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Decades of research into cell biology,

molecular biology, biochemistry, structural

biology, and biophysics have produced a

remarkable compendium of knowledge on

the function and molecular properties of

individual proteins. This knowledge is well

recorded and manually curated into major

protein databases like UniProt [1,2]. How-

ever, proteins rarely act alone. Many times

they team up into ‘‘molecular machines’’

and have intricate physicochemical dynamic

connections to undertake biological func-

tions at both cellular and systems levels. A

critical step towards unraveling the complex

molecular relationships in living systems is

the mapping of protein-to-protein physical

‘‘interactions’’. The complete map of protein

interactions that can occur in a living

organism is called the interactome [3].

Interactome mapping has become one of

the main scopes of current biological

research, similar to the way ‘‘genome’’

projects were a driving force of molecular

biology 20 years ago.

Efficient large-scale technologies that

measure proteome-wide physical connec-

tions between protein pairs are essential for

accomplishing a comprehensive knowledge

of the protein interactomes. In recent years,

given an explosive development of high-

throughput experimental technologies, the

number of reported protein–protein inter-

actions (PPIs) has increased substantially.

Large collections of PPIs produce ‘‘omic’’

scale views of protein partners and protein

memberships in complexes and assemblies

[4]. Over the same period as the develop-

ment of large-scale technologies, efficient

collection of a lot of small-scale experimen-

tal data published in relevant scientific

journals is also taking place. This data

compilation work is just as essential to

achieving comprehensive knowledge of the

interactome. Important efforts have been

made to build public repositories that

integrate information from large- and

small-scale PPI experiments reported in

the scientific literature. A compendium of

PPI databases can be found in http://www.

pathguide.org/.

To achieve appropriate understanding

of PPIs and to design better ways for

analyzing and interpreting them, this

educational review presents several essen-

tial concepts and definitions intended

to facilitate the use of PPI information

both by computational and experimental

biologists.

The report is divided into five sections

and a summary: (a) PPI definition; a

definition of a protein-to-protein interac-

tion compared to other biomolecular

relationships or associations. (b) PPI deter-

mination by two alternative approaches: binary

and co-complex; a description of the PPIs

determined by the two main types of

experimental technologies. (c) The main

databases and repositories that include PPIs; a

description and comparison of the main

databases and repositories that include

PPIs, indicating the type of data that they

collect with a special distinction between

experimental and predicted data. (d)

Analysis of coverage and ways to improve PPI

reliability; a comparative study of the

current coverage on PPIs and presentation

of some strategies to improve the reliability

of PPI data. (e) Networks derived from PPIs

compared to canonical pathways; a practical

example that compares the characteristics

and information provided by a canonical

pathway and the PPI network built for the

same proteins. Last, a short summary and

guidance for learning more is provided.

PPI Definition

The first step needed is to define

precisely what protein–protein interactions

are. Commonly they are understood as

physical contacts with molecular docking

between proteins that occur in a cell or in

a living organism in vivo. As discussed

previously [5,6], the issue of whether two

proteins share a ‘‘functional contact’’ is

quite distinct from the question of whether

the same two proteins interact directly

with each other. Any protein in the

ribosome or in the basal transcriptional

apparatus shares a functional contact with

the other proteins in the complex, but

certainly not all the proteins in the

particular complex interact. Indubitably,

the existence of many other types of

functional links between biomolecular

entities (genes, proteins, metabolites, etc.)

in living organisms should not be confused

with protein physical interactions. Investi-

gating these functional links requires

different experimental techniques de-

signed to find such specific types of

relationships, for example, double mutant

synthetic lethality to find genetic interac-

tions [7] or transcriptome expression

profiling to find gene co-expression [8].

Identification of other types of protein

interactions (protein–DNA, protein–RNA,

protein–cofactor, or protein–ligand) is also

important for a comprehensive study of

the interactome, but again these types of

data should not be mixed or confused with

PPI data.

