
Protein–protein interaction prediction
based on ordinal regression and recurrent
convolutional neural networks

Weixia Xu1, Yangyun Gao2, Yang Wang3 and Jihong Guan3*

From 19th International Conference on Bioinformatics 2020 (InCoB2020)
Virtual. 25-29 November 2020

Abstract

Background: Protein protein interactions (PPIs) are essential to most of the biological

processes. The prediction of PPIs is beneficial to the understanding of protein functions

and thus is helpful to pathological analysis, disease diagnosis and drug design etc. As

the amount of protein data is growing fast in the post genomic era, high-throughput

experimental methods are expensive and time-consuming for the prediction of PPIs.

Thus, computational methods have attracted researcher’s attention in recent years.

A large number of computational methods have been proposed based on different

protein sequence encoders.

Results: Notably, the confidence score of a protein sequence pair could be regarded

as a kind of measurement to PPIs. The higher the confidence score for one protein pair

is, the more likely the protein pair interacts. Thus in this paper, a deep learning frame-

work, called ordinal regression and recurrent convolutional neural network (OR-RCNN)

method, is introduced to predict PPIs from the perspective of confidence score. It

mainly contains two parts: the encoder part of protein sequence pair and the predic-

tion part of PPIs by confidence score. In the first part, two recurrent convolutional

neural networks (RCNNs) with shared parameters are applied to construct two protein

sequence embedding vectors, which can automatically extract robust local features

and sequential information from the protein pairs. Based on it, the two embedding

vectors are encoded into one novel embedding vector by element-wise multiplication.

By taking the ordinal information behind confidence score into consideration, ordinal

regression is used to construct multiple sub-classifiers in the second part. The results of

multiple sub-classifiers are aggregated to obtain the final confidence score. Following

that, the existence of PPIs is determined by the confidence score. We set a threshold θ ,

and say the interaction exists between the protein pair if its confidence score is bigger

than θ.

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

https://doi.org/10.1186/s12859-021-04369-0

*Correspondence:

jhguan@tongji.edu.cn
3 Department of Computer

Science and Technology,

Tongji University, No.

4800 Caoan Road,

Shanghai 201804, China

Full list of author information

is available at the end of the

article

BMC Bioinformatics

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04369-0&domain=pdf

Page 2 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

Conclusions: We applied our method to predict PPIs on data sets S. cerevisiae and

Homo sapiens. Through experimental verification, our method outperforms state-of-

the-art PPI prediction models.

Keywords: Protein–protein interaction, Confidence score, Ordinal regression,

Recurrent convolutional neural network

Background

Proteins [1, 2] are critical to the cells and tissues in the body. They participate in various

life activities, like antibody immunity, catalyzing metabolic reactions and transporting

molecules, etc. Usually, proteins are associated with other proteins to form the protein

complexes, so as to perform the functions of living organisms in a better way. Among

the protein complexes, protein-protein interactions (PPIs) play a crucial role in success-

fully carrying out different biological processes in cells, such as transcription, transla-

tion, cell cycle control, and secretion [3]. Therefore, the problem of PPI prediction is of

great significance in pathological analysis [4], disease diagnosis [5], drug design [6], and

is becoming a research focus in the field of proteomics.

A large amount of high-throughput experimental methods have been applied to pre-

dict the PPIs from protein complexes, such as Yeast double hybrid screens [7], tan-

dem affinity purification [8, 9], and proteome chips and micro-array technology [10,

11]. However, with the accumulation of protein data, these methods suffer from the

restrictions of time and economic cost, and cannot meet the needs of human life sci-

ence research in the post genomic era. It is also worth noting that due to the existence

of the subjective or objective factors, such as operation error and experimental error,

the experimental results often deviate slightly from the actual results, sometimes even

leading to a large proportion of false positive or false negative experimental data. For

example, there are about 80,000 PPIs predicted by these high-throughput experimen-

tal methods, but only a relatively small number (about 2400) of these PPIs could be

obtained by more than one method [7]. Hence, only using high-throughput experimen-

tal methods would not get high-quality and reliable experimental results. To overcome

these drawbacks, computational methods have attracted researcher’s attention. They

[12] predict the PPIs mainly based on the sequential information of amino acids of pro-

teins. Besides, some other methods [13–15] are based on the structural information, or

based on fusion of multiple information from different data sources. With these infor-

mation, it is also necessary to extract effective features to guarantee good prediction

results. For this purpose, researchers begin to focus on the protein sequence encoding

techniques and the corresponding predicting techniques for PPIs.

Shen et al. [12] introduced a conjoint triad (CT) descriptor, which considered the

properties of each amino acid and its neighbouring amino acids and extracted the fea-

tures of the local environmental information in the amino acid sequence. Gough et al.

[13] proposed a method to describe the amino acid sequence based on the physical and

chemical properties, combined with the structural information of protein. Later based

on the physical and chemical properties of amino acids, Guo et al. [14] established

an auto covariance (AC) encoding method to get the correlation and the interaction

information of amino acids at different positions. For the high dimension of features

of protein sequences, Thanathamathee et al. [15] used a principal component analysis

Page 3 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

algorithm to reduce the dimension first, and then constructed a forward feedback neu-

ral network as a classifier to predict the PPIs. Recently, some deep learning frameworks

were proposed. For instance, Hashemifar et al. [16] presented a Siamese-like convolu-

tional neural network with random projection, and data augmentation technique was

used to extract sequential information in the framework. Li et al. [17] discussed another

deep neural network framework, which learned the local features automatically only

from protein primary sequences, according to the encoding, embedding, convolutional

neural network, and long short-term memory (LSTM) neural network layers.

Notably, confidence score could be regarded as a kind of measurement for PPIs. The

higher confidence score one protein pair gets, the more likely the protein pair interacts.

Thus in this work, we propose a novel method, called ordinal regression and recurrent

convolutional neural network (OR-RCNN), to predict PPIs by confidence score. The

method could be concluded into two parts: (1) an encoder of protein sequence pair

based on recurrent convolutional neural network (RCNN), and (2) PPI prediction model

based on ordinal regression. In order to deal with the protein sequence pair in a better

way, two RCNNs with shared parameters are introduced here. Each RCNN encodes one

of the protein sequence pair into an embedding vector, which integrates multiple convo-

lution layers with pooling and bidirectional gate recurrent unit (GRU) layers with con-

catenate, so as to extract the local features and sequential information more accurately.

