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Purpose: The R120G mutation ofαB-crystallin is known to cause desmin-related myopathy, but the mechanisms
underlying the formation of cataract are not clearly established. We hypothesize that alteration of protein–protein
interactionbetweenR120GαB-crystallinandlensintermediatefilamentproteinsisoneofthemechanismsofcongenital
cataract.
Methods:Protein–protein interactionswere determined by confocal fluorescence resonance energy transfer (FRET)
microscopyusinggreenfluorescenceprotein(GFP)asthedonorandredfluorescenceprotein(RFP)astheacceptor.The
lensvimentingenewasfusedintoaGFPvectorandtheαB-crystallin(WTorR120Gmutant)genewasfusedintothe
RFPvector.Thedonor-acceptorplasmidpairsofintermediatefilament(IF)-GFPandαB-RFPwereco-transfectedinto
HeLacells.Afterincubation,confocalfluorescenceimagesofthetransfectedcellsweretaken.FRETwasestimatedby
theacceptorphotobleachingmethod.Protein–proteininteractionwasevaluatedbyFRETefficiency.
Results:TheconfocalfluorescenceimagesshowedthatthecellsexpressingvimentinandR120GαB-crystallincontained
largeamountsofproteinaggregateswhilefewvimentinfiberswereobserved.FRETefficiencyanalysesindicatedthat
vimentinhadasignificantlygreaterprotein–proteininteractionwithR120GαB-crystallinthanwithWTαB-crystallin.
Conclusions:OurresultsshowthattheR120GαB-crystallinmutantpromotedvimentinaggregationthroughincreased
protein–proteininteraction.Thisprocessmaycontributetotheformationofcongenitalcataract.

The lens cytoskeleton is composed ofmicrofilaments,
intermediate filaments (IFs), and microtubules [1-3]. The
majorfunctionofIFsistosupportcellularmembranesandto
serveastructuralroleinmaintainingcellshape.Thelensfiber
cellcontainsthreeIFs:vimentin,CP49,andfilensin[1,4-6].
Thelatter twoarelens-specificandformbeadedfilaments.
Vimentin is a type III intermediate filament. Among the
variouscrystallins,αB-crystallin ismost closelyassociated
withIFproteins,notonlyinlensfibercells[7-9]butalsoin
musclecells[10,11].Desmin,alsoatype-IIIIFproteinfound
mainlyinsmoothandcardiacmusclecells[12],hasbeenthe
subject of extensive study in desmin-related myopathy
(DRM),anadult-onsetneuromusculardiseasecharacterized
bylargeaccumulationsofaggregatesofcytoplasmicdesmin
andR120GmutantαB-crystallin [13]. PatientswithDRM
showmuscularweaknessandpresentwithcataracts[14-16].
Studieshavedemonstratedthatmusclecelllinestransfected
with the mutant αB-crystallin cDNA show intracellular
aggregates that contain both desmin and the αB-crystallin
mutant[10,17,18].OtherstudieshaveshownthattheR120G
mutationalterstheinteractionbetweenαB-crystallinandIFs
thatmayhavecontributedtoDRM[11,19,20].
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AlthoughthelinkbetweendesminandtheR120GαB-
crystallinmutationisstronginDRM,itislessclearthatthe
induction of cataract by this mutation is due to the same
mechanismofassociationofR120GαB-crystallinand lens
IFs. Moreover, lens fiber cells have vimentin, CP49, and
filensinbutnotdesmin.Vimentinispresentinepithelialand
corticalfibers,butitisabsentinnuclearfibercells[21].Many
studieshavedemonstratedanassociationbetweenvimentin
andαB-crystallin[7-9].TheothertwoIFproteins,filensinand
CP49, assemble as a beaded filament, and their proper
assembly also requires αB-crystallin [4,7]. In the present
study,wehave investigated theeffectsof theαB-crystallin
R120G mutation on the protein–protein interaction with
vimentin using confocal fluorescence resonance energy
transfer(FRET)microscopy.FRETacceptorphotobleaching
wasapplied,andFRETefficiencyvalueswereobtained.Our
resultsshowthattheαB-crystallinR120Gmutantpromotes
aggregation of vimentin by increased protein–protein
interactions.

