretch are reported in this figure.
(C) Accuracy versus coverage in predicting hotspots and interface
residues. The performance of ISIS (green) and random assignment (red)

using 296 alanine scans as gold standard. The data were compiled for a
set of proteins that was not used for developing the method. The
stronger the confidence in our prediction, the higher the accuracy and
the lower the coverage (i.e., when we select the strongest predictions
[moving upward in the figure], most of these are correct). With an
accuracy of approximately 0.61 (righthand side of the plot), ISIS correctly
predicted most of the interacting residues in our test set. The
performance of ISIS in the task for which it was originally developed,
namely predicting all interface residues (broken blue), is substantially
worse than its performance on hotspots.
doi:10.1371/journal.pcbi.0030119.g002
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alone. At no stage of the predictions did we use the
experimentally determined structure. The only way in which
we used 3-D information was to visualize our results, as we
mapped the predictions to the experimentally determined
structure (Figure 2).

HIV gp120/CD4 Receptor Complex
One of the most comprehensive alanine scans of all the

complexes with known 3-D structures is that between the
CD4 receptor and the HIV glycoprotein gp120. This
interaction involves backbone interactions, mainly on the
gp120 side. However, we focused our analysis on the human
CD4 receptor. Ashkenazi et al. [33] sequentially mutated
many residues in the V1 domain of the CD4 receptor and
studied the effect of each substitution on the binding
affinity between CD4 and the HIV gp120 protein. Using a set
of specific antibodies, they also assessed which mutation had
no effect on the structure. They identified 25 positions
within a stretch of 94 residues on CD4 that upon
substitution changed the affinity of CD4 substantially,
without strongly altering the conformation of the protein.
Within the same 94-residue segment (Figure 2A), we
predicted 30 residues as interface residues; 19 of these were
found experimentally to have a strong effect on binding. Of
the six residues that ISIS missed, four were next to predicted
interface residues. Five of the predictions that were not
confirmed experimentally were residues that were not
mutated in the study. Our method uses predicted structural
features (solvent accessibility and secondary structure).
Hence, its performance depends to some extent on the
accuracy of these predictions. If we have a 3-D structure of
the unbound chain, we can improve accuracy and coverage
by using the experimental rather than the predicted
features. For example, when we used the unbound structure
of CD4 as input for ISIS, we found a few additional residues
that were not identified from sequence alone. The two
residues that scored highest (i.e., about which we were most
confident that they participate in binding) were Arg59 and
Phe43. The high-resolution structure of the complex
between gp120 and CD4 complex [8] revealed two residues
as the most important contacts between these two proteins:
Arg59 and Phe43.

Voltage-Gated Potassium Channel
For a variety of reasons, membrane proteins are a

particularly popular target for alanine scans. One such
alanine scan is available for the shaker voltage-gated Kþ

channel [34]. Within a region of 29 consecutive residues that
have been scanned, eight have a significant effect on the
affinity of the channel to its inhibitors agitoxin2 and
charybdotoxin. We used this region as input to our method,
ignoring any available structural information, and predicted
13 residues (Figure 2B). Seven of the eight residues that were
found experimentally were predicted by ISIS; the only
residue that was missed is buried in the structure and hence
is likely to affect the interaction indirectly through a
conformational change. Of the six residues in our prediction
that did not coincide with the residues implicated as
important by the alanine scanning, five coincided with
positions that were found to have significant although less
dramatic effects on binding [34].

Performance over Entire Dataset
Within our set of alanine scans, almost all binding residues

predicted by ISIS were found experimentally to have
significant effect on binding (Figure 2C). Furthermore, more
than 90% of the negative predictions (predicted not to be
involved in protein–protein interactions) were confirmed
experimentally to have no effect on the energy of binding.
These results were particularly surprising in light of the fact
that ISIS never explicitly evaluated any energetic parameters.
Using different confidence thresholds (i.e., picking a different
point on the curve in Figure 2C), it is possible to increase
accuracy (true positives/all positives) at the expense of
coverage (true positives/predicted positives). Note that the
results for the two examples (Figure 2A and 2B) discussed in
detail are similar to the performance of ISIS on the entire
dataset of 296 mutations.

