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Virtually every aspect of cellular function within a meta-
zoan organism, including proliferative status, metabo-
lism, gene expression, cytoskeletal organization, and in-
deed the cell’s very survival, is dependent on external
signaling molecules, either in the form of soluble hor-
mones or proteins anchored to the surface of an adjacent
cell or the extracellular matrix (ECM). These factors ex-
ert their effects either by binding receptors displayed on
the surface of the cell or, in the case of compounds such
as steroids, by traversing the plasma membrane and di-
rectly engaging intracellular receptors. In addition, these
external signals can be linked to intrinsic cues that regu-
late events such as polarity and asymmetric cell divi-
sion, and that monitor the molecular composition of the
cell, and therefore determine whether suitable condi-
tions prevail for cell growth and division.

Over the last two decades, we have achieved consid-
erable understanding of the mechanisms by which sig-
nals are conveyed from receptors at the plasma mem-
brane to their targets in the cytoplasm and nucleus. At
heart, this is a problem of molecular recognition. Hor-
mones must bind selectively to their receptors and these
in turn must interact with specific cytoplasmic targets.
To understand signal transduction in a general sense, it
is important to know whether different biochemical
pathways use related molecular devices to control cellu-
lar behavior. To understand specificity in signaling, we
need to know how receptors interact with particular tar-
gets and how the proteins of one pathway can be insu-
lated from related signaling components. At the same
time, it is important to learn how distinct signaling path-
ways communicate with one another, since the entire
cell must ultimately function as a single unit whose dif-
ferent elements respond in an organized fashion to ex-
ternal signals. A cell in the body will be exposed to many
different stimuli, which it must integrate into a coherent
response.

Furthermore, although a rather large fraction of genes
within nucleated cells appear to function in the pro-
cesses of signal transduction and cellular organization
(Plowman et al. 1999), it is still remarkable that only a

few thousand gene products can control the sophisti-
cated behaviors of many different cell types. This imme-
diately suggests that signaling proteins must act in a
combinatorial fashion, since there are insufficient pro-
teins for each to have a single biological role. For ex-
ample, there are billions of neurons in the human brain,
each of which must project its axon to the appropriate
target, let alone undertake the complex biochemical
events associated with neurotransmission and synaptic
plasticity. Clearly, the signaling molecules that function
in the process of axon guidance must act in a combina-
torial way to generate the extreme complexity of the
human nervous system.

Here we will address some of the underlying bio-
chemical mechanisms through which specificity is gen-
erated during signal transduction, and pursue the means
by which signaling molecules may act in combination to
generate complex biological responses.

Specificity and complexity at the level of receptors

The mechanisms of receptor activation have been inten-
sively studied through the analysis of receptor tyrosine
kinases (RTKs), which possess a single membrane-span-
ning region, and related multisubunit receptors, such as
those for cytokines and antigens that signal through as-
sociated cytoplasmic tyrosine kinases (Hunter 2000).
The binding of a hormone to such receptors induces ei-
ther receptor oligomerization (Heldin et al. 1995; Plotni-
kov et al. 1999) or the spatial reorientation of preclus-
tered chains, as shown for the erythropoietin receptor
(Remy et al. 1999). As a consequence, ligand binding to a
RTK promotes the intermolecular autophosphorylation
of one receptor chain by its neighbor, usually within the
activation segment of the kinase domain (Hubbard
1997). This results in displacement of the activation seg-
ment from the active site. The stimulated kinase domain
then phosphorylates additional tyrosine residues, usu-
ally within noncatalytic regions of the receptor, which
provide docking sites for downstream targets.

The exclusive binding of a single growth factor to an
individual receptor is more likely the exception than the
rule. Indeed, the oligomeric nature of activated receptors
allows the formation of receptor complexes composed of
distinct, albeit closely related subunits, which can have
different signaling potentials (Pinkas-Kramarski et al.
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1998). As a simple example, platelet-derived growth fac-
tor (PDGF) is a covalently linked dimer composed of A or
B chains in different combinations, which induces the
formation of a receptor dimer similarly composed of a or
b chains (Heldin et al. 1998). Because the B chain of
PDGF only binds the b receptor, whereas both A and B
PDGF bind the a receptor, different dimeric forms of
PDGF induce distinct combinations of receptor chains.
Interestingly, the signaling properties of the a and b re-
ceptor chains differ from one another, since the a/b

PDGF receptor heterodimer is more potent in stimulat-
ing mitogenesis that either of the homomeric receptors.
This correlates with a failure of the a/b receptor to bind
Ras GTPase activating protein, a negative regulator of
the Ras GTPase, resulting in enhanced activation of the
Ras–MAP kinase (MAPK) pathway (Ekman et al. 1999).

Yet more diversity can be seen in the four members of
the ErbB RTK family, which bind several ligands, includ-
ing epidermal growth factor (EGF) and the neuregulins
(NRG). Although all possible dimeric combinations of
receptors can form, ErbB2, which itself does not bind
ligands with high affinity, is a preferred heterodimeric
partner (Pinkas-Kramarski et al. 1998). A biological re-
quirement for heterodimer formation is revealed by the
observation that mutations in the ErbB2 and ErbB4 re-
ceptors, and the NRG-1 ligand, give essentially identical
phenotypes in mouse embryos (Gassmann et al. 1995;
Lee et al. 1995; Meyer and Birchmeier 1995). Different
receptor chains have distinct cytoplasmic binding sites
for intracellular signaling proteins and as a result give
distinct signaling outputs, as measured by the strength
of MAPK activation. Of interest, ErbB3 lacks intrinsic
catalytic activity, but is trans-phosphorylated by a ki-
nase-active partner such as ErbB2, and thus serves a scaf-
folding function through its ability to bind cyotplasmic
targets. Indeed, the ErbB2/ErbB3 heterodimer is potently
mitogenic (Waterman et al. 1999).

It is common for a single receptor to bind and be acti-
vated by more than one extracellular ligand. For ex-
ample, the prolactin cytokine receptor can engage both
growth hormone and prolactin. Structural and mutagen-
esis analysis has indicated that the ligand-binding sites
of cell surface receptors may be rather adaptable, com-
posed of relatively hydrophobic yet solvent accessible
surfaces (Cunningham and Wells 1991; Lowman et al.
1991). Although the ligand-binding surfaces are quite
large, only a few residues are critical for ligand recogni-
tion. In the example cited above, the two hormones rec-
ognize overlapping sites on the same receptor, but are
dependent on distinct residues for high affinity binding.
Such data suggest that receptors combine selectivity for
specific ligands with the potential for flexibility and pos-
sibility for rapid evolution of hormone recognition. As
discussed below, protein–protein interactions within the
cell that control cytoplasmic signaling pathways display
many of the same characteristics.

In addition to the formation of multichain receptors
through the interactions of distinct subunits, recent data
suggest that entirely different receptors may directly in-
teract with one another at the surface of the same cell.

This leads to the possibility of cross-talk between sepa-
rate receptors and pathways at the very earliest steps in
signaling. In the nervous system, the g chain of the het-
eropentameric GABAA receptor, which is a ligand-gated
ion channel, physically interacts through a cytoplasmic
loop with the carboxy-terminal region of the dopamine
D5 receptor, a seven transmembrane-spanning G pro-
tein-coupled receptor (GPCR) that links to Gs and the
production of cAMP (Liu et al. 2000). This association
leads to a mutual inhibition of the two receptors and
provides a mechanism through which a GPCR may in-
fluence synaptic strength independently of G protein sig-
naling. Similarly, neurotrophins acting through Trk fam-
ily RTKs can rapidly induce action potentials in CNS
neurons, suggesting that Trk receptors may interact with
a Na+ channel (Kaffitz et al. 1999). These types of inter-
action are not confined to the nervous system. For ex-
ample, the Kit RTK, which is activated by the hemato-
poietic stem cell factor, can bind and phosphorylate the
cytoplasmic region of the erythropoietin cytokine recep-
tor (Wu et al. 1995).

Specific activation of signaling pathways—protein
domains and motif recognition

The involvement of modular protein–protein interac-
tions in signaling from cell surface receptors was origi-
nally recognized in the context of RTKs. As noted above,
receptor activation leads to the intermolecular phos-
phorylation of receptor chains at sites that consequently
bind proteins with SH2 domains (Pawson 1995; Kuriyan
and Cowburn 1997). SH2 domains are protein modules of
∼100 amino acids that recognize phosphotyrosine resi-
due-containing peptides in the context of 3–6 carboxy-
terminal amino acids (Eck et al. 1993; Waksman et al.
1993; Pascal et al. 1994). As with many interaction mod-
ules, the amino and carboxyl termini of SH2 domains are
close together in space, and on the opposite face from the
ligand-binding surface. This potentially allows an SH2
domain to be inserted into a host protein at an internal
location, while leaving the phosphopeptide-binding sur-
face free to engage ligands. Most SH2 domains require
phosphorylation of the peptide ligand for high affinity
binding, but differ in their ability to recognize residues
carboxy-terminal to the pTyr, thereby imbuing each SH2
domain with an ability to bind preferentially to a specific
phosphorylated motif (Songyang et al. 1993). Thus, in
the case of activated RTKs, their ability to stimulate
cytoplasmic signaling pathways is to some extent deter-
mined by the sequence contexts of their autophosphory-
lation sites, which in turn dictates which SH2-contain-
ing proteins will engage the autophosphorylated recep-
tor.

