
Focus Quality Control

Protein quality control in the early secretory
pathway

Tiziana Anelli and Roberto Sitia*

Department of Functional Genomics and Molecular Biology, Università
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Eukaryotic cells are able to discriminate between native

and non-native polypeptides, selectively transporting the

former to their final destinations. Secretory proteins are

scrutinized at the endoplasmic reticulum (ER)–Golgi

interface. Recent findings reveal novel features of the

underlying molecular mechanisms, with several chaper-

one networks cooperating in assisting the maturation of

complex proteins and being selectively induced to match

changing synthetic demands.‘Public’ and ‘private’ chaper-

ones, some of which enriched in specializes subregions,

operate for most or selected substrates, respectively.

Moreover, sequential checkpoints are distributed along

the early secretory pathway, allowing efficiency and

fidelity in protein secretion.
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Introduction

As the per-capita income increases in Western societies, the

quality of the products that appear in the market is becoming

more important than their quantity. Depending on high

quality and innovative design, industries employ abundant

personnel and devices to ensure a stringent control of their

products, the quality of which must fulfill strict pre-deter-

mined standards. This key activity is usually referred to as

‘quality control’ (QC). At the same time, the need for innova-

tion makes it very hard to dictate a fixed set of standards and

rules. Moreover, selling more (high quality) products remains

a common goal of any commercial activity. Italian parents

often say to their hasty offspring ‘Presto e bene raro avviene’

(Fast and good is a rare combination). How can our factories

contradict this rather wise saying? And, of more interest for

The EMBO Journal readership, how do cells cope with some-

what similar problems? In this essay, we analyze the mechan-

isms that cells employ to couple abundant synthesis and high

quality for secretory proteins.

After synthesis, proteins must rapidly fold to perform their

biological activities. Folding takes place in three main sub-

cellular compartments, cytosol, endoplasmic reticulum

(ER) and mitochondria. Each organelle is equipped with a

specific set of chaperones and folding enzymes optimized to

work in the local conditions. In all cases, the final outcome

must be a native molecule devoid of errors. Moreover,

structural maturation must be completed within a rather

short time frame. In the crowded environment of the cell,

unfolded proteins are a danger as they may aggregate and

become toxic. In viable cells, extensive aggregation is pre-

vented by several proteolytic systems that rapidly dispose of

aberrant or damaged polypeptides (see Goldberg, Liberek,

Haas, this issue).

A considerable fraction of the proteome consists of mole-

cules that are destined to the extracellular space (Chen et al,

2005): these are either secreted by the cell or inserted in

membranes, to act as ligands and receptors, respectively.

Proteins destined to the extracellular space are synthesized

on ER-bound ribosomes, and are cotranslationally translo-

cated into the ER lumen where they attain their native

conformation, before being transported to the Golgi and

downstream compartments (Figure 1). Secreted and

membrane proteins are the main devices of intercellular

communications. The fidelity of ligand–receptor interactions

requires that both molecules attain the very conformations

that allow signals to be properly transmitted and understood.

Protein folding in the secretory pathway must therefore be

controlled in the tightest way.

Protein QC in the secretory compartment

In the late 1980s, work on oligomeric viral proteins (Kreis and

Lodish, 1986; Boulay et al, 1988; Gething and Sambrook,

1989), the T-cell receptor (Bonifacino et al, 1989; Sancho

et al, 1989) and immunoglobulins (Bole et al, 1986; Sitia et al,

1987; Hendershot and Kearney, 1988) revealed that assembly

is a requisite for transport to the Golgi apparatus and

onwards along the secretory route. Klausner (1989) referred

to this phenomenon as ‘Architectural editing’; the term ‘ER

quality control’ (Hurtley and Helenius, 1989; Hurtley et al,

1989) eventually stuck to indicating the processes of

conformation-dependent molecular sorting of secretory pro-

teins. Until then, the lysosome was considered the site where

secretory molecules are degraded. Since proteins retained in

the ER cannot reach downstream lysosomes, the question

arose as to how aberrant proteins are degraded (Klausner and

Sitia, 1990).Received: 25 September 2007; accepted: 5 December 2007
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In the mid 1990s, studies on CFTR and MHC class I

(Michalek et al, 1993; Ward et al, 1995; Wiertz et al, 1996)

revealed that proteins that fail to fold or assemble are

eventually retrotranslocated (or dislocated) across the ER

membrane for degradation by cytosolic proteasomes. The

players, mechanisms and physiopathologic implications of

this process (ER-associated degradation, ERAD) remain a hot

topic in molecular cell biology (Yoshida, 2007). During their

lifetime, cells must integrate all the different reactions

schematized in Figure 1, and adapt them to face possible

changes in the quality and quantity of secretory proteins they

produce during differentiation. As colocalized signals can

dictate assembly, retention and degradation of membrane

and soluble cargo proteins (Bonifacino et al, 1990; Fra et al,

1993), a competition between ER export and degradation can

explain homeostatic control.