Discussion

Hotspots Are Easy To Identify but Hard To Define
We used ISIS to represent methods that predict interface

residues at high accuracy and low coverage. The results
suggested that the system of neural networks that underlies
ISIS learned to identify the hotspots, despite the fact that
they were only a small subset of the samples that were labeled
as interaction residues. The system effectively disregarded
most of the residues observed in interface (i.e., the pupil
[neural network] clearly ignored the teacher [labeled data]).
We found that the residues ignored were mostly non-hotspot
residues. These results indicated that the biophysical com-
mon denominators of hotspots are so pronounced that the
neural networks could identify them without specific labeling
in the training phase.
What are these features that are common to hotspots?

Unfortunately, we cannot simply list a few rules or features
to describe these commonalities. The neural networks
identified a set of complex nonlinear correlations between
the input features we used and hotspot residues. It is
impossible to translate the subtle and complex dependencies
that were identified by the neural networks into simple
explanations, or a set of rules, in English. However, it is
possible to infer which features are more or less relevant. To
that end, we trained several systems using different combi-
nations of input features. Neural networks that were trained
only on the sequence environment of interface residues
performed only slightly (although significantly) better than
random (unpublished data). Adding evolutionary informa-
tion significantly improved performance on both interface
residues and on hotspots. This result was somewhat surpris-
ing given that the conservation of predicted hotspots was
only marginally different from that of all other residues
(Figure 3). Conversely, predicted non-hotspot residues were
only marginally less conserved than the background. In other
words, although the overall difference in conservation was
marginal, the addition of this information to the neural
network input substantially improved performance. Appa-
rently, the neural networks have learned to distinguish
between conservation that is indicative of hotspots, and
conservation that is not. Strikingly, they did so without being
trained on hotspots. This underscores why linear combina-
tions of input features did not suffice and why the extraction
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of singly important commonalities would at best be mislead-
ing.

The analysis of the contribution of each feature suggested
that successful predictions of hotspots required the combi-
nation of all features. However, even when some of these
features were not available, ISIS still could provide accurate
predictions (e.g., 15% of the proteins found less than ten
homologues in today’s databases). For these proteins, the
success in predicting hotspots was lower, but still significantly
higher than random (at 70% positive accuracy, .10% of the
experimentally determined hotspots were identified com-
pared with about 70%/20% for all proteins; Figure 2).

Successful Hotspot Predictions Require Specific In Silico
Tools

We did not benchmark the ability of prediction methods
other than ISIS to predict hotspots. The main reason was that
no existing method (including ISIS) was designed to predict
hotspots. The ability of ISIS to identify hotspots is an
unintended consequence of the power of neural networks.
Therefore, when comparing ISIS with other methods, one
should remember that this comparison does not benchmark
these methods in the task for which they were originally
developed. Still, the question remains of whether or not any
method designed to predict interface residues could predict
hotspots at levels of accuracy as high as the ones we reported
for ISIS. To address this question, we applied a few

representative interface prediction methods to the task of
predicting hotspots. In particular, we chose methods that rely
on a different input feature. Analysis of the results indicated
that methods that did not rely on a combination of
physicochemical features, evolutionary conservation, and
structural features failed to identify hotspots.