SH2 domains must therefore achieve something of a
balancing act. Their affinity for an unphosphorylated site
must not be too high, or binding could not be regulated
by phosphorylation, yet they must gain sufficient bind-
ing energy from the recognition of more carboxy-termi-
nal residues to allow discrimination between different
sites. Furthermore, their off-rates must be sufficiently
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high to allow for rapid signal transduction. Perhaps for
this reason the interactions of SH2 domains with phos-
phopeptide motifs can be highly dynamic (Kay et al.
1998). For example, although the SH2 domains of phos-
pholipase C (PLC)-g1 and the Shp2 tyrosine phosphatase
both bind pTyr followed by five hydrophobic residues,
the PLC-g1 SH2-C domain obtains more binding energy
from electrostatic interactions involving the pTyr,
whereas the Shp2 SH2-N domain has larger contribu-
tions from the hydrophobic interface. Strikingly, al-
though the PLC-g1 SH2 domains show strong selectivity
at the +1 to +5 positions, the SH2 domain residues lining
the hydrophobic groove that accommodates these amino
acids show significant motional disorder even following
ligand binding. This leads to the possibility that SH2
domain binding specificity results from a combination of
permissive and inhibitory forces. Thus compatible resi-
dues in the SH2 domain and ligand will promote binding,
whereas residues that sterically interfere with phospho-
peptide recognition will inhibit recognition. Consistent
with this view, the SH2 domains of PLC-g1 can poten-
tially bind a site with a pYXXM motif, that normally
accommodates phosphatidylinositol 38-kinase (PI3K),
but are excluded from such a site by a Ser at the +4
position, as found in physiological PI3K-binding sites on
the bPDGF receptor (Larose et al. 1995).

The potential flexibility of SH2 domains is empha-
sized by the ability of single amino acid substitutions to
alter binding specificity (Fig. 1). SH2 domains generally
fall into three classes: PLC-g-like SH2 domains bind
phosphopeptides as an extended strand, with carboxy-
terminal residues fitting into a hydrophobic cleft. Src-
like SH2 domains are similar, but have a flat binding
surface that selects for charged residues at the +1 and +2
positions, while the sidechain of the +3 residue fits into
a hydrophobic pocket. In contrast, the Grb2 SH2 domain
has a bulky Trp sidechain that blocks the progress of the
phosphopeptide ligand, which is forced into a b turn,
best accommodated by a +2 Asn. Surprisingly, it is pos-
sible to convert a PLC-g SH2 domain to a Src-like speci-
ficity by changing a single Cys residue (at the bD5 posi-
tion) to Tyr (Songyang et al. 1995). Similarly the Src SH2
domain can be converted to a Grb2-like specificity by
altering a Thr (at the EF1 site) to Trp. This mutant Src
SH2 domain mimics Grb2 at the structural level, and
functions in Caenorhabditis elegans development as if it
were a Grb2 SH2 domain (Marengere et al. 1994). This
apparent flexibility may have an evolutionary advantage,
in the sense that SH2 domain binding specificity might
change rather rapidly, allowing the formation of new sig-
naling connections as metazoan organisms became more
complex.

The relevance of specific SH2 domain-mediated inter-
actions to biological signaling pathways has also been
tested by introducing mutations into SH2 docking sites
on receptors. A nice example is provided by the EGF
receptor homolog in C. elegans, LET-23, which is re-
quired for vuval differentiation, viability and ovulation
(Lesa and Sternberg 1997). LET-23 has eight potential
autophosphorylation sites within its carboxy-terminal

tail, with binding motifs for SH2 proteins such as Grb2,
PLC-g, and SLI-1 (the worm homolog of mammalian c-
Cbl). The three carboxy-terminal autophosphorylation
sites (Y6–8) lie in YXN motifs that can bind the worm
Grb2 adaptor and thereby activate the Ras pathway.
These sites have a redundant role in vulval formation
and viability but are not required for ovulation. In con-
trast, the Y5 site, which likely signals through PLC-g to
activate the inositol triphosphate (IP3)-receptor and el-
evate intracellular calcium, has a unique role in ovula-
tion. Furthermore, the Y2 site inhibits LET-23 signaling,
potentially through the SLI-1/c-Cbl SH2 protein, which
likely acts as an E3 protein-ubiquitin ligase (Joazerio et
al. 1999).

In the mammalian system, the Met receptor tyrosine
kinase has two closely spaced Tyr phosphorylation sites
within its carboxy-terminal tail, that bind a number of
SH2-containing proteins. Substitution of both Tyr resi-
dues with Phe in the mouse causes embryonic lethality
similar to that seen with a null allele, suggesting that
although the receptor retains kinase activity, it is func-

Figure 1. Evolution of SH2 domain-binding specificity. The
surfaces of the PLC-g1, Src, and Grb2 SH2 domains are shown
in blue, with their corresponding peptide ligands (pYIIPLPD,
pYEEI, pYVNV, respectively) shown in yellow. In each case the
pTyr is to the right. For PLC-g1, the +1 Ile of the ligand fits into
the start of a hydrophobic groove, framed by a Cys (bD5) shown
in green. In the Src SH2 domain this Cys is replaced by a Tyr (in
green) which makes a flat surface that selects for charged resi-
dues in the +1 and +2 positions. Src has a pocket that accom-
modates the hydrophobic side chain of the +3 Ile, which is
formed in part by a Thr (EF1) shown in red. In the Grb2 SH2
domain this Thr is replaced by a Trp (in red) which fills up the
pocket and forces the phosphpeptide into a b-turn. Changing the
Cys in PLC-g1 to Tyr converts the PLC-g1 SH2 domain to a
Src-like specificity, and conversely changing the Thr in Src to
Trp results in a Grb2-like specificity.
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tionally impotent when stripped of its SH2-docking sites
(Maina et al. 1996). In contrast, a Met receptor with a
more subtle substitution that alters a +2 Asn crucial for
Grb2-binding has a milder phenotype, involving defects
in muscle development. Similarly, substitution of Tyr
719 in the mouse Kit RTK, that normally engages PI3K,
impairs specific aspects of Kit function required for the
survival of male germ cells (Blume-Jensen et al. 2000),
and ovarian follicle development (Kissel et al. 2000).
However, PI3K-binding is not significantly required for
Kit’s role in melanogenesis and hematopoiesis. In a simi-
lar vein, substitutions of the PI3K binding sites (Tyr 739/
750) in the mouse bPDGF receptor cause a very subtle
phenotype, resulting in decreased chemotaxis and ability
to contract a collagen gel in culture, and a failure to
normalize interstitial fluid pressure in vivo (Heuchel et
al. 1999). These data are consistent with the view that
individual receptor phosphorylation sites bind SH2 sig-
naling proteins in a sequence-dependent manner, result-
ing in the activation of defined biochemical pathways
and specific biological responses.

There are a number of complications to this simple
view. First, different signaling pathways may ultimately
converge on overlapping targets, and thus have partially
redundant functions (Fambrough et al. 1999). Second,
some signaling pathways may have subtle biological ac-
tivities. Furthermore, some RTKs can phosphorylate
specific docking proteins at residues that subsequently
bind SH2 proteins, and provide signaling activity even in
the absence of SH2-binding sites on the receptor itself.
Examples include the Shc, IRS-1, and FRS2 proteins.
These characteristically possess a means of membrane
attachment, a receptor-binding PTB domain, and mul-

tiple sites for tyrosine phosphorylation and SH2-binding
(Sun et al. 1993; van der Geer et al. 1996; Kouhara et al.
1997).

It is instructive to consider how these docking pro-
teins are recruited to activated receptors. Their PTB do-
mains specifically recognize pTyr-containing motifs, al-
though in an entirely different way from SH2 domains
(Zhou et al. 1995), and preferentially bind phosphory-
lated NPXY elements in the receptor’s juxtamembrane
region (Trub et al. 1995; van der Geer et al. 1995). Inter-
estingly, a growing number of proteins have been found
to possess PTB domains that bind NPXY, or related, mo-
tifs but do not require phosphorylation for high affinity
binding (Borg et al. 1998). This has led to the notion that
PTB domains originally evolved to recognize non-phos-
phorylated peptide motifs, and subsequently developed a
capacity for pTyr-binding in specific cases. Indeed, the
PTB domain of FRS2 binds both to a phosphorylated
NPXY site on the activated TrkA neurotrophin receptor,
and to an entirely different non-phosphorylated site on
the FGF-receptor (Ong et al. 2000) (Fig. 2). Rather strik-
ingly, PTB domains have a similar structural fold to PH
domains (which bind phospholipids) and EVH1 domains
(which bind proline-rich motifs), as well as to a protein
that binds the Ran GTPase, suggesting that this is a
rather versatile scaffold that has been exploited for sev-
eral different protein and phospholipid recognition
events (Yoon et al. 1994; Prehoda et al. 1999; Vetter et al.
1999).