An element-wise multiplication is then done on the two embedding vectors, encoding

them into one novel embedding vector. Till now, the encoder of protein sequence pair is

presented, which encodes a pair of protein sequences into one embedding vector aggre-

gating multi-granularity features. In order to predict PPIs, we predict the confidence

score of the embedding vector first. The ordinal information is hidden behind confi-

dence score by means of artificially setting the ordinal sub-intervals of confidence score.

To this end, the concept of rank is used to show the ordinal information, and each sub-

interval is corresponding to a rank value. To efficiently use the ordinal information, ordi-

nal regression is applied here. Based on it, the prediction problem of confidence score

is transformed into a series of binary classification problems. Some multi-layer percep-

trons are utilized in the binary classification to get the ordinal information about rank.

Later, all the ordinal information are aggregated to get the final confidence score of the

protein pair. Finally, whether the interaction between protein pair exists is determined

by its confidence score. Experimental results show that our method could boost the per-

formance of PPI prediction on both the S. cerevisiae and Homo sapiens data sets.

Results

In this section, we first introduce two PPI data sets S. cerevisiae and Homo sapiens. Then,

we give the experimental setting. Finally, the experimental results are presented.

Data sets

The high throughput data sets S. cerevisiae and Homo sapiens are both from STRING

database [18]. There is a confidence score for each pair of protein sequences in S. cer-

evisiae and Homo sapiens. Let CSmin = 0 and CSmax = 1 be the minimal and maximal

values of confidence score for protein pairs, respectively. We separate the interval of

confidence score (0, 1) into K sub-intervals with equal length. Let K = 20 , and the 20

Page 4 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

sub-intervals are (0, 0.05), [0.05, 0.1),…, [0.95, 1). The protein pair is labeled k, if its con-

fidence score belongs to the k-th sub-interval. Thus, both datasets are split into 20 sub-

sets according to the sub-intervals.

We only consider the data with the length of protein sequence between 50 and 2000.

For the data set S. cerevisiae, there are 1584 data in the sub-interval (0, 0.05), and 5360

data in the sub-interval [0.7, 0.75). Considering that there are too many data in the rest

18 sub-intervals, we randomly select 5400 data in each sub-interval. Thus, there are

totally 104144 data actually used in the experiment. For the data set Homo sapiens, since

the true data set is too big, we randomly select 5000 data in each sub-interval in our

experiment. We randomly select 90% data in each sub-interval as the training data, and

the left 10% data as the test data for both S. cerevisiae and Homo sapiens.

Experimental settings

Since the protein sequences have different lengths from 50 to 2000, we extend the short

protein sequence to a sequence with length 2000 by adding zero-padding technique [19].

Let the batch size be 768, and let d = 3 . The 3-max-pooling mechanism is applied in

the pooling layer. The output of bidirectional GRU layer with concatenate operator is a

150-dimension vector.

The AMSGrad algorithm [20] is used to optimize the cross-entropy loss function L

for each sub-classifier. In the algorithm, we set the learning rate to be 0.001, and set the

exponential decay rates of β1 and β2 to be 0.9 and 0.999, respectively.

We first evaluate the performance of each sub-classifier to see if the ordinal informa-

tion about label has been pick up correctly. The evaluation is based on different compari-

son types: comparison of all the sub-classifiers, comparison of pre-trained embedding

methods, selection of key parameters, comparison of computing equation for confidence

score and study on the impact of the ratio of training over test data. Five criterions are

used in the evaluation, including accuracy, precision, sensitivity (recall), specificity and

F1 score. Then, we emphasize the fact that the concatenate operator in our method per-

forms better than the residual shortcut operator. Finally, our method is compared with

some existing methods to show its advantages, based on the mean absolute error (MAE),

mean squared error (MSE) and the above five criterions.

Experimental results

Comparison of sub‑classifiers

The performance of each sub-classifier for OR-RCNN method on data set S. cerevisiae

is shown in Fig. 1. The 19 sub-classifiers have very close performance in accuracy, preci-

sion, sensitivity, and F1 score. For the specificity, the first 5 sub-classifiers perform poorly

while the last 14 sub-classifiers all have good performance. That is, when we get the ordi-

nal information for lower labels, the sub-classifier is not a good choice for specificity,

while for higher labels, it would be much better.

In the rest of the experiments, we will not show the performance for all the 19 sub-

classifier, but show that for only three typical sub-classifiers f5, f10, f15 . The correspond-

ing sub-classification problems are to predict if the label of a protein pair is bigger than

5, 10 and 15, respectively.

Page 5 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

Comparison of pre‑trained embedding methods

We mainly compare three embedding methods: (1) aco ; (2) aeh ; (3) one-hot. Let the half

length C of context be 3, and let the size of negative sampling be 5. The embedding aco

is obtained by pre-training 8000 protein sequences of data set SHS148k from database

STRING. The embedding aeh is directly computed by the electrostaticity and hydropho-

bicity. The one-hot method assigns a 20 dimensional vector to each amino acid.

Fig. 1 Performance of OR-RCNN for each sub-classifier

Table 1 Comparison of performance of pre-trained embedding methods for amino acids for sub-

classifiers f5 , f10 , f15

The values in each column represents the experimental results for each criterion of performance. Maximal values in each

column is shown in bold

Embedding Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1Score (%)

Sub-classifier f5

aco 90.35 93.25 94.42 79.61 93.83

aeh 90.78 93.94 94.21 79.60 94.08

One-hot 89.94 93.28 93.81 77.95 93.55

Sub-classifier f10

aco 89.15 89.24 89.90 89.05 89.57

aeh 88.86 88.85 89.77 88.88 89.31

One-hot 88.39 88.55 89.12 88.22 88.83

Sub-classifier f15

aco 96.17 93.03 92.10 97.25 92.57

aeh 95.51 90.63 92.18 97.25 91.40

One-hot 95.92 92.17 92.07 97.23 92.11

Page 6 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

Table 1 shows the comparison results of performance of different embedding methods

for sub-classifiers f5, f10, f15 on data set S. cerevisiae, respectively. Obviously, the embed-

ding methods aco and aeh get very close results to each other, while they outperform the

one-hot method.

Selection of key parameters

There are two key parameters in the OR-RCNN method: (1) the dimension d′ of hidden

state, (2) the repeated times of RCNN unit. We study how to select the optimal param-

eters for our method.

Let the repeated times of RCNN unit be 5, we compare the prediction results for

different dimensions of hidden state on data set S. cerevisiae. The result are shown in

Table 2 for sub-classifiers f5, f10, f15 , respectively. We examine the performance with

d
′
= 10, 25, 50, 75 for each sub-classifier. As the dimension value increases from 10 to 50,

the performance improves significantly. As it increases from 50 to 75, the performance

improves only a little, or even decreased. Thus in most cases, d′
= 50 is a better choice

for our method.