What Does It Take To Predict Hotspots?
We applied several prediction methods that were designed

to identify interface residues to the task of predicting
hotspots. To eschew obfuscation: our aim was not to bench-
mark methods not designed to identify hotspots. Instead, we
applied these methods to narrow down the features needed to
successfully predict hotspots.
The evolutionary trace (ET) method [35] correlates evolu-

tionary importance of residues with their importance for
function. We used ET to represent the approach that relies
predominantly on evolutionary conservation. Gallet et al. [22]
have attempted to predict interaction sites from simple
biophysical features; the method computes the hydrophobic
moment [36] around each residue based on its sequence
environment to determine whether this residue could be a
binding site. ProMate [26] extracts its input from the 3-D
structure of an unbound protein; we used it to represent
methods that rely on experimentally determined 3-D struc-
tures. We also included another method that predicts
interfaces exclusively using amino acid information (and no
aspects of predicted structure or evolutionary profiles) [29].
We arbitrarily chose the operating point at which the
coverage of hotspots was 15% (Methods) and checked the
accuracy of each method for this coverage (Figure 4). ISIS and

Figure 4. Accuracy of Prediction of Hotspots at Coverage Levels of 15%

Several approaches were introduced in the past for the prediction of
interface residues. We applied methods that rely on different features to
the task of predicting hotspots (to which none of them was optimized).
The hydrophobic moment method represented the approach that relies
exclusively on local physicochemical factors. The evolutionary approach
was represented by the ET method, which relies on conservation to
identify functionally important residues. A knowledge-based tool we
introduced in the past represented the sequence-only approach. Finally,
ProMate, a method for predicting interaction sites from unbound
structures, represented the structure-based approach.
doi:10.1371/journal.pcbi.0030119.g004

Figure 3. The Common Features of Hotspots Are Hard To Identify

without Machine Learning

Physicochemical, structural, and evolutionary features differentiate
hotspots from other residues. However, while each of these features is
crucial for the success of the prediction, a simple, linear combination of
them will not suffice. The distributions of residue conservation (x-axis,
HSSP [46] conservation score) are compared between the entire
sequences of the proteins in the dataset (black circles), hotspots (blue
diamonds), and residues with no effect (measured by alanine scans) on
protein–protein binding (red triangles). The y-axis gives the fraction of
residues with a given level of conservation. The differences are marginal,
but the overall effect of conservation on the prediction is substantial.
doi:10.1371/journal.pcbi.0030119.g003
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ProMate, the two methods that were most successful, use
physicochemical features, evolution, and structural features.
ISIS is the only sequence-based method, and the structural
features it uses are based on predictions. ProMate, which
relies on the 3-D structure, performed even better. The
conclusion of this analysis is that no single feature suffices to
characterize hotspots. Rather, it takes a complex combination
of the aforementioned features that defines a residue as a
hotspot.

How Hotspots Differ from Other Interface Residues
It is apparent that the neural networks identified some

common denominators between hotspots that distinguish
them from other interface residues. This question is hard to
address given our current gold standard (namely the dataset
of experimental alanine scans). The number of features we
use for the prediction (189) is greater than the number of
positive data points in our set of alanine scans. To determine
to what extent each input feature differentiates between
hotspots and other interface residues, we need a substantially
larger dataset of hotspots and non-hotspot residues. This
could be achieved if we assume that ISIS indeed identifies
hotspots. Thus, by running ISIS on a large dataset of interface
residues, we can create a large dataset of predicted hotspots
and a large dataset of interface residues that are predicted
not to be hotspots. Then, we can use these large datasets to
analyze the characteristics of hotspots versus the character-