METHODS
Preparation of GFP and RFP fusion proteins:As in our
previousstudies,Clontech’s(PaloAlto,CA)pAcGFP-C1and
pDsRED Monomer-C1 vectors were used [22,23]. The
pAcGFP1-C1 vector is encoded with a green fluorescent
protein (GFP) gene from Aequorea coerulescens (λex/
λem=475/505 nm). The pDsRED-Monomer-C1 is encoded
withaDsRED-Monomergenewitharedfluorescenceprotein
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(RFP),DsRED,amutantderivedfromtetramericDiscosoma
(λex/λem=557/585 nm). The vimentin gene (in pBluescript
vector) was obtained fromATTC (Manassas, VA). It was
subclonedintothepAcGFP1-C1vectorbypolymerasechain
reaction (PCR) using the forward primer-CCT AAG CTT
TGTCCACCAGGTCC-containingtheHindIIIrestriction
site(underlined)andthereverseprimer-CCCGAATTCTTA
TTCAAGGTCATC-containing theEcoRI restrictionsite
(underlined).TheresultingconstructwasdesignatedasGFP-
VIM; its sequence was verified. The wild-type (WT) and
R120G αB-crystallin constructs (RFP-αB and RFP-αBm
[where m is R120G mutation]) were previously prepared
[22].
Transfectionandcellculture:HeLacellswereculturedusing
theprotocoldescribedinourrecentreport[22].Briefly,HeLa
cellswereseededintoa35mmculturedish.Afterculturing
for 24 h to obtain at least 80% confluence, cellswere co-
transfectedwith the twoconstructsusing the lipofectamine
2000 reagent (Invitrogen, Rockville, MD) at a ratio of
cDNA:lipofectaminebeing1:2.Forapositivecontrol,GFP-
αA- and RFP-αB-crystallin were used, and for a negative
control,GFPandRFPwereused.Afterincubationfor48h,
cellimagesinthegreenandredchannelswereacquiredusing
a Zeiss Laser Scanning Microscope (LSM; 510 META
Axioplan2,CarlZeissInc.,Thornwood,NY)attheHarvard
NeuroDiscovery Center (HarvardMedical School, Boston,
MA).
FRET acceptor photobleaching: This method measures
energy transfer efficiency (E) and is directly related to the
distance(r)separatingagivendonorandacceptorpairbythe
FösterEquation[24-26]:

whereR0istheFösterdistanceatwhichthetransferefficiency
is50%.Theefficiencyoftransfer(E)canbecalculatedfrom
theequation:

whereFDAandFDarethedonorfluorescenceintensitiesinthe
presenceandabsence,respectively,ofenergytransfer.
FRET acceptor photobleaching (FRET-AP) involves

measuring thedonor “de-quenching” in thepresenceof an
acceptor.Thisisdonebycomparingthedonorfluorescence
intensityinthesamesample(eitherawholecellorregionof
interest [ROI] of a cell) before and after destroying the
acceptorbyphotobleaching.IfFRETwasinitiallypresent,a
resultant increase in donor fluorescence occurs upon
photobleachingoftheacceptor.Theenergytransferefficiency
isquantifiedbyrewritingEquation2as:

whereFpreisthefluorescenceintensityofthedonorbeforethe
acceptorphotobleaching,andFpostisthefluorescenceintensity
ofthedonoraftertheacceptorphotobleaching.

Inthephotobleachingexperiments,arepetitivebleaching
(atexcitationwavelengthof543nm)wasappliedtobleach
theRFP signal in aROI or awhole cell.A series of pre-
bleaching and post-bleaching donor GFP fluorescence
intensities were collected. The maximum and minimum
values(GFP-maxandGFP-min)wereusedforcalculationof
FRETefficiencybyrewritingEquation3as:

Statistical analyses:Data are expressed as themean±SEM
fromaminimumofthreeindependentexperiments.Statistical
analysis was performedwith either a Student’s t-test (two
groups)oranANOVAanalysis(morethantwogroups)with
p<0.05asthecriterionofsignificance.

RESULTS
Figure 1 shows representative confocal images of cells
transfectedwithGFP-VIMorco-transfectedwitheitherGFP-
VIMandRFP-WTαBorGFP-VIMandRFP-R120GαB.In
the cells expressing GFP-VIM and RFP-R120GαB, a
dramaticincreaseinthenumberofaggregateswasobserved.
Inaddition,fewervimentinfiberswerepresent.Aggregation
is shown as bright, dense spots.Cells expressing vimentin
aloneshowrareaggregates.

Thefusionproteins,GFP-αAandRFP-αB,wereusedas
a positive control (Figure 2) since αA-crystallin and ?B-
crystallin are known to have strong subunit-subunit
interaction.WehavereportedacomparableFRETefficiency
inasolutionstudy[27].Inthephotobleachingexperiment,the
acceptor isbleached,andasa result,acceptor fluorescence
intensityshowsadecreaseanddonorfluorescenceintensity
shows an increase since fewer acceptor chromophores are
available for energy transfer. The pseudo-color images
represent the increase of pixel density before and after
bleaching.Thecolorinthebarrepresentsthepixeldensityof
theimageandthustheintensityofinteraction.