What purpose is served by docking proteins that asso-
ciate with RTKs? One possibility is that they amplify
signaling from a given receptor to a particular biochemi-
cal pathway. Phosphorylation of IRS-1 by the insulin re-

Figure 2. Modular protein–protein interac-
tion domains convey signals from activated
receptors using a variety of recognition mo-
tifs. Both the TNF and FGF receptors em-
ploy modular protein–protein interaction
domains to convey signals. The activated
TNF-R1 trimer binds a docking protein,
TRADD, through death domain (DD)-DD
interactions. TRAD, in turn, binds to a va-
riety of adaptors, including FADD, TRAFs,
and RIP. FADD recruits procaspase 8,
which initiates a proteolytic cascade result-
ing in apoptosis. Recruitment of TRAF-2
via the TRAF-C domain initiates the Jnk
pathway, whereas recruitment of RIP acti-
vates NFkB signaling. In an analogous man-
ner, the FGF-R is clustered by FGF and pro-
teoglycan. The myristoylated FRS2 scaffold
protein binds to the FGF-R through its PTB
domain, becomes phosphorylated on mul-
tiple tyrosines, and consequently binds the
SH2 proteins Grb2 and Shp2. The Grb2
adaptor recruits Sos1 through its SH3 do-
main, and Sos1 acts as a GEF for the Ras
GTPase. Activated Ras can potentially
stimulate multiple pathways to promote
cell survival, activate transcription, or
cause cytoskeletal rearrangement.
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ceptor creates multiple binding sites for PI3K, whereas
Shc and FRS2 primarily engage Grb2, and thus are prin-
cipally involved in activating the MAPK pathway. An-
other role for a docking protein may be to juxtapose cy-
toplasmic proteins that act at successive stages of a path-
way. An example is provided by the SLP-76 protein that
functions downstream of the T-cell antigen receptor.
SLP-76 is an SH2 protein that is recruited to the T-cell
receptor target LAT through an SH2/SH3 adaptor pro-
tein, GADS. SLP-76 is then phosphorylated at multiple
sites by the receptor-associated kinase ZAP-70, and con-
sequently binds SH2 proteins (Liu et al. 1999). One such
binding protein is Vav, which acts as a guanine nucleo-
tide exchange factor (GEF) to activate the Rac GTPase.
SLP-76 also binds the SH2/SH3 adaptor Nck, which
complexes through its SH3 domains with the serine/
threonine kinase Pak. Pak is activated by GTP-bound
Rac (produced by Vav) and induces cytoskeletal re-orga-
nization. SLP-76 therefore functions as a scaffold that
juxtaposes members of a pathway targeting the cytoskel-
eton (Bubeck Wardenburg et al. 1998).

Multiple modules in signal transduction

SH2 domains serve as a prototype for a large and growing
family of modular protein domains found in intracellular
signaling proteins (see http://smart.embl-heidelberg.
de/) (Schultz et al. 2000). In addition to domains in-
volved in the recognition of pTyr- and pSer/Thr-contain-
ing peptides, there are a series of modules that recognize
specific proline-rich peptide motifs, including SH3, WW,
and EVH1 domains (Niebuhr et al. 1997; Nguyen et al.
1998; Aghazadeh and Rosen 1999). EH domains recog-
nize Asn–Pro–Phe sequences, commonly found in poly-
peptides involved in protein trafficking (Salcini et al.
1997; Mayer 1999), whereas PDZ domains bind short
peptide motifs at the extreme carboxyl termini of pro-
teins, typically transmembrane receptors (Songyang et
al. 1997). Two folded PDZ domains can also bind directly
to one another (Hillier et al. 1999), and SAM domains
also appear to have an intrinsic capacity to undergo self-
oligomerization (Stapleton et al. 1999; Thanos et al.
1999). As well as modules involved in domain–peptide or
domain–domain interactions, there are several examples
of domains that bind selectively to phospholipids and
thereby target proteins to specific sites in the membrane
to directly regulate their activity or access to substrates.
In particular, FYVE domains frequently bind specific
phosphoinositides, and therefore thereby mediate the ef-
fects of PI kinases on cellular behaviour (Fruman et al.
1999; Rameh and Cantley 1999). Recent evidence sug-
gests that the homodimerization of PH and FYVE do-
mains may increase the avidity with which they bind
membrane sites (Mao et al. 2000).

In many cases, cytoplasmic signaling proteins possess
multiple protein–protein and protein–phospholipid in-
teraction domains, covalently linked in various combi-
nations. The joining of different domains can serve a
variety of functions. Two domains may interact with
different sites on the same target, as commonly occurs

with polypeptides that possess tandem SH2 domains,
thereby increasing both the affinity and specificity of the
interaction (Ottinger et al. 1998). Conversely, separate
domains may interact with distinct partners, as observed
for adaptors with SH2 and SH3 domains, such as Grb2
that links activated receptors to downstream targets
with proline-rich motifs, notably the Ras GEF Sos1 (Li et
al. 1993; Rozakis-Adcock et al. 1993) (Fig. 2). Further-
more, modular domains can engage in complex intramo-
lecular interactions that regulate the enzymatic activi-
ties of their host protein, as occurs in the Src family
kinases or the Shp2 tyrosine phosphatase (Sicheri et al.
1997; Xu et al. 1997; Hof et al. 1998). These roles are not
necessarily mutually exclusive. In the Src tyrosine ki-
nase, phosphorylation of a carboxy-terminal tyrosine
leads to intramolecular interactions in which the SH2
and SH3 domains engage internal ligands and block ki-
nase activity. However, once these intramolecular inter-
actions are broken, the SH3 and SH2 domains play an
important role in tethering Src to its substrates and in
promoting processive phosphorylation (Sakai et al. 1994;
Pellicena et al. 1998).

Generality of protein–protein interactions in signaling

TGFb receptors

The process through which protein–protein interactions
mediate phosphotyrosine signaling represents a specific
aspect of a more general process in signal transduction.
Members of the TGFb receptor family exert their effects
through type 1 and type II receptors with protein serine/
threonine kinase activity (Massague 1998). Binding of
TGFb causes the type II receptor to phosphorylate the
type I receptor, which is thereby induced to phosphory-
late downstream targets, the regulated (R-) Smads, at
three carboxy-terminal sites within an SSXS motif. The
Smad proteins have an amino-terminal MH1 domain, a
central linker, and a carboxy-terminal MH2 domain,
which recognizes the type I receptor. R-Smad phosphory-
lation appears to block an internal interaction between
the MH1 and MH2 domains, and free the MH2 domain
to associate with the so-called common Smad (Smad4),
which is not itself phosphorylated. A binding site has
been identified on Smad4 that may serve as a receptor for
phosphorylated residues of R-Smads (Qin et al. 1999) The
resulting R-Smad/Smad4 hetero-oligomeric complex is
retained in the nucleus, where it binds to specific pro-
moters through the MH1 domain and to additional tran-
scription factors such as FAST (Wrana 2000) (Fig. 3).

There are a number of additional regulatory steps that
likely contribute to biochemical and biological specific-
ity in TGFb signaling. First, a docking protein termed
SARA binds the MH2 domain of unphosphorylated
Smad2 and Smad3 and appears to colocalize with the
TGFb receptor (Tsukazaki et al. 1998; Wu et al. 2000).
SARA thereby enhances TGFb signaling by increasing
the specificity and efficiency with which the receptor
phosphorylates its targets. Phosphorylated Smads are re-
leased from their SARA anchor. Interestingly, in addi-
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tion to the Smad-binding region, SARA has a FYVE do-
main that recognizes PI-3-P, and may therefore direct the
Smad to a particular membrane site where it encounters
the receptor.

Although there are many differences in the details be-
tween RTK and TGFb receptor signaling, there are also a
number of parallels. The receptor targets are modular
and they form complexes with their receptors. In both
cases, phosphorylation regulates protein–protein interac-
tions, although in distinct ways. In addition, both RTKs
and TGFb-receptors can employ docking proteins with
phospholipid- and protein-interaction domains, that aid
in the recruitment of targets to the receptor. Indeed, the
regulation of Smad signaling is somewhat reminiscent of
Stats, SH2-containing proteins that function down-
stream of cytokine receptors to control gene expression
(Darnell 1997) (Fig. 3). Stats bind to specific sites on ac-
tivated cytokine receptors through their SH2 domain,
and themselves become phosphorylated, resulting in a
mutual SH2-pTyr interaction between two Stat mol-
ecules (Chen et al. 1998). The phosphorylated Stats con-
sequently dimerize, are displaced from the receptor, re-
locate to the nucleus and bind to specific promoters.

There are also similarities in the way that RTK and
TGFb receptor signaling pathways are inhibited. As
noted above, RTKs such as the bPDGF receptor can bind
the SH2-containing protein c-Cbl, which acts as an E3
protein–ubiquitin ligase to label the receptor for degra-
dation. Within their linker region, Smads have proline-
rich (PY) motifs that bind the WW domains of another E3
protein–ubiquitin ligase (Smurf) with a Hect catalytic
domain, leading to Smad ubiquitination and destruction
(Zhu et al. 1999). Thus in both cases modular protein

interactions target specific components of the signaling
pathway for degradation, in a fashion that appears criti-
cal for appropriate biological responses.