An interesting mathematical model has been recently

introduced, which considers protein folding in the ER

(ERAF, ER-assisted folding), ERAD and ER export as single

biochemical parameters (see Wiseman et al, 2007 and

references therein). Despite the limits imposed by the

simplification, this approach leads to some interesting and

testable predictions: export efficiency of a particular cargo

protein depends on the activity of the ERAF, ERAD and export

systems, which in turn are influenced by the proteome

expressed by the cell. This partially simplified model could

be further expanded and tested to integrate new emerging

evidence. Recent data highlight a spatial subdivision of the

early secretory compartment that seems particularly suited

for the biogenesis of complex, multimeric proteins. Both

parallel and sequential QC pathways coexist in cells, some

common to all polypeptides, others specific for particularly

demanding proteins. This diversity likely evolved to cope

with the myriads of polypeptides that our cells produce, often

in exuberant amounts.

Protein QC (Box 1) is intimately linked to the processes of

folding (Ellgaard and Helenius, 2003; Sitia and Braakman,

2003). Both rely on chaperones and devoted resident en-

zymes. QC serves different roles: (i) it prevents the deploy-

ment of aberrant protein conformers, ensuring that only

native proteins proceed along the secretory pathway; (ii) it

retains precursors in an environment suitable for their

maturation; (iii) it increases their local concentration to

favor assembly and polymerization; (iv) it reduces the risks

of proteotoxicity by inhibiting aggregation and degrading

terminally misfolded proteins; (v) it maintains homeostasis

in the early secretory pathway; (vi) it is involved in the

developmental regulation of protein secretion (IgM, adipo-

nectin, see below) and (vii) it is important for storing proteins

for regulated secretion. In certain plants, in fact, ER

retention/accumulation is utilized to store abundant proteins

during seed formation (Larkins et al, 1993; Jolliffe et al, 2005;

Vicente-Carbajosa and Carbonero, 2005).

Protein folding in the ER

Upon cotranslational translocation, nascent secretory

proteins enter the crowded environment of the ER lumen

and soon begin folding into more stable, lower energy,

conformation(s) (Dobson, 2004). While the basic principles

governing folding are common to other cellular compart-
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Figure 1 The early secretory pathway. Proteins destined to the extracellular space or to organelles of the secretory route are synthesized by ER-
bound ribosomes and cotranslationally translocated (entry) into the ER. Here they attain their native structure (folding), under strict QC
scrutiny. Only properly folded and assembled proteins can reach the Golgi, where they are further modified, to be transported to the
extracellular space or to lysosomes. Gray arrows indicate the direction of vesicles moving among different compartments; dark arrows indicate
the pathways followed by cargoes in the early secretory pathway; red lines show homeostatic control pathways (þ stimulatory, � inhibitory).
Misfolded proteins are recognized, retained and eventually routed to degradation by ERAD or autophagy (which are likely reciprocally
regulated, as indicated by the blue arrows). Some misfolded soluble ERAD substrates are transported to ERGIC or cis-Golgi before
retrotranslocation and degradation. Too high load for the folding machinery or the accumulation of misfolded proteins activate resident ER
stress sensors, which elicit the UPR. ER stress can selectively inhibit protein entry into the ER, and increase the capacity of folding and
degradation (via ERAD and autophagy). The UPR induces also molecules acting downstream of the ER.

Box 1 The logics of QC

1. Preventing the deployment of aberrant protein conformers
2. Retaining precursor proteins in an environment suitable for

their maturation
3. Favoring correct assembly by increasing subunit concentra-

tion
4. Reducing the risks of proteotoxicity by inhibiting aggregation

and degrading terminally misfolded proteins
5. Maintaining homeostasis in the early secretory pathway
6. Developmental regulation of protein secretion (IgM, adipo-

nectin)
7. Storing proteins for regulated secretion (plants, adipocytes)

QC, quality control.
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ments (Anfinsen and Scheraga, 1975; Dobson, 2004), the ER

is unique in sustaining a set of covalent modifications, which

include removal of the signal sequences, disulfide bond

formation, N-glycosylation and GPI addition. A plethora of

enzymes and assistants are found in the early secretory

pathway, which catalyze each step (Box 2). How is their

synthesis regulated so as to have the right balance in different

cell types? How are they functionally interconnected? How

are the different steps executed in the right order? How are

unfolded proteins recognized (Box 3)?