Given d′
= 50 , we investigate the influence of repeated times for RCNN unit on the

OR-RCNN method. The repeated times is set from 1 to 5. Table 3 shows the compared

results for sub-classifiers f5, f10, f15 on data set S. cerevisiae, respectively. We can see that

the more times the RCNN unit occurs in our method, the better performance it could

achieve. However, when the repeated times range from 1 to 3, our method enhances

the performance rapidly, and when repeated times range from 3 to 5, it enhances very

slowly, or even reduce a little. Hence, we choose the best repeated times of RCNN unit

to 5 in the experiments.

Table 2 Comparison of performance with different dimensions of hidden states for sub-classifiers

f5 , f10 , f15

The values in each column represents the experimental results for each criterion of performance. Maximal values in each

column is shown in bold

Dimension Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1Score (%)

Sub-classifier f5

10 85.98 92.87 88.78 66.04 90.78

25 88.53 92.60 92.70 74.36 92.63

50 90.35 93.25 94.42 79.61 93.83

75 90.18 94.21 93.10 76.84 93.65

Sub-classifier f10

10 79.90 82.59 77.56 77.35 80.00

25 85.22 84.22 87.95 86.40 86.05

50 89.15 89.24 89.90 89.05 89.57

75 88.59 88.02 90.27 89.24 89.13

Sub-classifier f15

10 90.67 87.68 74.42 91.51 80.51

25 94.53 91.11 87.39 95.66 89.21

50 96.17 93.03 92.10 97.25 92.57

75 96.12 92.96 91.99 97.21 92.47

Page 7 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

Comparison of different computing equations for confidence score

The computing equation for confidence score is a critical step in our method. For any

pair of protein sequences, the middle value of sub-interval where the predicted label falls

in is taken to be the confidence score. Here, we compare this equation with other two,

which take two endpoint values in the sub-interval, respectively,

where r̄(xi) is the predicted label for protein pair xi . The compared results are presented

in Table 4 on data set S. cerevisiae. Evidently, the MSE and MAE of our method are both

lower than those of the Eqs. (1) and (2), implying that the selection of computing equa-

tion for confidence score would influence on the performance of OR-RCNN method.

Moreover, the predicted confidence score for Eq. (6) approximates the true value more

closely. Thus, we prefer Eq. (6) than the other two for our method.

(1)CS1(xi) = 0.05 ∗ (r̄(xi) − 1),

(2)CS2(xi) = 0.05 ∗ r̄(xi),

Table 3 Comparison of performance with different repeated times of RCNN unit for sub-classifiers

f5 , f10 , f15

The values in each column represents the experimental results for each criterion of performance. Maximal values in each

column is shown in bold

Times Accuracy (%) Precision (%) Sensitivity (%) Specificity (%) F1Score (%)

Sub-classifier f5

1 82.31 88.55 88.72 60.39 88.64

2 88.19 92.88 91.85 72.59 92.25

3 89.29 93.01 93.23 76.16 93.12

4 90.00 93.47 93.69 77.77 93.58

5 90.35 93.25 94.42 79.61 93.83

Sub-classifier f10

1 78.62 77.10 83.56 80.57 80.20

2 84.86 86.09 84.41 83.58 85.24

3 87.71 88.05 88.25 87.34 88.15

4 88.29 88.27 89.27 88.32 88.77

5 89.15 89.24 89.90 89.05 89.57

Sub-classifier f15

1 81.38 69.28 50.50 84.20 58.42

2 92.30 81.32 91.21 96.79 85.98

3 95.86 91.84 92.21 97.27 92.03

4 95.90 92.70 91.36 97.00 92.03

5 96.17 93.03 92.10 97.25 92.57

Table 4 Comparison of different equations for confidence score

The values in each column represents the experimental results for each criterion of performance. Minimal values in each

column is shown in bold

Eq. MAE (×10
−2) MSE (×10

−2)

CS 6.131 1.155

CS1 6.640 1.161

CS2 6.840 1.191

Page 8 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

Study on the impact of the ratio of training set over test set

Given a data set, we have to split it into two subsets, one is the training set and the other

is the test set. The ratio of training set over test set may influence the performance.

Here, we check the impact of the ratio of training set over test set on performance with

three sub-classifiers f5, f10, f15 , on S. cerevisiae data set. We set the ratio to 5:5, 6:4, 7:3,

8:2, 9:1, respectively, and the results are presented on Table 5. With the increasing of

the ratio, the values of accuracy, precision, recall, specificity and F1-score all increase.

Furthermore, the sub-classifier f10 increases the fastest in the three sub-classifiers, f15

increases a bit slower than f10 . Therefore, the ratio of training data and test data does

impact on the performance of our method, and it achieves better performance with a

bigger ratio. Besides, the ratio of training data over test data impacts differently on the

three sub-classifiers.

Comparison of the operators concatenate and residual shortcut

In our method, the concatenate operator is applied to the bidirectional gated recurrent

unit (GRU) layer. Here, we compare the performance of our method with the concat-

enate operator and that of the same method with residual shortcut operator. Table 6

Table 5 Study on the impact of the ratio of training over test data for sub-classifiers f5 , f10 , f15

Proportion Accuracy (%) Precision (%) Recall (%) Specificity (%) F1Score (%)

Sub-classifier f5

5:5 88.54 92.20 93.14 75.16 92.67

6:4 88.71 92.33 93.21 75.48 92.77

7:3 89.23 92.75 93.44 76.49 93.10

8:2 89.78 93.11 93.80 77.76 93.45

9:1 90.35 93.25 94.42 79.61 93.83

Sub-classifier f10

5:5 82.88 83.92 82.80 81.78 83.36

6:4 84.63 84.75 85.75 84.49 85.25

7:3 85.83 85.71 87.16 85.95 86.43

8:2 86.95 86.88 88.09 87.02 87.48

9:1 89.14 89.24 89.90 89.05 89.56

Sub-classifier f15

5:5 93.32 87.94 85.99 95.14 86.95

6:4 93.83 88.60 87.41 95.62 88.00

7:3 94.63 90.63 88.44 95.99 89.52

8:2 95.05 91.57 89.10 96.22 90.32

9:1 96.16 93.03 92.10 97.25 92.56

Table 6 Comparison of the operators concatenate and residual shortcut on Yeast data set

The values in each column represents the experimental results for each criterion of performance. Maximal values in each

column is shown in bold

Operator Accuracy (%) Precision (%) F1 Score (%)

Concatenate 97.23 97.29 97.24

Residual Shortcut 95.63 96.04 95.50

Page 9 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

exhibits the comparison results on Guo’s Yeast data set from database of interacting pro-

teins (DIP) [21]. We can see that the accuracy, precision and F1-score of concatenate

operator are all bigger than those of residual shortcut operator. Further, the accuracy of

concatenate operator improves 1.6%, precision improves 1.25% and F1-score improves

1.74%, all compared with those of residual shortcut operator. It implies that the concate-

nate operator could improve the performance, thus it is more suitable for our method. In

other words, the bidirectional GRU with concatenate enhances the delivering of features

and makes use of the features much more efficiently.