The physical contact considered in PPIs

should be specific, not just all proteins that

bump into each other by chance. It also

should exclude interactions that a protein

experiences when it is being made, folded,

quality checked, or degraded. For exam-
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ple, all proteins at one point ‘‘touch’’ the

ribosome, many touch chaperones, and

most make contact with the degradation

machinery. In many experimental assays,

such generic interactions are rightfully

filtered out. Therefore, the definition of

PPI has to consider (1st) the interaction

interface should be intentional and not

accidental, i.e., the result of specific

selected biomolecular events/forces; and

(2nd) the interaction interface should be

non-generic, i.e., evolved for a specific

purpose distinct from totally generic func-

tions such as protein production, degra-

dation, and others.

That PPIs imply physical contact be-

tween proteins does not mean that such

contacts are static or permanent. The cell

machinery undergoes continuous turnover

and reassembly. Some protein assemblies

are stable because they constitute macro-

molecular protein complexes and cellular

machines, for example ATP synthase

(eight different proteins in mammals) or

cytochrome oxidase (13 proteins in mam-

mals). These proteins included in com-

plexes are called ‘‘subunits’’. Other pro-

tein assemblies are only built to carry out

transient actions, for example, the activa-

tion of gene expression by the binding of

transcription factors and activators on the

DNA promoter region of a gene.

Another essential element for defining

PPIs is the biological context. Not all

possible interactions will occur in any cell

at any time. Instead, interactions depend

on cell type, cell cycle phase and state,

developmental stage, environmental con-

ditions, protein modifications (e.g., phos-

phorylation), presence of cofactors, and

presence of other binding partners.

PPI Determination by Two

Alternative Approaches: Binary

and Co-Complex

Experimental determinations of inter-

actions between proteins are done at either

a large or small scale with two main

technologies that produce different types

of PPI data. The techniques that measure

direct physical interactions between pro-

tein pairs are ‘‘binary’’ methods, while the

techniques that measure physical interac-

tions among groups of proteins, without

pairwise determination of protein part-

ners, are ‘‘co-complex’’ methods [9]. The

most often used binary and co-complex

methodologies are, respectively, yeast two-

hybrid (Y2H) [10] and tandem affinity

purification coupled to mass spectrometry

(TAP-MS) [11]. Both are widely applied in

large-scale investigations. Co-complex

methods measure both direct and indirect

interactions between proteins. The most

common approach is based on the pre-

selection of one protein tagged with a

molecular marker (the bait protein), which

is used to catch or ‘‘fish out’’ a group of

proteins (prey proteins) followed by a

biochemical technique to ‘‘pull-down’’

and separate them from a mix. In this

way, what takes place is a co-purification

of protein groups. Another common co-

complex approach, based on protein

antibody recognition, is co-inmunopreci-

pitation (CoIP) [5]. The experimental

results obtained with co-complex methods

are different from those obtained with

binary methods (Figure 1). Data derived

from co-complex studies cannot be direct-

ly assigned a binary interpretation. An

algorithm or model is needed to translate

group-based observations into pairwise

interactions. The spoke model is most

commonly used, as it produces the mini-

mal number of false positives [12]. An

Figure 1. Binary methods and co-complex methods: two approaches to determine PPIs. The two most widely used experimental
proteomic techniques applied to measure PPIs are yeast two-hybrid (Y2H) and tandem affinity purification coupled to mass spectrometry (TAP-MS);
the former technique is a binary method (which measures physical direct interactions between protein pairs), and the latter a co-complex method
(which measures physical interactions between groups of proteins without distinguishing whether they are direct or indirect). The interactions shown
in the left panel (green links) correspond to the true interactions existing between two groups of proteins (set A with four proteins and set B with
three proteins). The interactions shown in the right panels correspond to the networks derived from the experimentally measured interactions
existing between the six proteins analyzed: the network in the top right panel (blue links) presents the interactions obtained using a binary method;
the network in the bottom right panel (red links) presents the interactions obtained using a co-complex method. The red links are calculated applying
the spoke model to the TAP-MS experimental data, but three of the interactions deduced (links with an X) do not occur.
doi:10.1371/journal.pcbi.1000807.g001
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Figure 2. Human interactome: overlap of six databases and coverage of 3-D structural data. Analysis of human interactome PPI data
showing the coverage of six major primary databases (BIND, BioGRID, DIP, HPRD, IntAct, and MINT), according to the integration provided by the
meta-database APID. (A) Growth of the total number of human PPIs during the last 3 years. (B) Number of PPIs obtained from each primary
repository showing the % (with respect to the total number of PPIs: 80,032 in December 2009) and the number of PPIs only reported by each
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example of networks derived from Y2H

versus TAP-MS (Figure 1) illustrates the

differences that have to be well understood

by any researcher producing or analyzing

PPI data.