Owing to the fact that N-glycosylation is unique to secre-

tory proteins, the folding and QC of glycoproteins have been

analyzed in great detail and can be used as a prototypic

example of labor organization in the ER protein factory. As in

Box 2 Workers in the secretory protein factory (an incomplete list)

(A) ‘Public’ chaperones and enzymes
Class Name Localization Function

Chaperones BiP/GRP78 ER Folding assistant/unfolding
Regulation of IRE1, PERK and ATF6 in
ER signaling
Translocon gating and regulation

GRP94 ER Folding assistant
ORP150 ER Folding assistant, hypoxia
HERP ER membrane ERAD
SEL1L ER membrane ERAD

Co-chaperones Sil1/BAP
ERdjs

ER
ER

ATP exchange factor
BiP cofactors

Lectins CNX ER membrane Folding
CRT ER soluble Folding
ERGIC-53 ERGIC Transport F5, F8, CatZ, CatC, IgM polymers
VIPL ER Transport
VIP-36 Cis-Golgi Transport
EDEM1, 2, 3 ER subregion ERAD
OS9 ER membrane ERAD
Erlectin/XTP3-B ER membrane ERAD

Enzymes redox Ero1a ER+ERGIC Oxidase
Ero1b ER Oxidase
PDI ER Oxidase, isomerase, reductase

Subunit of prolyl 4-hydroxylase
Subunit of microsomal triacylglycerol
transfer protein

ERp57 ER Isomerase, oxidase?
ERp72 ER Unclear
ERp44 ERGIC-cis-Golgi Thiol-mediated retention/IP3R1 regulation

Proline isomerases PPIases
Cyclophilins

ER
ER, mitochondria, nucleus,
cytosol

Proline isomerization

Proline isomerization
Sugar processing Glucosidase I ER

Glucosidase II ER
ER Man I ER
ER Man II ER
UGGT ER Folding sensor
Man IA, IB, IC Golgi

(B) ‘Private’ tissue- or substrate-specific factors
Name Tissue expression Substrates/function

Hsp47 Fibroblasts Collagen biosynthesis/chaperone
PDIp Exocrine pancreas Zymogens/oxidoreductase
PDILT Sertoli cells in testis Calmegin, D-somatostatin/

chaperone
Egasyn Ubiquitous b-Glucuronidase/chaperone
Invariant chain APC MHC class II assembly and

transport
Tapasin Ubiquitous MHC class I assembly
SCAP-RAP Boca/Mesd Ubiquitous LDL receptor assembly and

transport

APC, antigen-presenting cell; CNX, calnexin; CRT, calreticulin; ER Man, ER a1,2-mannosidase; ER, endoplasmic reticulum; ERAD,
ER-associated degradation; ERGIC, ER–Golgi intermediate compartment; LDL, low-density lipoprotein; MHC, major histocompatibility
complex; UGGT, UDP-glucose glycoprotein glucosyltransferase.

Box 3 Monitoring non-native structure

1. Exposure of hydrophobic patches
2. Presence of immature glycans
3. Exposure of reactive thiols

Editing the secretory proteome
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all assembly lines, transport must follow the execution of a

given step. The time allocated to the latter, however, must be

precisely controlled in order to allow efficiency and prevent

jams along the line. The sequential modifications of the

oligosaccharides provide an elegant solution to dictate and

time the manufacture of cargo glycoproteins.

N-glycosylation involves binding of a preformed oligo-

saccharide (Glc3Man9GlcNAc2) to asparagine side chains in

the sequence NXS/T, where X is any amino acid other than

proline (Khalkhall and Marshall, 1975). The sugar moieties

are then progressively trimmed by resident enzymes of the

secretory pathway. Soon after synthesis, glucosidases I and II

sequentially remove the three glucose moieties from the A

branch of the oligosaccharide moieties (Figure 2). UDP-

glucose glycoprotein glucosyltransferase (UGGT) adds back

a glucose residue to N-glycans positioned near regions of

disorders (Taylor et al, 2004). Therefore, UGGT acts as a

folding sensor and produces monoglucosylated proteins

(Glc1Man9GlcNAc2) that can interact with calnexin (CNX)

or calreticulin (CRT), two ER chaperones with lectin activity

(Waisman et al, 1985; Ahluwalia et al, 1992; reviewed

in Williams, 2006). CNX and CRT retain misfolded substrates

in the ER, prevent their aggregation and promote oxidative

folding via interactions with ERp57 (Ellgaard et al, 2001;

Schrag et al, 2001; Frickel et al, 2002; Russell et al, 2004).

By removing the terminal glucose, glucosidase II dissociates

the substrate from CNX/CRT for a novel round of inspection

by UGGT.

How do terminally misfolded proteins escape the cycle?