Comparison with existing PPI prediction methods

In order to show the advantage of our method, we compare it with some state-of-art

methods. Our method is an ensemble method and it consists of two modules: feature

description model and prediction model. Here, we choose the methods AC [14] and

composition transition distribution (CTD) descriptor [22] for feature description, and

methods random forest (RF) [23], extreme gradient boosting (XGBoost) [24] and sup-

port vector machine (SVM) [25] for the prediction. Thus, we have the methods RF-AC,

RF-CTD, XGBoost-AC, XGBoost-CTD, SVM-AC and SVM-CTD.

Table 7 demonstrates the comparison results of MAE and MSE for the confidence

score on data sets S. cerevisiae and Homo sapiens. We can see that the RF-CTD method

achieves the smallest MAE and MSE among the existing methods on both data sets, and

the results of RF-AC is very close to those of RF-CTD. Meanwhile, our method reduces

the MAE and MSE by 49.78% and 57.33% on data set S. cerevisiae, and reduces the MAE

and MSE by 44.12% and 50.75% on data set Homo sapiens, respectively, both compared

with RF-CTD. To sum up, we have following two conclusions: (1) Our method achieves

much more accurate values of confidence score on both data sets, thereby improving

the performance on different species; (2) The reductions of MAE and MSE vary with

data sets, that is, our method improves the performance to different degrees on different

species.

After predicting the confidence score for the protein pairs, we set a threshold

θ = 0.1, 0.2, . . . , 0.9 , to predict the PPIs. Figure 2 illustrates the accuracy, precision,

specificity, F1-score and recall of our method, compared with RF-AC, RF-CTD

and R-RCNN methods. Note that R-RCNN is not an existing method. In order to

Table 7 Comparison with existing PPI prediction methods on different data sets

The values in each column represents the experimental results for each criterion of performance. Minimal values in each

column is shown in bold

Data set S. cerevisiae Homo sapiens

Methods MAE(×10
−2) MSE(×10

−2) MAE(×10
−2) MSE(×10

−2)

RF-AC 12.427 2.835 18.979 5.218

RF-CTD 12.210 2.707 18.850 5.163

XGBoost-AC 13.575 3.147 23.875 7.571

XGBoost-CTD 13.076 3.051 23.951 7.630

SVM-AC 24.466 8.025 – –

SVM-CTD 31.174 14.435 – –

OR-RCNN 6.131 1.155 10.476 2.543

Page 10 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

show the effectiveness of ordinary regression in our method, the R-RCNN method

is introduced. It consists of two parts. The first part is the RCNN encoder, which is

the same as that of our method. While the second part R represents the regression

model. Here, we use the multi-layer perceptron with scalar output as the regres-

sion model. In most cases, our method could get better results for the five criterions

than other methods. Concretely, when the value of θ increases from 0.1 to 0.9, on

one hand, the values of accuracy, precision and specificity decrease first and then

increase, while those of F1-score and recall tend to decrease slowly. On the other

hand, the values of the five criterion of our method fluctuate in a smaller range com-

pared with the other three methods. Especially when we choose the value of θ rang-

ing from 0.5 to 0.9, our method improves the performance more significantly. In

general, our method outperforms most of the existing methods.

Discussion

It is well known that most of the PPI prediction models contain two modules: one

is an encoder encoding the protein pairs into feature vectors, the other is a predic-

tion model determining whether the interactions exist in the protein pairs. Inspired

by the idea of RCNN encoder and ordinal regression, we propose the OR-RCNN

method to predict PPIs. On one hand, two RCNN encoders with shared parameters

are assembled to one encoder, so that each protein pair could be encoded into one

feature vector. For the encoder, we also substitute the concatenate operator for the

residual shortcut operator in the bidirectional GRU layer, since experimental results

on Guo’s Yeast data set have shown the advantages of concatenate operator. On the

other hand, considering the fact that the higher the confidence score of one pro-

tein pair is, the more likely the protein pair interacts, we suggest to mine the hidden

ordinal information behind the confidence score to boost the performance of PPI

Fig. 2 Comparison results when threshold θ is set to 0.1,0.2,…,0.9, respectively

Page 11 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

prediction. For this purpose, the ordinal regression is applied in our method. Com-

pared to the common regression model without using ordinal information, the ordi-

nal regression model improves the performance in terms of five metrics: accuracy,

precision, specificity, F1-score and recall. In summary, by combining the assem-

bled RCNN encoder and the ordinal regression model, our OR-RCNN method sig-

nificantly boosts the prediction performance, and outperforms most of the existing

methods.

Conclusion

In this paper, an OR-RCNN method is proposed to predict PPIs according to its

confidence score. In our method, the protein sequence pair is first encoded into one

embedding vector based on two RCNN encoders. They share the same parameters,

so as to reduce the complexity for training process. Next, multiple sub-classifiers

are investigated to the embedding vector based on the idea of ordinal regression. It

effectively exploits the ordinal information behind the confidence score by uniformly

splitting the confidence interval into several non-overlapping sub-intervals, and rear-

ranging the sub-intervals in an increasing order. Then, the ordinal information from

these sub-classifiers of any protein pair are aggregated to get its confidence score.

Finally, we predict the PPI of the protein pair with a threshold. Experiments have

shown that the OR-RCNN method outperforms the state-of-the-art methods on data

sets S. cerevisiae and Homo sapiens.

Methods

In this section, we describe the OR-RCNN method for PPI prediction task. Some

basic concepts of the RCNN encoder are introduced first. Then, the general frame-

work of our method is conducted. Finally, the technical details of our method are

presented.

Preliminaries

Denote by A the vocabulary of 20 standard amino acids. Denote by S = [a1, . . . , al] the

sequence of amino acids for a protein, where ai is an amino acid in the vocabulary.