The Main Databases and

Repositories That Include PPIs

Several previous publications describe

databases related to protein interactions

[13–15]. These reports do not analyze and

compare the data sources or the types of

interactions that the PPI databases in-

clude. Recent debate has questioned how

many large-scale or small-scale literature-

curated PPI data sets are included in

public databases and what is the quality of

such data [16]. In this debate, public

repositories have stated that their aim is to

collect and organize experiments support-

ing PPIs into comprehensive sets of

accurately annotated data, without a

biased selection to evidence considered

more reliable or otherwise privileged [17].

Regardless, practical users have to know

which types of interaction databases are

available, what are the differences between

them, and which are the most compre-

hensive and stable repositories.

A comparison of the main databases

and repositories that include protein

interactions is shown in Table 1, indicat-

ing the sources of the data (‘‘PPI Sourc-

es’’), the types of molecular interactions

(‘‘Type of MI’’) and the total number of

proteins and interactions (where available).

Examination of the information in Table 1

defines three different approaches in the

collection and presentation of interaction

data: (i) primary databases, which include

experimentally proven protein interactions

coming from either small-scale (Ssc) or

large-scale (Lsc) published studies that

have been manually curated; (ii) meta-

databases, which include only experimen-

tally proven PPIs obtained by consistent

integration of several primary databases

(sometimes including small sets of original

PPI data); (iii) prediction databases, which

include mainly predicted PPIs derived

using different approaches, combined with

experimentally proven PPIs. Computa-

tional methods for predicting protein

interaction partners were previously re-

viewed in [18].

There is a strong need to distinguish

between ‘‘experimental’’ PPIs and ‘‘pre-

dicted’’ PPIs in order to avoid misinter-

pretation of the results provided by one or

the other approach. Both types of data can

be useful, but it is not the same to test an

interaction between protein A and B by

Y2H as it is to infer a possible interaction

between protein A and B based on their

gene co-expression profile. In the first

situation, the PPI is experimentally prov-

en, while in the second the PPI is predicted

from experimental data obtained for the

corresponding genes, which does not

prove a direct protein interaction.

Some of the primary databases are DIP

[19], IntAct [20], and MINT [21], which

are the core founders of IMEx, the

international consortium of molecular

interaction (MI) database providers. This

consortium, together with HUPO Proteo-

mics Standards Initiative (PSI) (http://

www.psidev.info/), has defined the stan-

dard MIMIx (minimal information about

a molecular interaction) [22], which is

proposed to improve data quality and

curation of MIs. Regarding meta-databas-

es, APID [23,24] and PINA [25] represent

to date the most comprehensive efforts to

integrate PPI experimental data in single

platforms.

Analysis of Coverage and Ways

to Improve PPI Reliability

There are clear discrepancies in current

estimations of the real size of the protein

interactomes, even for the well-studied

unicellular model organism Saccharomyces

cerevisiae. An empirical estimate of the

complete binary protein interactome in S.

cerevisiae [9] finds ,18,00064,500 PPIs,

which is consistent with a previous com-

putational estimate of 16,000 to 26,000

interactions [26]. Others estimate more

than 30,000 potential interactions between

the ,6,000 proteins of this yeast [4], and

some databases with only experimental

data currently list more than 50,000

binary interactions between yeast proteins.

These observations indicate that some of

the experimentally determined PPIs in-

cluded in the databases are most probably

false positives, and therefore ways are

needed to obtain more reliable PPIs by

estimating the error rates in the data.

A first obstacle to evaluate the reliability

of PPIs is the low coverage of the

databases for each specific interactome.