istics of other interface residues. We did this using the large
dataset of interface residues that was used as a test set for
training ISIS. On this dataset we compared the residues that
were classified by ISIS as positive (i.e., hotspots) with those
that are annotated experimentally as interface residues but
are classified by ISIS as negatives. Table 1 is based on the
multiple sequence alignment of each protein in this dataset.
For each interface residue, it shows the average occupancy of
its position by each type of amino acid. We also present the
average occupancy of each residue in the alignment for
experimentally determined hotspots (through alanine scan).
These values are presented in parentheses, as the data that
underlie them are sparse (only 100 positions). Note that for
some amino acids there are significant differences between
hotspot and non-hotspot interface residues, while for others
there are no substantial differences. Table 1 also presents the
p-value for the difference based on a t-test. Note, for example,
the 400% overrepresentation of arginine in predicted
hotspots (and the extremely low p-value) with reference to
other interface residues. However, the percentages of lysine
are virtually the same for both categories. Thus, it is not
simple considerations of hydrophobicity that characterize
hotspots. Four aliphatic residues are depleted in hotspots (A,
V, I, and L), while amide side chains are overrepresented (N
and Q). However, the role of aromatics is unclear since
tyrosine is enriched in hotspots, phenylalanine is depleted,
and tryptophan has similar propensities across the interface.
The experimental values (shown in parentheses) are very
close to the values obtained for the predicted hotspots,
supporting our assumption that ISIS identifies hotspots.
However, the limited amount of experimental data limits our
ability to elaborate on this comparison. We also compared
the conservation and the structural features of both groups.
As shown in Figure 3, there were hardly any differences in
conservation. However, the most striking differences were
found between structural features (Table 2). The secondary
structure state of 39% of the non-hotspot interface residues
was a loop. In the predicted hotspots, on the other hand, 57%
of the residues were in a loop state. In both categories, the
rest of the residues were divided roughly equally between
helices and strands. Again, there is a striking agreement
between the properties of predicted hotspots and the
properties of experimental hotspots, despite the fact that
ISIS was trained on all interface residues. Predicted hotspots

Table 1. Position Occupancy in Hotspots versus the Rest of the
Interface

Amino Acid Interface Residues

(Average Percentage of Occurrence)

p-Value

Non-Hotspots Predicted Hotspots

(Alanine Scan)

I 7.22 2.37 (2.26) 10�90

V 7.77 3.05 (3.54) 10�82

L 10.6 4.63 (4.51) 10�68

R 3.28 12.7 (12.6) 10�62

A 7.9 4.74 (3.67) 10�25

Y 3.07 7.32 (8.15) 10�20

N 3.5 6.33 (7.31) 10�16

F 4.99 2.95 (2.59) 10�12

E 6.58 4.57 (7.05) 10�11

D 4.67 7.33 (9.4) 10�10

G 6.36 8.82 (4.15) 10�7

H 2.19 3.44 (2.46) 10�6

Q 3.3 4.22 (2.62) 10�4

P 4.63 5.89 (3.62) 10�3

C 2.66 1.89 (1.1) 10�3

T 5.82 5.01 (3.56) 0.01

M 2.43 2.16 (1.03) 0.21

W 1.67 1.45 (1.33) 0.34

S 6.32 6.10 (8.74) 0.46

K 5.13 5.08 (8.67) 0.86

We obtained a multiple sequence alignment for each protein in our dataset. Then, for
each residue that is observed to be part of a protein–protein interface, we calculated the
average percentage of occupancy for each amino acid in the multiple sequence
alignments. We then differentiated between interface residues that were predicted by ISIS
to be positive (hotspots) and interface residues that were predicted to be negative (non-
hotspots). In parentheses, we present the value for the experimentally detected hotspots.
The p-value of a t-test (for the significance of the difference between predicted hotspots
and non-hotspots) is presented in the last column.
doi:10.1371/journal.pcbi.0030119.t001

Table 2. Secondary Structure in Hotspots versus the Rest of the
Interface

Secondary Structure Interface Residues (Percent)

Non-Hotspots Predicted Hotspots

(Alanine Scan)

Helix 29.6 21.4 (23.7)

Strand 29.9 21.2 (22.5)

Loop 39.9 57.4 (53.8)

We recorded the secondary structure state of each residue in the interface and then
compared the percentage of residues in each state between residues that were predicted
to be hotspots and the rest of the interface residues. We also recorded the secondary
structure state of residues that were observed experimentally to be a hotspot (in
parentheses).
doi:10.1371/journal.pcbi.0030119.t002
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were also much more accessible to solvent than other
interface residues.