TNF receptor signaling

Members of the tumor necrosis factor (TNF) receptor
family lack catalytic domains, but use specific protein–
protein interactions to convey signals from the receptor
to their downstream targets. A relatively simple example
involves the Fas receptor, which induces cell death upon
stimulation with the Fas-ligand (Ashkenazi and Dixit
1998). Fas has a carboxy-terminal death domain (DD),
which interacts specifically with a related DD at the
carboxyl terminus of the adaptor protein FADD (Chin-
naiyan et al. 1995). FADD has an amino-terminal death
effector domain (DED), which in turn recognizes the
DED of procaspase 8 (Muzio et al. 1996). Oligomeriza-
tion of Fas by Fas-L appears to juxtapose chains of pro-
caspase 8 which consequently undergo auto-cleavage,
leading to the release of active caspase 8, initiating a
cascade of proteolytic events that result in apoptosis
(Salvesen et al. 1999). Thus, rather like a RTK that en-
gages a modular protein (Grb2), which in turn recruits a
signaling enzyme (Sos1) to activate the Ras pathway, so
Fas binds a modular adaptor, FADD, that couples to the
enzyme caspase 8 and lights the apoptotic fuse. These
data indicate that receptors involved in signaling path-
ways that do not use phosphorylation as a primary
mechanism for information transfer, nonetheless make
use of modular protein–protein interactions to specifi-
cally activate their targets.

Other members of the TNF-R superfamily, such as
TNF-R1, utilize a death domain to activate cytoplasmic

Figure 3. Stats and Smads: Linking receptors
to transcription. IFNg receptor activation in-
duces protein-tyrosine kinases of the Jak fam-
ily. These act on the cytoplasmic tail of the
receptor, creating SH2 docking sites. STAT
proteins are recruited to the membrane via
their SH2 domain, and are themselves phos-
phorylated by the Jak kinases. Phosphorylated
STATs dimerize and translocate to the nucleus
where they activate transcription by binding
directly to specific DNA sequences. In a some-
what anlogous manner, R-SMADs are re-
cruited to activated TGFb receptors from their
membrane anchor protein SARA. Following
phosphoylation, the R-SMAD protein forms
heterodimers with SMAD4 and translocates to
the nucleus.
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signaling. TNF-R1 interacts initially with the death do-
main of a scaffolding protein termed TRADD (Hsu et al.
1995), which in turn recognizes the FADD adaptor, as
well as a distinct modular protein termed TRAF2 that
activates the Jnk MAPK pathway, and a DD-containing
protein kinase RIP that stimulates the NFkB pathway
(Arch et al. 1998) (Fig. 2). Thus TNF-R1, like some RTKs,
employs a docking protein that associates with multiple
downstream targets and can thereby extend the range
and potency of receptor signaling. However, most mem-
bers of the TNF-R family, including TNF-R2, appear to
signal primarily through TRAF proteins. The TRAFs
contain a carboxy-terminal domain (TRAF-C) that binds
short peptide motifs on the relevant receptor or on dock-
ing proteins such as TRADD, preceeded by a coiled-coil
region. The amino termini of the TRAFs have ring and
zinc finger sequences that are responsible for interac-
tions with downstream targets (Rothe et al. 1994). Crys-
tal structures of the coiled-coil and TRAF-C regions of
TRAF2 indicate that these domains self-associate to
form a trimer that is ideally fashioned to bind the acti-
vated receptor, which is itself coralled into a trimeric
state by its ligand (McWhirter et al. 1999; Park et al.
1999; Ye et al. 1999). Thus, although TRAFs have only a
low affinity for the monomeric receptor, they bind in a
co-operative fashion to the oligomerized receptor. Sur-
prisingly, an individual TRAF-C domain can bind
through the same groove to peptide motifs that are un-
related in their primary sequences. Thus, by analogy
with RTKs and SH2 domains, the oligomerization of
TNF-Rs creates high affinity binding sites for the
TRAF-C domains, which recognize specific motifs
within the receptor. TRAFs then act as adaptors to link
the activated receptors to cytoplasmic targets.

Specificity in signaling by serine/threonine kinases

RTKs and other cell surface receptors, frequently acti-
vate protein serine/threonine kinases that convey the
signal to targets in the cytoplasm and nucleus. Clearly,
this is an intrinsic function of the TGFb receptors, but
other receptors must take a more circuitous route to
stimulate protein serine/threonine kinase activity. The
Ras GTPase, activated by RTKs, binds the c-Raf protein
kinase (a MAPK kinase kinase or MAPKKK), which con-
sequently phosphorylates Mek (a MAPKK). Mek is a
dual-specificity kinase that phosphorylates and activates
Erk (a MAPK), which has multiple substrates involved in
the regulation of cell growth and proliferation (Marshall
1994; Whitmarsh and Davis 2000). Similar cascades of
protein kinases lead to the activation of other MAPKs,
such as Jnk/Sap or p38.

RTKs can also stimulate protein serine/threonine ki-
nases through pathways involving phospholipid produc-
tion, including the activation of PI3K, which leads to the
production of PI-3,4,5-P3. PIP3 binds selectively to the
PH domains of the serine/threonine kinases PDK1 and
Akt/PKB (Alessi et al. 1997; Belham et al. 1999) inducing
their membrane association (Andjelkovic et al. 1999). In-

terestingly, PDK1 phosphorylates PKB within the acti-
vation loop of the catalytic domain, in a fashion that is
indispensable for PKB activation and its subsequent ef-
fects on events such as cell survival. Furthermore, PDK1
appears to be a more general activator of a family of
serine/threonine kinases, including p70S6 kinase,
p90Rsk1, and atypical protein kinase C (PKC) isoforms,
amongst others. PLC-g also regulates signaling to PKCs
by stimulating the hydrolysis of PI-4,5-P2 to yield dia-
cyglycerol and IP3, which contribute to the activation of
conventional PKCs.

Through a series of protein–protein interactions, de-
scribed in part above, TNF-R1 activates a heteromeric
complex comprised of two protein kinase subunits, IKKa

and IKKb and at least one additional component, IKKg/
Nemo (Rothwarf et al. 1998; Karin 1999). IKK activation
leads to the phosphorylation of IkB, an inhibitor of the
NFkB transcription factor, resulting in IkB proteolytic
destruction. This frees NFkB to enter the nucleus and
induce the expression of specific genes.

The theme that numerous cell surface receptors acti-
vate pathways involving a series of protein serine/threo-
nine kinases raises the issue of how specificity is main-
tained in such kinase cascades, and how the ultimate
phosphorylation of target proteins on serine/threonine
modifies their functional properties. The pursuit of the
latter question has uncovered a number of modular pro-
teins that physically recognize specific phosphorylated
serine/threonine-containing motifs, in a similar fashion
to the binding of SH2 or PTB domains to pTyr-contain-
ing proteins. 14-3-3 proteins provide the prototype for
this idea. Mammalian cells contain seven 14-3-3 iso-
forms, which form homo- or heterodimers that recognize
specific pSer-containing motifs, originally identified as
having the consensus Arg-Ser-X-pSer-X-Pro (Muslin et
al. 1996). More recent data have revealed the structural
basis for this interaction (Yaffe et al. 1997). Of particular
interest, some of the proteins involved in the signaling
pathways mentioned above are bound by 14-3-3 proteins
following their phosphorylation. The protein kinase
PKB, for example, phosphorylates the pro-apoptotic pro-
teins BAD and FKHRL1, the former being a Bcl family
member that in its unphosphorylated state binds and
inhibits the death antagonist Bcl-XL (Zha et al. 1996),
while FKHRL1 is a transcription factor that may induce
the expression of pro-apoptotic genes (Brunet et al. 1999).
The binding of 14-3-3 proteins to phosphorylated targets
apparently results in their relocalization and inhibition.
In the case of BAD this is achieved by sequestering it
away from Bcl-XL, while FKHRL1 is apparently retained
in the cytoplasm once complexed to 14-3-3, and is there-
fore prevented from gaining access to its targets in the
nucleus. 14-3-3 proteins also interact with the c-Raf ki-
nase to regulate its activity (Thorson et al. 1998), and
indeed a dominant negative 14-3-3 protein blocks serum-
induced Erk MAPK activation and enhances apoptosis
both in cultured cells and in mice (Xing et al. 2000).

The ability of 14-3-3 proteins to control cellular events
through the recognition of specific phosphoproteins is
not restricted to conventional signaling pathways re-
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sponsive to extrinsic cues, but is also important in regu-
lating checkpoints in the cell cycle that monitor intrin-
sic events such as DNA damage. In this context, a key
step in controlling the passage of mammalian cells
through the cell cycle is the serine phosphorylation of
Cdc25C, a tyrosine phosphatase that dephosphorylates
and activates the critical cyclin-regulated protein kinase
Cdc2, and thereby promotes passage of the cell into mi-
tosis. During interphase Cdc25C is phosphorylated at
Ser-216, resulting in binding to 14-3-3 proteins (Peng et
al. 1997). Cdc25C shuttles between the cytoplasm and
nucleus, and 14-3-3 binding favors the retention of
Cdc25C in the cytoplasm, possibly by masking a nuclear
localization signal (Fig. 4). As a result Cdc25C is physi-
cally separated from its nuclear substrate, which is
therefore held in an inactive state. Dephosphorylation of
Ser-216 frees Cdc25C to enter the nucleus and initiate
mitosis. In yeast, protein kinases that regulate cell cycle
checkpoints by responding to DNA damage and replica-
tion blocks, such as Cds1 and Chk1, directly phosphory-
late Cdc25 and induce a Cdc25/14-3-3 complex, thereby
slowing passage through the cell cycle and allowing time
for DNA repair (Zeng et al. 1998; Zeng and Piwnica-
Worms 1999).