One way to increase coverage is to

integrate data reported by different pri-

mary databases. Each database lacks a

substantial proportion of the total reported

PPIs [15,23]. For example, the data on

human PPIs coming from six different

primary databases show a small overlap

(Figure 2) (using a total of 80,032 interac-

tions included in APID in December

2009). In fact, there are only three PPIs

that are actually contained in all six of

these resources (i.e., full overlap). The

number of PPIs exclusively reported by

each database is large (as indicated inside

the corresponding colored circle of the

Venn diagram in Figure 2). The graph in

Figure 2A shows the observed growth of

human PPIs in the past 3 years. HPRD

and MINT are the primary databases that

include the most human PPIs: 50.7% and

34.1%, respectively.

Once the coverage is the best possible

for a given interactome, strategies for

selecting reliable PPIs are needed. A

possible solution is to incorporate 3-D

structural information about the interact-

ing proteins. This is based on the principle

that direct physical PPIs occur via specific

structural interfaces, which can often be

associated to domain pairs of known 3-D

structure, i.e., to structural domain–do-

main interactions (sddis). Integration of

sddi data with PPI data may help to

reduce false positives and can be used to

validate large-scale protein interaction

data [27].

To show the coverage of 3-D structural

data on the known human protein–protein

interactome, we produced three different

subsets of this interactome at three levels

of confidence: (i) a subset of the complete

human PPI data including only the

proteins that have at least one Pfam

domain assigned: 69,079 interactions,

called ppihs_all (Figure 2C); (ii) a subset of

ppihs_all with only the interactions that

have been validated by at least two

experimental methods that demonstrate

the interaction or by the same experimen-

tal method reported in at least two

independently published articles: 16,959

interactions, called ppihsx2meth (Figure 2D);

(iii) a subset of ppihs_all with only the

database (shown inside the corresponding sector of the Venn diagram). Coverage and intersection of PPIs with 3-D structural information: (C)
Intersection between the PPIs of all human proteins that have at least one Pfam annotated (69,079 interactions, called ppihs_all) and the PPIs that
include proteins with 3-D structural information (9,879 interactions, called ppihsxsdd); (D) intersection between the PPIs with 3-D structural
information and a more stringent interactome constituted by PPIs proven at least by two experimental methods (16,959 interactions, called
ppihsx2meth); (E) intersection between the PPIs with 3-D structural information and more stringent interactome constituted by interactions between
proteins that are annotated to the same KEGG functional pathway (7,693 interactions, called ppihsxKEGG).
doi:10.1371/journal.pcbi.1000807.g002
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Figure 3. A network derived from PPIs compared to the related canonical pathway. Comparison between a known pathway (NOTCH
signaling pathway, taken from the KEGG database, ID: hsa04330) and the corresponding interactome network build using the proteins that interact
with human NOTCH proteins. The top panel (A) shows the pathway including nine proteins (green boxes) directly connected to NOTCH. In this
pathway, the central element is the NOTCH receptor and the interaction of its intracellular domain (called NICD) with protein RBPJ. The bottom panel
(B) shows the NOTCH PPI network (built with Cytoscape and APID2NET), including all interactors proven with at least two different experiments. The
number of experiments is indicated next to each link (blue line). The PPI network provides complementry information to the KEGG pathway, revealing
the particular links of each of the four NOTCH paralogous proteins (NOTCH1, 2, 3, and 4) present in the human proteome. The biomolecular elements
included in both networks are quite similar and the information that can be deduced from them is complementary. This can be seen in the
interaction between NOTCH and RBPJ that drives the central signaling of the pathway and it is present in both networks.
doi:10.1371/journal.pcbi.1000807.g003
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interactions corresponding to proteins that

work together in the same KEGG biolog-

ical pathway: 7,693 interactions, called

ppihsxKEGG (Figure 2E) (http://www.

genome.jp/kegg/pathway.html). Besides

these three groups, we built another subset

including all protein pairs supported by

structural domain–domain interactions

(called ppihsxsdd), selecting human PPIs that

had at least one structural domain pair

reported by one sddi resource. The sddi

repositories are based on the analysis of 3-D

structural interactions between protein do-

mains taken from the PDB database [27].