Are All Hotspots Similar?
Several studies suggested that hotspots have certain

structural characteristics that differentiate them from other
residues [37,38]. The Baker lab has shown that given a 3-D
structure of a protein complex, it is possible to predict the
results of alanine scans specifically and accurately [39,40]. This
indicates that alanine scans indeed capture some genuine
physicochemical commonalities of interaction hotspots that
could be identified by a general method that is applicable to
all protein complexes. The in silico alanine scanning is based
on analysis of the 3-D structure of the interface between two
proteins. Thus, it requires a high-resolution structure of the
protein complex, while ISIS needs only sequence of a single
chain regardless of its binding partner. On the other hand, in
silico alanine scanning produces numerical prediction of the
DDG, While ISIS produces a binary prediction (hotspot/non-
hotspot). We compared our predictions to those of the in
silico alanine scanning by translating their numerical pre-
dictions to binary ones according to cutoffs defined above. Of
55 experimental mutations with DDG . 2.5, in silico alanine
scanning identified 36 (66%) residues as hotspots. At this
coverage, ISIS reached accuracy of about 60% while the in
silico alanine scanning reached accuracy of greater than 75%.
Scaled to an accuracy of 80%, ISIS identified 18 of these
mutations (33%). Thus, for similar levels of positive accuracy,
the coverage of ISIS is roughly half that of the in silico alanine
scanning. Obviously, when structures of the complex are
available, the in silico alanine scan is a powerful tool for
identifying hotspots. However, when only the sequence is
available, ISIS can provide accurate predictions for a
substantial fraction of the hotspots. Our results indicate that
some hotspots can be predicted accurately not only without
relaying the 3-D structure of the complex but even without the
3-D structure of the unbound proteins. Furthermore, our
predictions did not require knowledge of the binding partner.
Analyzing a single protein using ISIS typically requires a few
minutes. Thus, ISIS may allow large-scale analysis of hotspots
at a relatively small CPU cost.

Methods

Dataset. We used the ASEdb database of experimental alanine
scans [12], which lists residues that were mutated to alanine and the
effect (in terms of DDG) this mutation had on the interaction between
two proteins. We checked the correlation between the predictions
and the residues that were shown experimentally to substantially
affect the affinity of the proteins in a complex to each other. In order
to reduce the number of cases in which the effect of the mutation on
binding was not due to a change in the interface (e.g., the cases in
which the mutation destabilized the structure), we considered only
exposed residues in proteins of known structure. Thus our test set
included 80 protein chains with hundreds of experimental substitu-
tions. From among these, we analyzed the mutations that substantially
changed the binding energy (DDG . 2.5 kcal/mol), and those that had
no effect (DDG ¼ 0). Altogether, we attempted to predict the
experimental effect of 296 substitutions. The predictions were
performed using ISIS [28]. ISIS can take as input either sequence
or the coordinate of 3-D structure of unbound chains (the results are
more accurate when using known 3-D structures). However, for all
values reported here, we ran ISIS from sequence alone.

Measuring performance. The accuracy and coverage of ISIS were
measured using ratios derived from TP (true positives), defined as the
number of residues predicted by ISIS (below) to be in a protein–
protein interface and observed to be in a hotspot (i.e., was found to

have an extreme effect on binding; DDG . 2.5kcal/mol); FP (false
positives), defined as the number of residues predicted in protein–
protein interfaces, were found however, upon mutation, to have no
effect on binding (DDG¼ 0); and FN (false negatives; i.e., the number
of residues predicted not to be in a protein–protein interface that
were observed to have a strong effect on binding [DDG . 2.5 kcal/
mol]). We used the following equations:

ACC ¼ AccuracyðprecisionÞ ¼ TP
TP þ FN

ð1Þ

COV ¼ CoverageðrecallÞ � TP
TP þ FV

: ð2Þ

ISIS. ISIS is a knowledge-based method we developed to identify
interface residues from sequence [28]. It is based on a system of neural
networks and uses as input the sequence environment of each residue,
its evolutionary profile (the frequency of each type of amino acid in a
given position of the alignment), and its predicted secondary structure
and accessibility to the solvent. In particular, when a sequence is
submitted as a query, ISIS runs PSI-BLAST [41], generates a multiple
sequence alignment, and produces an evolutionary profile for each
residue. These data are then sent to PROF [42], a system of neural
networks that predicts the secondary structure state and the solvent
accessibility of each residue. Finally, the sequence environment, the
evolutionary profile, and the predicted structural features serve as
input to another neural network, which annotates each residue as
interface or noninterface. ISIS was trained on a nonredundant version
of all transient protein–protein interfaces [27] in the PDB. (The 3-D
structures were used only to identify the residues spatially in the
interface. No experimental 3-D information was used for training.)

Training the neural network: First-level prediction. We trained
standard feed-forward neural networks with back-propagation and
momentum terms on windows of nine consecutive residues. A
window was defined as positive if the central residue had any atom
that was within 6 Å of any atom in a different protein. This yielded a
set with 59,559 positive samples. We trained on two-thirds of the data
and tested it on the remaining one-third.

Second-level refinement filter. Next, we filtered the raw network
predictions. Our analysis of protein interfaces at the sequence level
suggested that most interacting residues have other interacting
residues in their sequence neighborhood. Therefore, we eliminated
predictions with fewer than seven raw predictions within ten adjacent
residues (five on either side).

Random model. To obtain the expected coverage and accuracy at
random, we reshuffled the predictions in the following way: each
protein was represented by two strings of the same length, one
representing its sequence and the other representing the predictions
(‘‘P’’ for an interacting residue, ‘‘–’’ for a noninteracting residue).
Then, we split the prediction string in half and assigned the
predictions of the first half of the sequence to the second and vice
versa. This process accounted for any size effect that could be caused
by the number of predictions and for any effect caused by the
heterogeneous distribution of contacting residues along the se-
quence. Furthermore, it enabled us to find a specific expectation for
each scaling of the prediction. We generated different random
models for different values of the receiver operating characteristic
(ROC)–like curve (Figure 2C). Our background model captured how
random our predictions were rather than how well we could predict
interface residues at random.

No overlap between datasets used for development and for
assessment. ISIS was developed on a dataset of 1,134 chains in 333
complexes that contained 59,559 residue contacts. In the assessment
of ISIS, no sequence that was used for training had any significant
similarity for any of the sequences that were used for testing. That is,
no protein in the test set could have been modeled by any protein in
the development sets by homology-based predictions [43,44].

Implementing and applying other methods.We chose methods that
represent the variety of approaches for predicting interaction sites.
ProMate [26] is a structure-based method that extracts features from
an unbound chain and uses them to predict the binding site. We also
chose three sequence-based methods: a sequence-only method [28],
an evolutionary-based method (ET [35,45]), and a biophysics-based
method (hydrophobic moment [22]). The first two were available as
servers for public use. The hydrophobic moment was not publicly
available; thus, we implemented it for the purpose of this analysis. We
chose an operating point of coverage equal to 15%, which was the
highest coverage reached by the hydrophobic moment tool.

Comparing hotspots with other interface residues. We used the
dataset of interface residues that was used to test ISIS originally [28].
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In this dataset there are more than 20,000 interface residues, 2,182 of
which were classified by ISIS as positive. Attempting to zoom in on
the differences between hotspots and other interface residues, we
compared the features of these 2,182 residues with the features of the
residues that were classified as negative. The results of the
comparison for amino acids are presented in Table 1, and are based
on the evolutionary profile we used for prediction. For each interface
residue, we used a multiple sequence alignment to check how often
each residue is present in this position. We performed the same
analysis for all the positions that were found experimentally, by
alanine scanning, to be hotspots. Table 1 shows the average
percentage occupancy of each amino acid in all positively predicted
positions in all negatively predicted interface residues.
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