Pre‑trained embedding for amino acids

Since the sequential information of amino acids for a protein is usually non-numerical,

the embedding method is necessary in the pre-training process. An amino acid a ∈ A

could be embedded into a semi-latent vector a , and a is numerical.

Here, we introduce two embedding methods. The first method applies the Skip-Gram

model [26] to the protein sequence. Let aco be the embedding, which measures the simi-

larity of co-occurrence of two amino acids. Formally, to maximize the average log prob-

ability of the similarity, we minimize the objective function JSG

Page 12 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

where aco,t and aco,t+j are both the embedding results for the t’th amino acid at ∈ S and

the neighbor, respectively, and C is the length of the half context. Note, the context is a

subsequence of the protein sequence S with length 2C + 1 . The probability p is a soft-

max function:

where a′

co,k
 is a negative sample not occurring in the same context with aco,t , and m is the

size of negative sampling.

The second method [12] expresses the embedding as aeh . It measure the similarity of

properties, like electrostaticity and hydrophobicity, between two amino acids. The rea-

son is that electrostatic and hydrophobic interactions occupy the most important posi-

tion in PPIs. They could be computed by their dipoles and volumes of the side chains of

amino acids, respectively. Naturally, the 20 amino acids in A are divided into 7 classes.

Thus, aeh is a 7 dimensional vector, like one-hot encoding method.

RCNN encoder

RCNN encoder [27] is applied to get the global sequential information and local features

which are both crucial to predict PPIs. In the deep neural network encoder framework,

there are mainly two computing modules. One is the convolution layer with pooling, and

the other is the bidirectional GRU with residual. The general framework is illustrated in

Fig. 3 [27].

The convolution layer with pooling The purpose of the convolution layer with pool-

ing is to extract local information from the input. Let S′ = [v1, v2, . . . , vl] be an input

sequence of pre-trained embedding for a protein or the output of a previous neural net-

work layer. We sample a consecutive sub-sequence [vt , vt+1, . . . , vt+d−1] (simply denoted

by vt:t+d−1) from S′ . By using the weight-sharing kernel M ∈ R
d×d

′

 , it generates a d′

dimensional latent vector h1t

JSG = −
1

|S|
at∈S −C≤j≤C ,j �=0

log p(aco,t+j|aco,t),

p(aco,t+j|aco,t) =
exp(aco,t+j · aco,t)

∑m
k=1 exp(a

′
co,k · aco,t)

,

Fig. 3 Illustration of RCNN encoder. The left illustrates the whole structure of RCNN encoder, and the right

exhibits the structure of RCNN unit

Page 13 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

from the sub-sequence vt:t+d−1 , where d is the parameter for the kernel size and bM

is a vector for bias. The latent vector h1t extracts local features from the sub-sequence

vt:t+d−1 . Let t = 1, 2, . . . , l − d + 1 , respectively, it obtains a sequence of latent vectors

H = [h1
1
, h1

2
, . . . , h1

l−d+1
] , generating from all the sub-sequences of input sequence S′ .

And H is the output of convolution layer.

Consider that the size of H is too big, i.e., there are too many features extracted from

the input. Thus, in the pooling layer, it aims at reducing the dimension of the output H

to make it robust. To this end, the “n-max-pooling mechanism” [28, 29] is employed to

every sub-sequence sampled from H with length n, where the length n is a pre-defined

parameter. Notably, any two sub-sequences sampled from H are not overlapped. The

mechanism is to choose the maximal value of the subsequence as its value in each

dimension j, defined as

Though the pooling layer discretizes the output of convolution layer, the most important

features to the subsequence are preserved in the pooling output, and the number of pre-

served features is only 1/n of that of output of convolution layer.

Bidirectional GRU with Residual The GRU [30, 31] is an alternative of the long short-

term memory (LSTM) network. Compared with LSTM, the GRU is much more efficient,

and it discovers the sequential information without the demand of single memory cells

[32]. For the purpose, each unit is composed of two kinds of gates: one is the reset gate

rt , and the other is the update gate zt.

Given an input vector vt ∈ S
′ , GRU updates the hidden state h3t based on the weighted

average value of the candidate state h̃3t and the previous state h3
t−1

 . The updating equa-

tion is expressed as follows

where M∗ and N∗ (∗ ∈ {z, s, r}) are weight matrices, b∗ is a bias vector, σ is a sigmoid

function, and the notation ⊙ means the element-wise multiplication. Here, the reset gate

rt calculates the candidate state h̃3t , and the update gate zt updates the hidden state h3t .

The bidirectional GRU layer [27] takes into account the sequential information of the

input sequence S′ in two directions. In the forward encoding process
−−→

GRU , the input

sequence [v1, v2, . . . , vl] is read from v1 to vl . While in the backward encoding process
←−−

GRU , it is read from vl to v1 . For every input vector vt , the two encoding results for dif-

ferent directions are put together, that is,

h
1
t = Conv(vt:t+d−1) = Mvt:t+d−1 + bM ,

h2t,j = max(h1t,j , h
1
t+1,j , . . . , h

1
t+n−1,j),

h
3
t = GRU(vt) = zt ⊙ h̃

3
t + (1 − zt) ⊙ h

3
t−1,

zt = σ(Mzvt + Nzh
3
t−1 + bz),

h̃
3
t = tanh(Msvt + rt ⊙ (Nsh

3
t−1) + bs),

rt = σ(Mrvt + Nrh
3
t−1 + br),

(3)h
4
t = BiGRU(vt) = [

−−→
GRU(vt),

←−−
GRU(vt)].

Page 14 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

In addition, the residual mechanism [33] is also implemented in the bidirectional GRU

layer. It identically maps the bidirectional GRU input to its output with a residual short-

cut. Thus, the value of input vector vt is added to the hidden state h4t , and the bidirec-

tional GRU layer with residual shortcut is defined as

It greatly simplifies the training process, and requires much less time for updating

parameters to converge.

Protein Sequence Encoding Figure 3(left) shows the general framework of the encoding

process for a given protein sequence S, denoted by ERCNN (S).

Given a protein sequence S, the convolution layer with pooling and the bidirectional

GRU layer with residual shortcut occur in the framework alternately. The convolution

layer is the first encoding layer to extract the local features from the input sequence, and

the pooling layer is to make the convolution result robust. Then, the robust results are

input into the bidirectional GRU layer with residual, such that the sequential informa-

tion are preserved. The two components form a RCNN unit, illustrated in Fig. 3(right).