NonfusionGFPandRFPwereusedasanegativecontrol;
they are not expected to interact. Figure 3 shows some
representative confocal images. Theoretically, the negative
control should show no increase of donor intensity after
bleachingandthusnotransferefficiency,butintheacceptor
photobleachingexperiments,thedonorisalsoaffected.When
repetitivebleaching isperformed,donor intensity increases
initiallybutthendecreasesslightlyifthereisenergytransfer
betweenthedonorandacceptor.Ifthereisnoenergytransfer,
donor intensity showsa slightdecrease, and some residual
pixel density in Figure 3 is considered to be experimental
background.

Representative confocal cell images for FRET-AP are
shown in Figure 4 for GFP-VIM and RFP-WTαB and in
Figure5forGFP-VIMandRFP-R120GαB.Thecalculated
FRETefficiencyvalueswereplottedinFigure6.Significant
differencesintransferefficiencieswereobservedamongthe
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various pairs (p=0.0013), and approximately a twofold

Figure 1. Representative laser scanning microscopy images of HeLa
cells transfected with GFP-VIM and co-transfected with GFP-VIM
and WT αB-crystallin (αB) or R120G αB-crystallin (αBM). The
single construct or pair of constructs was transfected into HeLa cells.
After culture, laser scanning microscopy (LSM) images were taken.
Either the green image (GFP-VIM) or merged image of green and
red fluorescence (GFP-VIM and RFP-WT αB-crystallin [αB] or
GFP-VIM and RFP-R120G αB) was shown. Vimentin filaments are
clearly shown in cells co-expressing WT αB-crystallin, but enormous
aggregates were formed in the cells co-expressing R120G αB-
crystallin. Vimentin filaments are shown as the fibrous structures and
aggregates as the bright, dense spots.

increase in the transfer efficiency is observed for vimentin and
R120G αB-crystallin compared with vimentin and WT αB
crystallin (p=0.02).

DISCUSSION
We have been using sensitized emission to detect FRET [22,
23], but recently we found that the acceptor-photobleaching
method is more simple. It requires fewer cell samples and
involves fewer data manipulations. After preliminary
experiments with controls, data acquisition becomes quite
straightforward. The choice of donor-acceptor pair is very
important; the GFP-RFP we used before gave a satisfactory
result. Both GFP and RFP (DsRED) chromophores are
sufficiently photostable during imaging. In fact, a complete

Figure 2. Representative laser scanning microscopy images of HeLa
cells co-transfected with the positive controls, GFP-αA and RFP-
αB. The constructs were co-transfected into HeLa cells. After
culture, laser scanning microscopy (LSM) images were taken. αA-
and αB-crystallins are known to have a strong subunit-subunit
interaction. The energy transfer efficiency is high. The increase of
GFP fluorescence intensity is converted to pseudocolor (right panel)
that displays variations of pixel gray scales with color.

Figure 3. Representative laser scanning microscopy images of HeLa
cells co-transfected with the negative controls, untagged GFP and
RFP. The pair of constructs was co-transfected into HeLa cells. After
culture, laser scanning microscopy (LSM) images were taken. The
low efficiency shown arises from experimental background. The
increase of GFP fluorescence intensity is converted to pseudocolor
(right panel) that displays variations of pixel gray scales with color.

Molecular Vision 2008; 14:1282-1287 <http://www.molvis.org/molvis/v14/a152> © 2008 Molecular Vision

1284

http://www.molvis.org/molvis/v14/a152


photobleaching of RFP chromophores is difficult to achieve
in a short time. However, a longer bleaching time will
complicate imaging results because the samples shift during
the time between taking pre- and post-bleach images. For this
reason, we used only 45 s of bleaching time to obtain partially
bleached cells in our experiments. After photobleaching,
green fluorescence intensity is increased when the two target
proteins interact because of less FRET. The information from
transfer efficiency values is basically the same as net FRET
values; they reflect the extent of protein–protein interactions.

The nature of the interaction between vimentin and αB-
crystallin is not known, but chaperone binding is thought to
be involved. The assembly of filament fibers may need αB-
crystallin as a chaperone. However, overexpression of R120G
αB-crystallin leads to decreased fibrous vimentin and
increased aggregation (Figure 1). This cannot be due to an
increase of chaperone binding because of the decreased
chaperone-like activity of R120G αB-crystallin [28,29]. The
more likely mechanism is increased hydrophobic interaction
since the R120G αB-crystallin mutant is partially unfolded

Figure 4. Representative laser scanning microscopy images of FRET
acceptor photobleaching of HeLa cells co-transfected with GFP-
VIM and RFP-WTαB. The pair of constructs was co-transfected into
HeLa cells. After culture, laser scanning microscopy (LSM) images
were taken before and after photobleaching of the acceptor for 45 s
with a 543 nm laser beam. A decrease of red fluorescence and
increase of green fluorescence were observed. The transfer efficiency
was calculated with the equation: E=1 – FGFP-min/FGFP-max.. The
efficiency for this cell that co-transfected with GFP-VIM and RFP-
WTαB is 9.5%, much greater than the negative control of untagged
GFP and RFP. The increase of GFP fluorescence intensity is
converted to pseudocolor (right panel) that displays variations of
pixel gray scales with color.

and has more exposed hydrophobic surfaces [27]. R120G αB-
crystallin is susceptible to aggregation [22], and when
coexpressed with vimentin the increased hydrophobic
interaction renders them aggregated.