The ppihsxsdd subset includes 3,688 human

proteins and 9,879 interactions. The Venn

diagrams (Figure 2C–2E) indicate that the

coverage of structural data increases from

14.3% to 21.4% and 30.3%, following the

increase in ‘‘stringency’’ of the interactome

datasets. Therefore, the structural validation

can help to increase reliability of PPI data, as

shown by the larger percentage (21.4%) of

sddis getting included in the interactome

proven by two methods (ppihsx2meth).

Networks Derived from PPIs

Compared to Canonical

Pathways

In several PPI repositories, it is a

straightforward process to obtain all the

proteins that interact with a given query

protein and from those to build a corre-

sponding network of molecular interactions.

Several bioinformatic tools have been de-

veloped to represent and explore such PPI

networks. Probably the most useful ones are

associated with Cytoscape (http://www.

cytoscape.org/), an open-source bioinfor-

matics software platform for visualizing

molecular interaction networks and biolog-

ical pathways and for integrating these

networks with annotations and other types

of data [28,29]. There are several Cytoscape

plug-ins that can be used to download and

explore PPIs: APID2NET allows direct data

import from the APID repository [24];

BiogridPlugin allows import from BioGRID

[30]; MiMIplugin retrieves molecular inter-

actions from the MiMI database [31]; and

IntActWSClient, StringWSClient, and

PathwayCommons WSC are Web service

clients accessible from Cytoscape through

the Web Service Client Manager that

provide connectivity to IntAct, STRING

[20,32], or Pathway Commons (http://

www.pathwaycommons.org/).

It is worthwhile to compare the char-

acteristics and information provided by a

PPI network with the information about

the corresponding canonical pathway in-

volving the same proteins. We present a

practical example by comparing the hu-

man NOTCH signaling pathway to the

corresponding PPI network obtained with

the interactions of the four NOTCH

human proteins (Figure 3). The first one

was directly taken from KEGG (ID:

hsa04330) (Figure 3A), which is probably

the most complete, well-integrated, and

annotated database of biological pathways

[33,34]. The second network was built

using APID2NET and Cytoscape, retriev-

ing the proteins that interact with

NOTCH1, NOTCH2, NOTCH3, or

NOTCH4 (UniProt IDs: P46531,

Q04721, Q9UM47, Q99466) in interac-

tions demonstrated by at least two differ-

ent experiments (Figure 3B).

The KEGG pathway representation does

not distinguish the relations between the

four NOTCH paralogous proteins, while

the PPI network separates the links proven

for each NOTCH paralogous protein. By

contrast, the KEGGpathway representation

distinguishes the direction and properties of

the links, while the PPI network does not

include such directional information. The

biomolecular elements (i.e., the nodes) in

both networks are generally similar, and the

information that can be deduced from them

is complementary, each single view being

enriched by the other. The c-secretase

complex is not included in the PPI network,

while the interaction of NOTCH with the

SMAD pathway is not present in the KEGG

network. The central role of NOTCH and

RBPJ is represented in both views (Figure 3A

and 3B), showing that this intracellular

interaction drives the signaling pathway. In

conclusion, the use of PPI data combined

with related pathways allows for a useful and

detailed exploration of protein networks.

This approach may bring about better

comprehension of the complex functional

roles that the proteins play by physically

interacting in living systems.

Summary and Guidance for

Learning More

This tutorial presents an up to date

overview of PPIs, which are defined as

specific physical contacts between protein pairs that

occur by selective molecular docking in a particular

biological context. Following this definition,

we present some concepts related to the

experimental methods used to determine

PPIs, the types of biological repositories

that include PPIs, and some strategies for

analyzing the quality of protein interac-

tions. Adequate description of the main

characteristics of each PPI, including

complete biological information about

the proteins, is essential for building

reliable protein interaction networks. As

a guide for building and analyzing inter-

actome networks, the tutorial provides a

broad collection of references about

PPI data resources [19–21,23,25,30–32]

and about related bioinformatic tools

[24,28–32]. PPI networks can provide a

complementary view to the biological

pathways that enclose the corresponding

proteins. Looking forward, two main

challenges remain for the field and for

database providers: (i) a better filtering of

false positives in PPI collections and (ii) an

adequate distinction of the biological

context that specifies and determines the

existence or not of a given PPI at a given

biological situation.
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