By using multiple RCNN units, we can get a multi-granular feature aggregation for the

protein sequence S. Indeed, before the RCNN unit, the protein sequence S has been

embedded into one vector, and it is the feature vector of the protein. By virtue of the

first RCNN unit, the feature vector is encoded into another vector by Eq. (4), that is, the

features are aggregated for the first time. Then, the aggregated vector is regarded as the

input of the second RCNN unit, and it is aggregated again. In other words, the features

of protein sequence S are aggregated as many times as the repeating occurrence of the

RCNN unit.

On top of the framework, the last bidirectional GRU layer is followed by a convolution

layer with pooling. The convolution layer is the same to that in RCNN unit, such that the

local features are extracted from the final hidden states H ′ = [h′
1
, h′

2
, . . . , h′

|H ′|
] . However,

the pooling layer differs from that in RCNN unit. Instead of the “n-max-pooling mecha-

nism”, the “global average pooling mechanism” [34] is applied here, since the dimensions

of the final hidden states and the previous hidden states are not necessary to be equal. It

takes the average of all the features, i.e.,

This is the result of protein sequence encoder.

Overview

The framework of OR-RCNN method is illustrated in Fig. 4. It is composed of two parts:

one is the encoder for protein sequence pair (in the bottom dashed rectangle), the other

is the prediction model for PPIs by confidence score.

The encoder for protein sequence pair contains two RCNNs with shared parameters

and the element-wise multiplication technique. Each RCNN encodes one sequence of

the protein pair into an embedding vector. Since the two RCNNs are both deep neural

(4)h
5
t = ResGRU(vt) = [

−−→
GRU(vt) + vt ,

←−−
GRU(vt) + vt].

ERCNN (S) =
1

|H ′|

|H ′|∑

t=1

h
′
t .

Page 15 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

networks, they share the same parameters to reduce the computational complexity of the

training process. Based on it, we use the element-wise multiplication technique to trans-

form the two embedding vectors into one vector. In other words, the protein sequence

pair is encoded into one embedding vector.

In order to predict PPI for the protein sequence pair, we use the confidence score

to measure the likelihood of existence of PPI. The higher confidence score the protein

sequence pair has, the more likely the protein pair interacts. Thus, the problem of PPI

prediction is converted to the problem of the confidence score prediction. Given N pro-

tein pairs and the corresponding confidence scores, we first divide the interval of confi-

dence score value into K sub-intervals. Obviously, the sub-intervals could be ranked in

an increasing order. After ranking, we give the k’th (k = 1, 2, . . . ,K) sub-interval a label

k. Thus, each protein pair is labeled k (k = 1, 2, . . . ,K), if its value of confidence score

falls in the k’th sub-interval. To exploiting the ordinal information in a better way, the

ordinal regression is investigated here. It trains K − 1 binary sub-classifiers by the N

protein pairs and their labels. When a novel protein pair is coming, the K − 1 binary

sub-classifiers could be jointly used to predict the final label for the protein pair. Based

on it, the label of the protein pair is mapped into the value of confidence score by a cer-

tain computing equation. Finally, the PPI prediction result is totally determined by the

confidence score.

Technical details

In order to simplify the notations, let xi = (Si1 , Si2), i = 1, . . . ,N be N pairs of proteins,

and CSi be the confidence score of xi.

Fig. 4 Illustration of the general framework for OR-RCNN method

Page 16 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

Encoder for a pair of protein sequences

Given a pair of protein sequences xi = (Si1 , Si2) , the protein sequences Si1 and Si2 are first

embedded into a vector, respectively, in the pre-training process. And the embedding

vector is the feature vector of the corresponding protein. This step ensures the input

proteins Si1 and Si2 are both numerical type, preparing for the follow-up work.

Then, the two embedding vectors are both encoded to another vectors, respectively, by

two RCNNs with concatenate operator. Note that, the RCNN with concatenate operator

is a slightly modification of RCNN encoder with residual shortcut (Eq. (4)) [27]. Figure 5

shows the workflow of RCNN encoder with concatenate operator.

Our method only differs in the RCNN unit for the bidirectional GRU layer. Our

method use the concatenate operator [35], instead of the residual mechanism. It con-

nects all the features on the channels to realize the feature reuse. Given an input vector

vt of the convolution layer and the hidden state h4t (Eq. (3)), the concatenate operator is

defined as follows

Here, the input vector vt is concatenated to the right side of hidden state h4t , so as to

avoid the problem of gradient disappearing. Furthermore, it enhances the delivering

of features, makes use of the features much more efficiently, and reduces the numbers

of parameters to a certain extent. In other words, the protein sequences Si1 and Si2 are

encoded to the ERCNN (Si1) and ERCNN (Si2) , respectively, by virtue of Eq. (5) in the bidi-

rectional GRU layer. It is noteworthy that the two protein sequence encoders share the

same parameters, which also reduces the number of parameters in our method, thereby

reduces the computational cost.

Finally, the embedding vectors for protein sequences ERCNN (Si1) and ERCNN (Si2)

are transformed into one vector by the element-wise multiplication, i.e.,

ERCNN (Si1) ⊙ ERCNN (Si2) (or simply write as x̄i). This multiplication is a common tech-

nique to discover the relationship between the two embedding vectors.

(5)h
5
t = ConcatGRU(vt) = [

−−→
GRU(vt),

←−−
GRU(vt), vt].

Fig. 5 Illustration of RCNN encoder with concatenate operator. The left is the structure of RCNN encoder

with concatenate operator, and the right is the structure of RCNN unit

Page 17 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

Prediction model for PPIs by confidence score

Suppose the value of confidence score for a protein pair falls in the interval (CSmin,CSmax) .

We separate it uniformly into K non-overlapped sub-intervals. The first sub-inter-

val is expressed as (CSmin,CSmin + (CSmax − CSmin)/K) , and the k’th (k = 2, . . . ,K)

sub-interval is [CSmin + (k − 1)(CSmax − CSmin)/K ,CSmin + k(CSmax − CSmin)/K) .

Accordingly, the K sub-intervals are ranked in an increasing order. Then, the label yi of xi

is set to be k (k = 1, 2, . . . ,K) automatically, if the confidence score of xi falls in the k’th

sub-interval. Above all, D = {(x̄i, yi), i = 1, . . . ,N } is the training data set in the predic-

tion model for PPIs by confidence score.