14-3-3 proteins are small, individual polypeptides, and
have not as yet been found to be covalently linked to
other functional domains. However, there are protein
modules with the potential to bind pSer/pThr-contain-
ing motifs that, like SH2 domains, are located within a
number of different host proteins. Notably, the Fork-
head-associated (FHA) domain is present in a wide range
of nuclear polypeptides involved in transcription, DNA

repair or cell cycle progression in both eukaryotes and
prokaryotes (Hofmann and Butcher 1995). Recent work
on the yeast protein kinase Rad53 has shown that its
amino-terminal FHA domain binds selectively to pThr-
X-X-Asp motifs and has suggested that the recognition of
phosphorylated peptide motifs may be a common prop-
erty of FHA domains (Durocher et al. 1999). The struc-
ture of the carboxy-terminal PHA domain of Rad53 has
recently been solved, revealing a b-sandwich with two
anti-parallel b-sheets (Liao et al. 1999), but the precise
mechanism of ligand binding is unknown. Interestingly,
Rad53 lies downstream of its phosphorylated binding
partner, Rad9, a protein that senses DNA damage, sug-
gesting that a phosphodependent FHA-mediated interac-
tion is important in checkpoint signaling (Sun et al.
1998). Consistent with this idea, recent data indicate
that the amino-terminal FHA domain of human Chk2, a
homolog of yeast Rad53, is affected by mutations in the
familial cancer Li–Fraumeni syndrome (Bell et al. 1999).

There are increasing examples of pSer/pThr-depen-
dent protein–protein interactions. Phosphorylation of
the transcription factor CREB at Ser-133 by protein ki-
nases such as cAMP-dependent protein kinase (PKA),
PKB, and p90Rsk2 creates a binding site for the coacti-
vator CBP, and results in transcriptional activation of
CREB-responsive genes (Xing et al. 1996; Radhakrishnan
et al. 1997; Du and Montminy 1998). Similarly, the WW
domain of the peptidyl–prolyl isomerase Pin1 binds pSer–
Pro motifs, which may position the enzyme close to its
substrates (Lu et al. 1999).

Equally striking, the pSer/Thr-dependent recognition
of proteins by members of the F-box family appears to be

Figure 4. A simplified scheme indicating
the role of serine/threonine phosphoryla-
tion events in regulating DNA damage-in-
duced cell cycle checkpoint control. DNA
damage results in phosphorylation medi-
ated stabilization of p53 by a variety of ki-
nases (ATM, ATR, DNA-PK, Jnk, and
CKI). This blocks the interaction of p53
with Mdm2 that normally results in effi-
cient ubiquitin-targeted degradation of
p53 by the proteasome. Activated p53 in-
duces the transcription of genes such as
p21Cip/Waf, a cyclin dependent kinase in-
hibitor that blocks the action of CyclinE/
Cdk2 and thereby prevents the phosphory-
lation of targets such as Rb, an event that
is required for G1-to-S transition. DNA
damage stabilization of p53 thereby blocks
cell cycle progression at the G1-to-S
checkpoint. Cyclin E1 is itself degraded at
the G1-to-S boundary following phos-
phorylation on Thr-380. Phosphorylation
at this site is sufficient to target Cyclin E1
to the SCF E3 ubiquitin ligase complex
composed of Cdc53/CUL-1, Skp1, Rbx-1,
Cdc34 (E2), and a putative F-box protein.
DNA damage also results in the activation of Chk1 kinase that phosphorylates the Cdc25C phosphatase on Ser-216. 14-3-3 protein
binds to phosphorylated Cdc25C and sequesters this complex in the cytoplasm. Active Cdc25C is required to activate CyclinB/Cdk2
to allow G2-to-M transition. Thus, DNA damage also blocks cell cycle progression at the G2-to-M checkpoint.
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a common and critical mechanism for the selective de-
struction of signaling and cell cycle proteins by ubiqui-
tin-mediated proteolysis (Craig and Tyers 1999; Tyers
and Willems 1999). This scheme was first established for
a complex of proteins (termed SCF) that control S phase
progression in Saccharomyces cerevisiae, through their
ability to degrade their targets in a fashion that imposes
order on the cell cycle (Willems et al. 1996; Skowyra et
al. 1997; Patton et al. 1998). In yeast, a protein termed
Cdc53 (corresponding to the cullins of multicellular or-
ganisms) serves as a scaffold to recruit an adaptor (Skp1),
an E2 protein–ubiquitin ligase (Cdc34), and a ring finger
protein (Rbx1), which potentiates substrate ubiquitina-
tion. Skp1 links the Cdc53 complex to one of many pro-
teins with a conserved Skp1-binding domain, termed an
F box. F-box proteins contain the eponymous F box at the
amino terminus and a variable carboxyl terminus, typi-
cally comprised of WD40 repeats or leucine-rich repeats,
which directly contacts the target for ubiquitination. In
several cases, phosphorylation of the target is required
for its association with the F-box protein. This has been
nicely demonstrated for the yeast protein Sic1, which is
the only essential target for Cdk activity during the G1

phase of the cell cycle. Sic1 is an inhibitor of the G2/M
phase Cdk complex, and its inactivation by proteolytic
degradation, is required for passage through the cell
cycle. Sic1 becomes phosphorylated at multiple serine
residues and subsequently associates with the carboxy-
terminal WD40 repeats of an F-box protein termed Cdc4,
resulting in its degradation. The targeting of specific pro-
teins for degradation through their association with F-
box proteins likely regulates many events in signal trans-
duction (Fig. 4). As an example, phosphorylated IkB is

recognized by bTrCP, a mammalian F-box protein with
carboxy-terminal WD40 repeats, that is closely related to
the yeast Cdc4 (Yaron et al. 1998; Winston et al. 1999).
Thus a pivotal event in TNF-R signaling involves the
phospho-dependent recognition of the IkB inhibitor by
an F-box protein.

Scaffolding and docking interactions in protein
serine/threonine kinase pathways

The data summarized above have indicated that the
phosphorylation of serine/threonine residues directly
regulates protein–protein interactions. Many of the sig-
naling pathways that control serine/threonine phos-
phorylation are composed of a succession of protein ki-
nases (MAPK cascades for example), raising the issue as
to how specificity is preserved under such circum-
stances. Clearly, protein serine/threonine kinases pref-
erentially phosphorylate specific motifs in their sub-
strates, but the experience with tyrosine kinases sug-
gests that they might have more extensive interactions
with their targets. Indeed, two types of docking interac-
tions appear important in determining specificity in
pSer/Thr signaling. Protein kinases are often anchored to
a scaffolding protein that may either facilitate the flow of
information from one kinase to another, or hold the ki-
nase in a latent state close to the receptor that will in-
duce its activation (Pawson and Scott 1997; Whitmarsh
and Davis 1998). Furthermore, MAPKs appear to have
specific docking interactions with their immediate sub-
strates and regulators that likely enhance the specificity
of MAPK pathways (Holland and Cooper 1999) (Fig. 5).

Figure 5. Scaffold mediated assembly of sig-
naling pathways. (A) Jip1 acts as a scaffold for
the mammalian Jnk MAPK cascade. Jip1 has
separate binding sites for Jnk, and the up-
stream kinases MKK7 (MAPKK), MLK3
(MAPK), and HPK1. Jip1 also has SH3 and PTB
domains that may tether the complex to addi-
tional proteins involved in upstream activa-
tion or localization. (B) The Erk MAPK docks
to target proteins. Once tethered in this man-
ner, Erk phosphorylates the substrate, Rsk1.
(C) The regulatory cyclin A subunit of Cdk2
binds substrates with a conserved RXL motif,
such as p107. (D) The AKAP protein Yotiao
binds to the NMDA receptor, PKA in the in-
active form, and PP1 in the active form. In
doing so, Yotiao creates close physical associa-
tion of the components that repress resting
NMDA receptor and enhance channel activa-
tion.
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The classical example of this latter type of scaffolding
protein is the Ste5 polypeptide in yeast, which is re-
quired for growth arrest and mating, and acts down-
stream of the G-protein coupled pheromone receptor to
regulate a MAPK cascade (Elion 1998). Ste5 interacts
with the Gb subunit (Ste4) (Pryciak and Huntress 1998),
and has independent binding sites for a MAPKKK
(Ste11), a MAPKK (Ste7), and a MAPK (Fus3) (Choi et al.
1994). Various functions have been proposed for Ste5,
notably to increase the fidelity of the pathway by physi-
cally juxtaposing successive kinases, to localize these
kinases to specific subcellular compartments, and to in-
sulate interacting kinases from separate pathways. It is
also possible that Ste5 oligomerization could enhance
kinase activation by promoting intermolecular auto-
phosphorylation. The potential importance of scaffold-
ing proteins is underscored by the observation that the
MAPKKK Ste11 also acts in the yeast osmosensing path-
way, although the other components of the pathway, in-
cluding the Hog1 MAPK are different. In this case, the
MAPKK Pbs2 provides the scaffolding function through
an extended amino terminus. Pbs2 engages both Ste11
and Hog1, as well as the osmosensing receptor (Sho1),
which has an SH3 domain that binds a proline-rich motif
in Pbs2 (Posas and Saito 1997). Thus, Pbs2 serves a some-
what analagous function to Ste5 in assembling the ele-
ments of a signaling pathway into an individual complex.