The HeLa cell itself expresses endogenous vimentin, but
the amount must be overshadowed by the overexpressed
tagged protein, and the interaction between the endogenous
vimentin and αB-crystallin should not affect FRET
measurements. In the cells, other heat shock proteins such as
HSP70 and HSP90 were also found to interact with IFs [30,
31], but the nature of their interaction is uncertain; a role to
maintain filaments from aggregation was proposed [32].

The lens cell cytoskeleton was also found to associate
with membranes. An earlier study indicated that newly
synthesized vimentin was associated with lens membranes
[33]. The same study also found α-crystallin to be associated
with lens membranes. Later, α-crystallin was reported to
associate with other cytoskeletal proteins (actin and
microtubule) [34-36]. These observations indicate that the
three lens components (crystallins, membranes, and
cytoskeleton) are interrelated; thus the protein complex, a
macromolecular assembly, must be responsible for lens-

Figure 5. Representative laser scanning microscopy images of FRET
acceptor photobleaching of HeLa cells co-transfected with GFP-
VIM and RFP-R120G αB. The pair of constructs was co-transfected
into HeLa cells. After culture, laser scanning microscopy (LSM)
images were taken before and after photobleaching of the acceptor
for 45 s with a 543 nm laser beam. A decrease of red fluorescence
and increase of green fluorescence were observed. The transfer
efficiency was calculated with the equation: E=1 – FGFP-min/FGFP-

max. The efficiency for this cell that co-transfected with GFP-VIM
and RFP-R120G αB is 19.5%, twofold greater than the GFP-VIM
and RFP-WTαB. The increase of GFP fluorescence intensity is
converted to pseudocolor (right panel) that displays variations of
pixel gray scales with color.
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specific functions. Protein–protein interaction may provide
information on not only when two proteins interact but also
when such interactions are modified. In age-related cataracts
or congenital cataracts, protein modifications or mutations are
found. Disruption of protein–protein interactions will
profoundly change protein or cell functions. Protein–protein
interactions in turn are dictated by specific protein
conformations; partial unfolding not only destroys the
interaction sites but also exposes buried hydrophobic sites.

Another possible mechanism involves IF structures.
Some data suggest that the vimentin IF structure is dynamic;
IF undergoes subunit exchange [37-39]. The vimentin
filament is composed of smaller protofibrils, each of which in
turn consists of two smaller protofilaments. Each
protofilament consists of tetramers [12], which are assumed
to result from the interaction of two dimers. A monomeric
vimentin consists of a central α-helical domain with one non-
helical NH2- (head) and one COOH- (tail) domain. The two
monomers are twisted around each other to form a coiled
dimer. The head and tail are involved in the end-end and lateral
interactions. The dynamic structure of IFs suggests that IFs
reorganize in response to cell cycle-specific or differentiation-
specific cues. Thus, the presence of aggregation-prone R120G
αB-crystallin may interfere with the IF assembly and
disassembly process. The dynamic structure of vimentin may
also help the formation of the filament network of tagged
GFP-VIM since GFP-VIM can participate in the subunit
exchange in the filament network of the endogenous vimentin.

There are two other myopathy-associated αB-crystallin
mutants, Q151X and 464delCT [40]. Both mutants caused the

Figure 6. Summary of transfer efficiencies for various pairs, GFP and
RFP, GFP-αA and RFP-αB, GFP-VIM, and RFP-WTαB and GFP-
VIM and RFP-R120G αB. Significant differences in transfer
efficiency were observed among them (ANOVA test, p=0.0013), and
a twofold increase for the pair of GFP-VIM and RFP-R120G αB over
the pair of GFP-VIM and RFP-WTαB (t-test, the asterisk indicates
p=0.02) was also observed. The n inside the bar is the number of cells
photobleached.

formation of cytoplasmic aggregates in skeletal muscles, but
did not cause cataract. Apparently, the effects of these two
mutants on desmin are the same as the R120G mutant, but the
effects on vimentin or other IFs are different from the R120G
mutant. The mechanism for the different effects is not known
and needs further study.

In conclusion, we have demonstrated that the R120G αB-
crystallin mutant promotes vimentin aggregation, and FRET
photobleaching shows that the mechanism of aggregation is
increased protein–protein interactions between vimentin and
R120G αB-crystallin.
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