Now, we begin to train the prediction model with data set D. Since the ordinal informa-

tion of each data x̄i is hidden behind the label yi , ordinal regression [36, 37] is applied here

to make full use of the ordinal information. The ordinal regression could be regarded as the

aggregation of K − 1 sub-classification problem, where the k’th (k = 1, 2, . . . ,K − 1) sub-

classification problem is represented as determining whether the label of xi is bigger than k.

To this end, we divide the whole training set D into two subsets: the positive class D+

k
 with

the label bigger than k, and the negative class D−

k
 with the label no more than k, and then

relabel them by

Denote by fk (k = 1, 2, . . . ,K − 1) the sub-classifier for the k’th sub-classification prob-

lem. Obviously, the K − 1 binary sub-classifiers fk , k = 1, 2, . . . ,K − 1 are all trained on

the entire training set D with different divisions. It would contribute to getting better

classification performance and can effectively avoid the over-fitting.

While training, the sub-classifier fk is determined by a multi-layer perceptron with a

Leaky ReLU active function [38]. It solves the problem of gradient dispersion, and con-

verges much faster than sigmoid or tanh active functions. Given a pair of protein sequences

xi , the output of the perceptron is a two dimensional vector, denoted by ŝi = (ŝi
1
, ŝi
2
) , and is

normalized to another vector by softmax function, denoted by si = (si
1
, si
2
),

Here, si
1
 and si

2
 represent the confidence level of xi belonging to the positive and negative

classes, respectively. For the perceptron, the learning target is to minimize the cross-

entropy loss function L,

where qi = (qi
1
, qi

2
) is an one-hot indicator for the class label of x̄i . Then, we have the

sub-classifier fk

D+
k = {(x̄i,+1)|yi > k},

D−
k = {(x̄i,−1)|yi ≤ k}.

sij =
exp(ŝij)

exp(ŝi1) + exp(ŝi2)
, j = 1, 2.

L = −
1

|D|

∑

(x̄i ,yi)∈D

(qi1 log s
i
1 + qi2 log s

i
2)

fk(x̄i) =

{

1, si1 > si2,

−1, otherwise.

Page 18 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

If the inequality fk(·) > 0 holds true, it means the predicted label of the protein pair is

bigger than k, otherwise, it is no more than k.

Now, we summarize all the ordinal information from each sub-classifier

fk , k = 1, 2, . . . ,K − 1 to derive the order of a given protein pair xi . The K − 1 outputs

fk(x̄i), k = 1, 2, . . . ,K − 1 are aggregated to predict the final label of xi . The final label is

defined as

where [·] is equal to 1, if the condition in [·] is satisfied, otherwise it is equal to 0. Moreo-

ver, the predicted confidence score for protein pair xi is expressed as

which takes the middle value of the sub-interval corresponding to the predicted final

label as its confidence score.

Finally, we predict PPI of protein pair xi . Given a threshold θ , if the predicted con-

fidence score of xi is bigger than θ , we determine there exists an interaction between

the protein pair xi , otherwise, there does not exist the interaction. Note that, the final

prediction result is up to the value of threshold θ . We could adjust the prediction perfor-

mance by setting the optimal value of θ through experiments.

Abbreviations

PPI: Protein protein interaction;; OR-RCNN: ordinal regression and recurrent convolutional neural network;; RCNN:

recurrent convolutional neural network;; CT: conjoint triad;; AC: auto covariance;; GRU : gate recurrent unit;; MAE: mean

absolute error;; MSE: mean squared error;; DIP: database of interacting proteins;; CTD: composition transition distribution;;

RF: random forest;; XGBoost: extreme gradient boosting;; SVM: support vector machine;; LSTM: long short-term memory..

Acknowledgements

Not applicable.

About this Supplement

This article has been published as part of BMC Bioinformatics Volume 22 Supplement 6, 2021: 19th International Confer-

ence on Bioinformatics 2020 (InCoB2020). The full contents of the supplement are available online at https:// bmcbi oinfo

rmati cs. biome dcent ral. com/ artic les/ suppl ements/ volume- 22- suppl ement-6.

Authors’ Contributions

JG conceived the work and revised the manuscript. WX designed the experiments and drafted the manuscript. YG and

YW finished the experiments. All authors have read and approved the final manuscript.

Funding

WX and YG were supported by the National Key Research and Development Program of China (grant No.

2016YFC0901704) and the National Natural Science Foundation of China (NSFC) (grant No. 61972100), YW and JG were

supported by the National Natural Science Foundation of China (NSFC) (grant No. 61772367). NSFC funded the design

of the study, and the analysis and interpretation of data; the National Key Research and Development Program of China

funded the collection of data and the writing of the manuscript. Publication cost was funded by NSFC No. 61972100.

Availability of data and materials

The data sets used and/or analysed in this study are available from the corresponding articles. Three data sets S. cerevi-

siae, Homo sapiens and Yeast are all available at https:// github. com/ xuwei xia88/ OR- RCNN. git.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

r̄(xi) = 1 +

K−1∑

k=1

[fk(x̄i) > 0],

(6)CS(xi) = CSmin + (CSmax − CSmin)/K ∗ (r̄(xi) − 1) + (CSmax − CSmin)/(2K),

https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-22-supplement-6
https://bmcbioinformatics.biomedcentral.com/articles/supplements/volume-22-supplement-6
https://github.com/xuweixia88/OR-RCNN.git

Page 19 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

Competing interests

The authors declare that they have no competing interests.

Author details
1 School of Information Management, Shanghai Lixin University of Accounting and Finance, No. 995 Shangchuan Road,

Shanghai 201209, China. 2 Shanghai Key Laboratory of Intelligent Information Processing, and School of Computer Sci-

ence, Fudan University, No. 220 Handan Road, Shanghai 200433, China. 3 Department of Computer Science and Technol-

ogy, Tongji University, No. 4800 Caoan Road, Shanghai 201804, China.

Received: 8 August 2021 Accepted: 2 September 2021

Published: 8 October 2021

References

 1. Branden CI, Tooze J. Introduction to protein structure. New York: Garland Science; 2012.

 2. Morozov AV, Havranek JJ, Baker D, Siggia ED. Protein–DNA binding specificity predictions with structural models.

Nucleic Acids Res. 2005;33(18):5781–98.

 3. Junker BH, Schreiber F. Analysis of biological networks. Hoboken: Wiley; 2008.

 4. Furney SJ, Albà MM, López-Bigas N. Differences in the evolutionary history of disease genes affected by dominant or

recessive mutations. BMC Genom. 2006;7(1):165.