Recent data suggest that scaffolding proteins akin to
Ste5, likely play an important role in organizing MAPKs
in mammalian cells. In particular, several proteins have
been identified that bind members of the Jnk MAPK
pathway and potentiate Jnk activation (Yasuda et al.
1999; Kelkar et al. 2000). JIP1 and JIP2 are closely related
proteins that have separate binding sites for Jnk, and the
upstream kinases MKK7 (a MAPKK), MLK3 (a MAPKKK),
and HPK1, a Ste20-related kinase that activates MLK3 (Fig.
5A). JIP1/2 appear to be activators of Jnk signaling, and can
form large cytoplasmic complexes through their ability to
make homo- or hetero-oligomers. They are relatively se-
lective for specific members of the Jnk signaling cassette,
suggesting that they serve both to enhance activation and
to impose specificity. Interestingly, these JIP proteins have
carboxy-terminal SH3 and PTB domains, which might aid
in their localization, or association with other signaling
proteins. Indeed the JIP-1 PTB domain binds a RhoGEF,
and JIP-1 is localized to the tips of neurites in cultured
neuronal cells (Meyer et al. 1999).

In addition to the indirect association of MAPKs and
their upstream regulators, mediated by their common
interaction with the same scaffolding protein, MAPKs
can bind directly to their substrates and regulators
through noncatalytic docking sites. Like other protein
kinases, the Erk and Jnk MAPKs preferentially phos-
phorylate serine or threonine in a specific consensus se-
quence, minimally Ser/Thr–Pro. However, this does not
fully explain the specificity of MAPK substrate selection
in vivo. Rather, it appears that physiological substrates
for MAPKs have separate motifs that tether the enzyme
to its phosphorylation target. A common docking site for
the Erk MAPK is formed by a short stretch of basic resi-

dues, found in substrates such as the protein kinases
Rsk1/2 and Mnk2, and markedly increases the efficiency
with which they are phosphorylated (Waskiewicz et al.
1997; Gavin and Nebreda 1999). The docking motif binds
a negatively charged region carboxy-terminal to the Erk
catalytic domain. Remarkably, the same basic motif is
found in a kinase (Mek) and phosphatase (MKP) that re-
spectively phosphorylate and dephosphorylate Erk, sug-
gesting that substrates and regulators may compete for
the same binding site on the Erk protein kinase (Tanoue
et al. 2000). A similar common docking (CD) domain is
found in the Jnk and p38 MAPK family members, and
also appears to specify interactions with substrates and
regulators. A distinct docking site (FXFP) is found in Erk
substrates such as the Elk-1 transcription factor, and its
presence markedly enhances the affinity with which the
kinase and substrate interact, resulting in enhanced
phosphorylation (Jacobs et al. 1999). Elk-1 has an addi-
tional docking motif, the D box, that binds both to Erk
and Jnk, and is related to the d domain in c-Jun that
confers high affinity binding to Jnk. Interestingly, these
motifs are portable, in the sense that they will convert a
poor target into a high affinity substrate for the relevant
MAPK, and act in synergy to enhance phosphorylation.

Results of this type have suggested that MAPKs, and
possibly many other serine/threonine kinases, select
their substrates first through a noncatalytic docking in-
teraction, which determines the substrate to be phos-
phorylated. This is followed by the recognition of a spe-
cific site within the bound protein for phosphorylation at
the enzyme’s active site (Fig. 5B). Indeed the regulatory
cyclin A subunit of Cdk2 binds substrates with a con-
served RXL motif, such as p107, in a fashion that is im-
portant for their subsequent phosphorylation (Schulman
et al. 1998) (Fig. 5C). In a related vein, specific cyclins in
yeast (Pcl8/Pcl10) direct the Pho85 Cdk to phosphory-
late glycogen synthase and thereby antagonize glycogen
accumulation (Huang et al. 1998). In principle, these
mechanisms through which protein serine/threonine ki-
nases increase the local concentration of their physi-
ological substrates is very similar to the devices by
which tyrosine kinases attract their targets. Thus, it ap-
pears that docking interactions of this sort may be a very
general phenomenon in the recognition of protein kinase
substrates and therefore in determining the specificity of
signal transduction.

The ability of scaffolding proteins to organize the pro-
tein kinases and phosphatases that regulate serine/
threonine phosphorylation is typified by the A kinase
anchoring proteins (AKAPs) (Colledge and Scott 1999).
These represent a growing family of large polypeptides,
that contain binding sites for various protein serine/
threonine kinases and phosphatases, as well as a target-
ing motif that directs the resulting complex to a specific
site in the cell. PKA has a catalytic subunit (C) whose
activity is repressed by binding to a regulatory (R) sub-
unit. Receptors such as GPCRs elevate the level of
cAMP, which binds to the R subunit and induces disso-
ciation of a free C subunit. In addition to its cAMP-
binding sites, the R subunits have an amino-terminal
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domain required for dimerization and binding to the
AKAP. In the case of the RII subunit, the dimerized
amino terminus forms a four-helix bundle that creates a
groove to accommodate an amphipathic a-helix from the
AKAP (Newlon et al. 1999). Thus a short motif on the
AKAP binds the RII subunit of PKA, holding the kinase
in an inactive state at a subcellular site dictated by the
AKAP. AKAPs bind not only to PKA, but also to other
protein kinases such as PKC isoforms, as well as serine/
threonine phosphatases (PPI and PPII). In general, the
AKAPs appear to anchor the kinases and phosphatases in
an inactive state, close to their activators and substrates.
Yotiao is a ∼210-kD protein that interacts directly with
the NR1A subunit of the NMDA receptor and binds both
the RII subunit of PKA in an inactive state, as well as the
phosphatase PP1 in an active form (Westphal et al. 1999).
NMDA receptor channel activity is positively regulated
by phosphorylation, and by physically linking a consti-
tutively active phosphatase to NR1A, Yotiao appears to
repress the activity of the channel under resting condi-
tions. However, the simultaneous juxtaposition of inac-
tive PKA with the receptor means that Yatiao also en-
hances channel activation once cAMP liberates an active
C subunit, overcoming the inhibitory activity of the
phosphatase (Fig. 5D). Thus protein–protein interactions
appear to be an important determinant of specificity in
signaling by neurotransmitter receptors. This theme that
has been echoed by the discovery of a complex network
of interacting proteins in the post-synaptic density, that
largely through PDZ domain-mediated interactions ap-
pears to organize the localization and signaling activities
of glutamate receptors and GPCRs (Fanning and Ander-
son 1999; Tu et al. 1999).

Guidance receptors and signaling to the cytoskeleton

It is common when considering signaling pathways to
dwell on events that culminate in the nucleus. However,
signaling pathways that control the cytoskeleton and ad-
hesion of cells to the extracellular matrix are essential
for guided cell migration, including processes such as
axon guidance and topographic map formation in the
brain. Recent work has identified a number of cell sur-
face receptors that mediate the responses of axons to
both repulsive and attractive cues, and which play a
larger role in the guided movement of multiple cell types
(Tessier-Lavigne and Goodman 1996). Among these
guidance receptors are members of the Eph family of
RTKs. Mammalian Eph receptors interact with ligands,
termed ephrins, which are themselves anchored to the
cell surface, either through a GPI linkage (A-type eph-
rins) or a transmembrane sequence joined to a conserved
cytoplasmic tail (B-type ephrins) (Holder and Klein
1999). Physiological Eph receptor activation apparently
requires a direct interaction between receptor and eph-
rin-expressing cells. Upon activation, Eph receptors un-
dergo autophosphorylation at multiple sites, including
the kinase domain activation loop and at tyrosine resi-
dues within a conserved motif in the juxtamembrane
region (Kalo and Pasquale 1999). Surprisingly, the juxta-

membrane autophosphorylation sites appear to have a
dual function since they contribute to receptor kinase
activation, as well as providing docking sites for proteins
with SH2 domains (Holland et al. 1997; Binns et al. 2000;
Zisch et al. 2000). In addition to binding SH2 proteins
directly, Eph receptors can phosphorylate docking pro-
teins such as p62dok, which engages Ras GAP and the
SH2/SH3 adaptor Nck through SH2-mediate interac-
tions (Holland et al. 1997).

Eph receptors have many functions in vertebrates and
invertebrates, including regulation of angiogenesis, the
formation of boundaries between rhombomeres, forma-
tion of the palate, and tissue morphogenesis. However,
they have been most intensively studied for their role in
axon guidance and topographic map formation in the
central nervous system (Flanagan and Vanderhaeghen
1998). The binding of ephrins to neuronal cells express-
ing Eph receptors induces remodeling of the actin cyto-
skeleton and growth cone collapse, in a fashion that is
dependent on receptor kinase activity and the juxta-
membrane pTyr sites (Drescher et al. 1995; Binns et al.
2000). These data suggest that activated Eph receptors
can communicate with signaling proteins that regulate
the cytoskeleton. There are a number of candidates that
might fulfil this role, including the Nck adaptor.