 5. Wu S, Shao F, Sun R, Sui Y, Wang Y, Wang J. Analysis of human genes with protein–protein interaction network for

detecting disease genes. Physica A. 2014;398:217–28.

 6. Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol.

2007;3(9):541.

 7. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast

protein interactome. Proc Natl Acad Sci USA. 2001;98(8):4569–74.

 8. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang LY, Wolting

C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z,

Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H,

Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T,

Moran MF, Durocher D, Mann M, Hogue CWV, Figeys D, Tyers M. Systematic identification of protein complexes in

Saccharomyces cerevisiae by mass spectrometry. Nature. 2002;415(6868):180–3.

 9. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422(6928):198–207.

 10. Macbeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science.

2000;289(5485):1760–3.

 11. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell

T, Miller P, Dean RA, Gerstein M, Snyder M. Global analysis of protein activities using proteome chips. Science.

2001;293(5537):2101–5.

 12. Shen J, Zhang J, Luo X, Zhu W, Yu K, Chen K, Li Y, Jiang H. Predicting protein–protein interactions based only on

sequences information. Proc Natl Acad Sci USA. 2007;104(11):4337–41.

 13. Bock JR, Gough DA. Whole-proteome interaction mining. Bioinformatics. 2003;19(1):125–34.

 14. Guo Y, Yu L, Wen Z, Li M. Using support vector machine combined with auto covariance to predict protein–protein

interactions from protein sequences. Nucleic Acids Res. 2008;36(9):3025–30.

 15. Thanathamathee P, Lursinsap C. Predicting protein–protein interactions using correlation coefficient and principle

component analysis. IEEE; 2009. p. 3025–30.

 16. Hashemifar S, Neyshabur B, Khan AA, Xu J. Predicting protein–protein interactions through sequence-based deep

learning. Bioinformatics. 2018;34:802–10.

 17. Li H, Gong X, Yu H, Zhou C. Deep neural network based predictions of protein interactions using primary sequences.

Molecules. 2018;23(8):1923–38.

 18. Damian S, Morris JH, Helen C, Michael K, Stefan W, Milan S, Alberto S, Doncheva NT, Alexander R, Peer B. The string

database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids

Res. 2017;45:362–8.

 19. Pan X, Hongbin S. Predicting RNA–protein binding sites and motifs through combining local and global deep

convolutional neural networks. Bioinformatics. 2018;34(20):3427–36.

 20. Reddi SJ, Kale S, Kumar S. On the convergence of Adam and beyond. In: Proceedings of the 6th international confer-

ence on learning representations; 2018. https:// openr eview. net/ forum? id= ryQu7f- RZ.

 21. Salwínski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg DS. The database of interacting proteins: 2004 update.

Nucleic Acids Res. 2004;32:449–51.

 22. Yang L, Xia J-F, Gui J. Prediction of protein–protein interactions from protein sequence using local descriptors.

Protein Peptide Lett. 2010;17:1085–90.

 23. Wong L, You Z, Li S, Huang Y, Liu G. Detection of protein–protein interactions from amino acid sequences using a

rotation forest model with a novel PR-LPQ descriptor. In: Huang D, Han K, editors. Advanced intelligent computing

theories and applications—11th international conference, Lecture Notes in Computer Science, vol. 9227. Springer;

2015. p. 713–20.

 24. Chen T, Guestrin C. Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining; 2016. p. 785–94.

 25. Chang C, Lin C. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol. 2011;2(3):1–27.

 26. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their com-

positionality. In: Proceedings of the 26th international conference on neural information processing systems, vol. 2;

2013. p. 3111–9.

https://openreview.net/forum?id=ryQu7f-RZ

Page 20 of 20Xu et al. BMC Bioinformatics 2021, 22(Suppl 6):485

•

fast, convenient online submission

•

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 27. Chen M, Ju CJT, Zhou G, Chen X, Wang W. Multifaceted protein–protein interaction prediction based on Siamese

residual RCNN. Bioinformatics. 2019;35(14):305–14.

 28. Hu B, Lu Z, Li H, Chen Q. Convolutional neural network architectures for matching natural language sentences. In:

Proceedings of the 27th international conference on neural information processing systems; 2014. p. 2042–50.

 29. Severyn A, Moschitti A. Twitter sentiment analysis with deep convolutional neural networks. In: Proceedings of the

38th international ACM SIGIR conference on research and development in information retrieval; 2015. p. 959–62.

 30. Cho K, Van Merrienboer B, Bahdanau D, Bengio Y. On the properties of neural machine translation: encoder–

decoder approaches. Comput Sci. 2014.

 31. Chung J, Gulcehre C, Cho KH, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence mod-

eling. 2014.

 32. Dhingra B, Liu H, Yang Z, Cohen WW, Salakhutdinov R. Gated-attention readers for text comprehension. In: Proceed-

ings of the 55th annual meeting of the association for computational linguistics; 2017. p. 1832–1846.

 33. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE confer-

ence on computer vision and pattern recognition; 2016. p. 770–8.

 34. Lin M, Chen Q, Yan S. Network in network. In: Bengio Y, LeCun Y, editors. Proceedings of the 2nd international confer-

ence on learning representation; 2014. arXiv: 1312. 4400.

 35. Iandola FN, Moskewicz MW, Karayev S, Girshick RB, Darrell T, Keutzer K. Densenet: implementing efficient convnet

descriptor pyramids. Eprint Arxiv; 2014.

 36. Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. In: 2016 IEEE

conference on computer vision & pattern recognition; 2016. p. 4920–4928.

 37. Chen S, Zhang C, Dong M, Le J, Rao M. Using ranking-CNN for age estimation. In: 2017 IEEE conference on com-

puter vision and pattern recognition; 2017. p. 742–51.

 38. Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the

30th international conference on machine learning, Atlanta, Georgia, USA, vol. 28; 2013.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1312.4400

	Protein–protein interaction prediction based on ordinal regression and recurrent convolutional neural networks
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Data sets
	Experimental settings
	Experimental results
	Comparison of sub-classifiers
	Comparison of pre-trained embedding methods
	Selection of key parameters
	Comparison of different computing equations for confidence score
	Study on the impact of the ratio of training set over test set
	Comparison of the operators concatenate and residual shortcut
	Comparison with existing PPI prediction methods

	Discussion
	Conclusion
	Methods
	Preliminaries
	Pre-trained embedding for amino acids
	RCNN encoder

	Overview
	Technical details
	Encoder for a pair of protein sequences
	Prediction model for PPIs by confidence score

	Acknowledgements
	References