Nck has a carboxy-terminal SH2 domain that binds
pTyr sites, and three amino-terminal SH3 domains that
engage a variety of proteins implicated in cytoskeletal
organization (Buday 1999). In particular, the second SH3
domain of Nck binds the protein serine/threonine ki-
nase Pak (Bokoch et al. 1996; Lu et al. 1997) (Fig. 6). Pak
has a carboxy-terminal kinase domain, and an extended
amino terminus that binds the SH3 domains of both Nck
and a Rac/Cdc42 GEF termed PIX (Manser et al. 1998), as
well as recognizing GTP-bound Rac/Cdc42 GTPases.
Nck recruits Pak to the membrane, whereas binding of
Cdc42 appears to directly increase Pak kinase activity,

Figure 6. A signaling pathway to the cytoskeleton. Axon guid-
ance receptors potentially bind the Nck adaptor, through both
SH2-and SH3-mediated interactions. The second SH3 domain of
Nck recruits the Pak protein serine/threonine kinase to the
membrane. Pak kinase activity is induced by binding of GTP-
Cdc42 to a CRIB motif. Pak can also generate activated Cdc42
through the associated PIX GEF. (Pro, proline-rich motif).
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likely by causing a conformational change that releases
an inhibitory effect of the amino terminus. Thus, Pak
may have two ways to modify the actin cytoskeleton.
One being a kinase-dependent effect through phosphory-
lation of substrates such as myosin light-chain kinase
(Sanders et al. 1999), whereas the interaction with PIX
can deliver a kinase-independent signal through Cdc42/
Rac activation (Fig. 6).

Genetic data from Drosophila support the idea that
Nck and Pak are important for the control of axon guid-
ance. Mutations in the Drosophila Nck homolog (termed
Dreadlocks or Dock) cause striking defects in the guid-
ance and targeting of photoreceptor axons, and this ab-
errant behavior is mimicked by mutations in Drosophila
Pak (Hing et al. 1999). Interestingly, mutations in both
the Cdc42- and Nck-binding sites impair the ability of
Pak to steer axons correctly. Such data have suggested
that modular proteins of the sort identified in other sig-
naling pathways play important roles in linking cell sur-
face receptors to the actin cytoskeleton, and thus to the
control of guided cell movement. Indeed there are an
increasing number of such examples.

Two signaling proteins appear central to controlling
the cytoskeleton and may serve as convergence points
downstream from a variety of guidance receptors (Fig. 7).
The Drosophila Enabled (Ena) protein, and its mamma-
lian homolog Mena, are stongly implicated in regulating
actin dynamics (Lanier and Gertler 2000). Mena has an

amino-terminal EVH1 domain that interacts with pro-
teins found in focal complexes, such as vinculin and
zyxin, with the ActA protein of the bacterial pathogen
Listeria monocytogenes, and the guidance receptor
Roundabout (Robo) (Gertler et al. 1996; Prehoda et al.
1999). The central region of Mena has proline-rich motifs
that associate with the actin/phospholipid-binding pro-
tein profilin, and with proteins that possess SH3 or WW
domains. At its carboxyl terminus, Mena has an EVH2
domain involved in dimerization and association with
actin. Thus Mena can potentially link proteins with
E/DFPPPP motifs that bind the EVH1 domain to regula-
tion of the actin cytoskeleton (Lanier et al. 1999). An-
other multi-domain protein that acts in neurons to con-
trol axon guidance is UNC-73 (Steven et al. 1998), the C.
elegans counterpart of mammalian Trio (Debant et al.
1996). Whereas UNC-73 and Trio differ at their extreme
carboxyl termini, they both have an amino-terminal do-
main found in proteins such as yeast Sec14, that bind
phosphatidylinositol, followed by multiple spectrin re-
peats and a DH–PH domain that serves as a GEF for the
Rac GTPase. This region is connected by an SH3 domain
to a second DH–PH domain that has Rho GEF activity.
The structure of UNC-73/Trio suggests that it may
couple signals to the regulation of Rho family GTPases
and thus to reorganization of the cytoskeleton. Indeed,
loss-of-function mutations in unc-73 cause a variety of
defects in guided cell movements, and a substitution in
the first DH domain that inhibits its Rac GEF activity
disrupts axon guidance (Fig. 7). A challenge for the future
will be to sort out how cell surface guidance receptors
communicate with cytoplasmic signaling molecules
such as Mena and Unc-73/Trio. Some clues can be
gained by considering a series of new guidance receptors
whose connections to intracellular pathways are cur-
rently mysterious.

The Robo1 receptor in Drosophila binds the mid-line
repellant Slit and therefore prevents axons from crossing
(or recrossing) the midline (Kidd et al. 1998, 1999; Brose
et al. 1999). The cytoplasmic region of Robo has a num-
ber of proline-rich motifs that are conserved in evolu-
tion, and as noted above can potentially interact with the
Mena EVH1 domain as well as with SH3-containing pro-
teins. Thus, it seems likely that Robo affects the cyto-
skeleton through modular proteins with the capacity to
bind specific proline-rich sequences.

The UNC-5 protein, conserved from C. elegans to
mammals, responds to the extracellular ligand netrin
and has a repulsive effect on the growth cone (Leuing-
Hagesteijn et al. 1992; Leonardo et al. 1997), commonly
in association with a quite different netrin-receptor,
UNC-40/DCC (Chan et al. 1996). Remarkably, netrin
has an attractive effect on axons that only express UNC-
40/DCC, which is converted into a repulsive effect upon
expression of UNC-5 and its association with UNC-40/
DCC (Hong et al. 1999). The mechanisms by which
UNC-5 and UNC-40 signal are currently unknown, but
their cytoplasmic regions appear to have a modular con-
struction. UNC-5 has a carboxy-terminal death domain,
although this seams dispensable for axon guidance, and a

Figure 7. Modular proteins that may integrate cytoskeletal sig-
naling. Mena interacts with receptors, focal adhesion compo-
nents, and bacterial pathogens through its EVH1 domain, and
has multiple motifs that potentially couple to the actin cyto-
skeleton. UNC-73/Trio has an amino-terminal domain related
to yeast Sec 14, multiple spectrin repeats, and two DH-PH do-
mains that activate Rac and Rho respectively. The signaling
pathways that lie upstream of UNC-73/Trio are not well estab-
lished.
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central region also found in the cell junction protein
ZO-1 and the cytoskeletal protein ankyrin. Furthermore,
UNC-5 and UNC-40/DCC interact directly with one an-
other through their cytoplasmic regions. The finding
that guidance receptors exert quite different effects de-
pending on their association with a coreceptor or follow-
ing elevation of cAMP or cGMP (Song et al. 1998), adds
a fascinating complexity that has yet to be explored at
the biochemical level. Similar to UNC-5, the plexins,
which act as receptors for the semaphorin guidance mol-
ecules, have conserved cytoplasmic domains whose bio-
chemical activities are unknown (Tamagnone et al.
1999). Elucidating the signaling pathways activated by
these diverse guidance receptors will be important for
understanding the complexities of cell movement, and
the formation of complex tissues such as the brain.

Integration of signaling pathways

In the body, a cell will be simultaneously exposed to
multiple, potentially contradictory signals, in the form
of soluble hormones and ligands anchored to adjacent
cells or the ECM. The cell must have mechanisms for
converting these various signals into a defined response.
Furthermore, the cell must monitor its internal state so
that it does not attempt to divide before achieving the
appropriate mass, for example. There are some clues as
to how these types of regulation may be achieved. In one
mode of integration, activation of a key signaling protein
requires input from two or more distinct biochemical
pathways. The Rsk1 protein serine/threonine kinases
exhibits such behavior. Rsk1 has two catalytic domains,
of which the amino-terminal domain phosphorylates

downstream targets. The amino-terminal kinase domain
is controlled by multiple inputs, including the carboxy-
terminal domain. The Erk MAPK binds a basic docking
site at the extreme carboxyl terminus of Rsk1, and phos-
phorylates sites in the linker region between the two
kinase domains and in the carboxy-terminal domain,
which are essential for activation. Full activation, how-
ever, also requires phosphorylation of the amino-termi-
nal kinase domain by the PIP3-responsive protein kinase
PDK1 (Nebreda and Gavin 1999; Richards et al. 1999).
Rsk1 activation, therefore, requires inputs from both the
Erk MAPK pathway and the PI3K pathway (Fig. 8A).

Clearly much of the integration of signaling pathways
occurs at the level of transcriptional promoters. Thus the
transcription factors regulated by the TGFb and Wnt sig-
naling pathways (Smads and b-catenin complexed with
Lef1/Tcf, respectively) can physically interact with one
another and synergistically activate gene expression dur-
ing embryonic development (Nishita et al. 2000).

An alternative scenario is that two different pathways
have opposing effects, and the cell may therefore want to
prevent their simultaneous activation. A process of this
sort is seen for signaling with the interferon-g receptor
which, through activation of the Stat3 transcription fac-
tor, induces expression of Smad7 (Ulloa et al. 1999).
Smad7 inhibits TGFb receptor signaling since it binds
the activated receptor but lacks phosphorylation sites
and does not engage the common Smad4. Thus, cytokine
signaling not only activates a specific cellular response,
it also impairs the cell’s ability to respond to a conflict-
ing signal (Fig. 8B). A related effect has been proposed for
the Erk MAPK pathway, since Erk phosphorylates
Smad2/3 in the linker region between the MH1 and
MH2 domains, thereby apparently poisoning Smad re-

Figure 8. Integration of signaling pathways.
(A) Activation of Rsk1 requires phosphoryla-
tion by both PDK1 and ERK MAPK. Thus the
PI3K and Ras pathways synergize to stimulate
the Rsk1 protein serine/threonine kinase. (B)
Signaling through the interferon (IFN) g re-
ceptor–Stat3 pathway induces the expression
of the inhibitory Smad7, which blocks the ac-
tivity of the TGFb receptor. Thus one cyto-
kine pathway inhibits the activation of a dis-
tinct pathway. (C) Both the Wnt receptor
(DFz2) and the related Frizzled signal through
the multidomain protein Dishevelled. Wnt
signaling involves the DIX and PDZ domains
of Dishevelled, which activate the b-catenin
pathway. Frizzled signals through the car-
boxy-terminal DEP domain to activate the
JNK MAPK pathway.
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tention in the nucleus and blocking TGFb signaling
(Kretzschmar et al. 1999).

An additional twist is that an individual signaling pro-
tein may regulate signaling through multiple distinct
pathways, as appears to be the case for the modular cy-
toplasmic protein Dishevelled (Dsh) (Cadigan and Nusse
1996). Dsh has an amino-terminal DIX domain, which it
shares with the protein axin, a central PDZ domain, and
a carboxy-terminal DEP domain, a module found in a
variety of signaling proteins, notably proteins involved
in regulating G protein signaling, but currently of un-
known function. Dsh plays a key role in signaling from
Wnt receptors (such as DFz2 in Drosophila) to a complex
composed of axin/conductin, the GSK3b protein kinase,
b-catenin and APC (Zeng et al. 1997; Behrens et al. 1998;
Fagotto et al. 1999). This activity of Dsh requires the
amino-terminal DIX and PDZ domains and likely in-
volves a direct interaction with the DIX domain of axin
(Itoh et al. 2000). In the absence of Wnt signaling, phos-
phorylation of b-catenin by GSK3b creates recognition
sites for the F-box protein bTrCP, leading to b-catenin
ubiquitination and degradation (Hart et al. 1999). Follow-
ing Wnt stimulation, Dsh inhibits b-catenin phosphory-
lation, possibly by displacing GSK3b from the complex,
and the accumulating b-catenin moves to the nucleus
where it activates gene expression in a complex with the
Lef1/Tcf transcription factor (Behrens et al. 1996). Dsh,
however, has a completely different role downstream of
the Drosophila Frizzled receptor, which controls epithe-
lial planar polarity. This signaling pathway is mediated
by its carboxy-terminal DEP domain, which leads to the
activation of the Jnk pathway (Boutros et al. 1998) (Fig.
8C).

Evolution of signaling pathways

One might wonder why the cell has made such extensive
use of modular domains and portable recognition motifs
to organize signal transduction. A likely explanation is
that this allows for the rapid evolution of new signaling
pathways, through the simple device of joining existing
domains together in novel combinations, and by allow-
ing variations in binding interfaces to generate new
specificities. As an example, once the cell has generated
an SH2 domain with the ability to recognize a pTyr mo-
tif, as apparently happened very early in the evolution of
multicellular animals (Kawata et al. 1997), the cell has a
portable module that can be duplicated and inserted into
pre-existing enzymes or adaptors to render them respon-
sive to tyrosine kinase signaling. Simple mutation could
then generate SH2 domains with new recognition prop-
erties (as can be achieved in vitro), allowing receptors to
interact selectively with a subset of cytoplasmic targets.
Although yeast have no conventional tyrosine kinases
and no functional SH2 domains, they nonetheless have
many protein modules, SH3 and EH domains among oth-
ers, which regulate events such as endocytosis, vesicle
trafficking, and cytoskeletal organization (Tang et al.
2000). The subsequent appearance of SH2 domains has
apparently allowed the cell to join this freshly minted

module to pre-existing SH3 domains, thereby creating
new adaptor proteins that couples pTyr signaling to tar-
gets with proline-rich SH3-binding motifs. The reiter-
ated use of a limited number of protein modules also
allows for the evolution of networks of interacting path-
ways and the targeting of signaling complexes to specific
subcellular sites.

This approach to the design of signaling pathways has
its own potential difficulties. Signaling events must or-
ganize the entire complex behavior of the cell, and this
must be achieved through an apparently small number of
core signaling pathways, built on a restricted group of
protein modules. This immediately suggests that inter-
action domains and signaling pathways must have mul-
tiple biological functions. Thus although PTB, PDZ, and
SH3 domains, as an example, play important roles in
tyrosine kinase signaling, they are also essential for quite
different processes such as the establishment of cell po-
larity and asymmetric cell division. During develop-
ment, cells must frequently divide in an asymmetric
fashion, such that the two daughter cells are inherently
different from one another, both to establish polarized
tissues and to allow a single stem cell to generate several
distinct mature cell types. Commonly this is achieved
through regulatory proteins that themselves become
asymmetrically localized during mitosis and are prefer-
entially delivered into one of the resulting cells, where
they organize its polarity and fate. Work in C. elegans,
Drosophila, and mammals has established that a protein
termed PAR-3 (Bazooka in flies and ASIP/PHIP in verte-
brates) plays an organizing role in such processes (Ete-
mad-Moghadam et al. 1995; Tabuse et al. 1998; Lin et al.
1999; Schober et al. 1999; Wodarz et al. 1999). PAR-3 has
three PDZ domains and a carboxy-terminal region that
interacts with the atypical PKC isoforms, and may there-
fore serve a scaffolding function in establishing cellular
asymmetry. In a Drosophila stem cell, the sensory organ
precursor cell, PAR-3/Bazooka is genetically upstream of
other modular proteins, including Numb (Rhyu et al.
1994). Numb has an amino-terminal PTB domain, which
unlike the PTB domains of Shc and IRS-1, does not re-
quire pTyr for peptide recognition and is rather flexible
in its binding properties (Li et al. 1998), and specifies a
neuronal cell fate by inhibiting signaling through the
Notch pathway (Frise et al. 1996). Data of this sort has
established that asymmetric cell division, accomplished
in response to intrinsic cues, is controlled by modular
proteins with interaction domains very similar to those
used in signaling pathways that respond to external
stimuli. Thus the cell has in part solved the issue of
complexity by using subtle variants of the same domains
to regulate a wide array of intracellular processes.

Regulating the intensity of signaling pathways

One way in which the cell could use the same signaling
pathways to control a wide range of cellular processes is
to vary the amplitude and duration with which a path-
way is activated, and to convert this into qualitatively
different biological responses. Consistent with this pos-
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sibility, the cell apparently devotes considerable effort to
producing proteins that act as regulators of signaling
pathways. These may act simply to terminate signaling,
but may also have more specific effects on downstream
signaling. One recent example, which also illustrates the
versatility of interaction modules, involves the product
of the human disease gene SH2D1A, termed SAP (Sayos
et al. 1998). Mutations in SH2D1A cause an unusual
immunodeficiency resulting from an inability to control
the effects of Epstein-Barr virus (EBV) infection (Klein
and Klein 1998). The SAP protein is comprised of a single
SH2 domain with only a few flanking residues, which
binds costimulatory receptors in T cells, called SLAM
and 2B4. Unlike all other SH2 domains, SAP recognizes
not only phosphotyrosine in the context of carboxy-ter-
minal residues, but also engages three residues amino-
terminal to the pTyr (Li et al. 1999; Poy et al. 1999). As
a consequence, SAP can bind with relatively high affin-
ity to unphosphorylated Tyr-based motifs, although the
affinity increases about fivefold upon ligand phosphory-
lation. These data suggest that SAP may modulate sig-
naling by other SH2 proteins, either by occupying a po-
tential phosphorylation and blocking its modification or
by binding with very high affinity to the phosphorylated
site and preventing access to SH2 signaling proteins,
such as the Shp2 tyrosine phosphatase. SAP does not
appear to play a central role in T cell development or
function; however, in its absence EBV-infected B cells
elicit an inappropriate response in cytotoxic T lympho-
cytes. Thus, although the effect of SAP on T cell func-
tion is subtle, it is of sufficient importance to be required
for the survival of individuals infected with EBV.

In a similar vein, tyrosine kinases recruit a variety of
inhibitory SH2 proteins. These include the E3 protein–
ubiquitin ligase c-Cbl, and members of Cis/SOCS family
of regulators. Expression of SOCS proteins is induced by
Stat-mediated cytokine signaling, and they in turn bind
cytokine receptors and associated JAK tyrosine kinases
and repress signal transduction (Starr et al. 1997; Starr
and Hilton 1999). At their carboxyl terminus, they pos-
sess a domain termed the SOCS box, with motifs that
bind the protein elongin B and C. The SOCS box may be
analagous to the F-box domain discussed above, while
elongin C is related to the Skp1 adaptor of the SCF com-
plex. SOCS proteins may therefore form complexes simi-
lar to SCF that target associated polypeptides for destruc-
tion (Zhang et al. 1999). We have touched here on a few
of the regulators of tyrosine kinase signaling, but it is
evident that similar controls influence signaling through
other pathways (Zeng et al. 2000).

Conclusions

The completion of genome sequences yields the entire
set of proteins that an organism can make. As we under-
stand more about the mechanisms through which sig-
naling pathways are assembled, and the molecular infra-
structure that organizes cellular behavior, we can con-
template defining the full wiring diagram of the cell, and
employing this information in the treatment of the

many diseases that result from breakdowns in the sig-
naling process.
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