Glycan processing again comes into action, because

removing the terminal mannose moieties inhibits glucose

re-addition. Mannose trimming hence acts as a timer, dis-

criminating between junior proteins (which should be given

the time to fold) and senior ones, which should be

either secreted or sent to degradation. Many proteins with

mannosidase activity reside in the early secretory apparatus

(e.g., ER a1,2-mannosidase I (ER Man I), EDEM1 and 3,

Golgi Man IA, IB, IC, ER Man II). Man I inhibitors (e.g.,

kifunensine), which prevent removal of the terminal

B-branch mannose, stabilize ERAD glycoprotein sub-

strates, but do not prevent secretion of native species.

Overexpression of ER Man I and EDEMs accelerates degrada-

tion (Hosokawa et al, 2006 and references therein). ER–Golgi

intermediate compartment-53 (ERGIC-53) (a protein transporter

CRT

ERp57
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I and II
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ER

ER 
exit sites 

UDP-glucose:glycoprotein
glucosyltransferase

UDP
UDP

ER Man I 
EDEM 1, 2, 3

ER Man II
 

to ERAD

(     )(     )

VIPL, ERGIC-53
 and other lectins

ER Man I
ER Man II ?

EDEM,
OS9,

erlectin,
etc.

CNX cycle

Glc3Man9GlcNAc2
unfolded protein

Glc1Man9GlcNAc2
unfolded protein

Man9GlcNAc2
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Man7/8GlcNAc2
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Man5/6GlcNAc2
unfolded protein

ERp57
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VIPL, ERGIC-53
 and other lectins

Figure 2 The CNX/CRT cycle. After transfer of the preformed core oligosaccharide (Glc3Man9GlcNAc2) onto nascent proteins, glucosidase I
and II sequentially remove the two terminal glucoses from the A branch. The monoglucosylated Glc1Man9GlcNAc2 unfolded protein can now
interact with the lectin chaperones CNX and CRT. In association with the oxidoreductase ERp57, CNX and CRT prevent aggregation and
facilitate glycoprotein folding. Removal of the glucose by glucosidase II (Man9GlcNAc2) interrupts the interaction of the protein with CNX/CRT.
If the protein has attained its native structure, it can now proceed along the secretory pathway by bulk flow or by interaction with specific lectin
transporters such as ERGIC-53 or VIPL. If unfolding persists, the glycoprotein is recognized by UGGT1, which places a single glucose back onto
the A branch, causing the protein to enter the CNX/CRT cycle again. Mannose trimming causes exit from the CNX/CRT cycle. Misfolded
proteins can be recognized by specific lectins (EDEMs, OS9, etc) and targeted to degradation.
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with lectin activity, cycling between the ER and the ERGIC,

see below) and possibly other L-type lectins (e.g., VIPL,

VIP36; Kamiya et al, 2007) bind high-mannose cargoes,

facilitating their forward transport. Further mannose

trimming in the ER may favor degradation, possibly also

because reducing the hydrodynamic volume of substrate

glycoproteins could facilitate their retrotranslocation. It

will be of great interest to determine the precise binding

specificities and fate of the various intermediates in glycan

processing (Helenius and Aebi, 2001).

Another well-characterized folding pathway is based on

Binding Protein (BiP, also called GRP78), an abundant

chaperone of the hsp70 family, which serves also a key

regulatory role in ER signalling (Bertolotti et al, 2000). BiP

was first isolated as a protein associating with unassembled

Ig-H chains (Haas and Wabl, 1983). It consists of an

N-terminal ATPase domain and a C-terminal domain

with affinity for hydrophobic patches (Flynn et al, 1991;

Blond-Elguindi et al, 1993). The affinity for substrates

depends on ATP binding at the N-terminal domain. When

ATP is hydrolyzed to ADP, a conformational change occurs,

which determines substrate release. Thus, substrates can

undergo cycles of BiP binding and release, depending on

ATP hydrolysis (Gething, 1999). Owing to the weak BiP

ATPase activity, hsp40-like co-chaperones containing J do-

mains (ERdj) play a key regulatory role. Five ERdj proteins

have been isolated so far (Shen et al, 2002; Cunnea et al,

2003; Kroczynska et al, 2004; Shen and Hendershot, 2005).

One of them, ERdj5, also displays oxidoreductase acitivity,

possibly linking BiP-dependent folding/unfolding and disul-

fide bond formation, isomerization or reduction (Nagata

et al, personal communication).

Very rarely glycoproteins are found to bind simultaneously

to BiP and CNX or CRT. Therefore, it seems that a given

glycoprotein enters first either the BiP or the CNX/CRT

pathway (Figure 3). The initial choice is dictated by the

localization of the N-glycans: the closer these are to the

N-terminus of the nascent protein, the higher the tendency

to use CNX as a chaperone system (Molinari and Helenius,

2000). If the first attempts to fold fail, the protein can shift to

the alternative pathway. Altogether, these data imply that

sites of conjunction exist in which the substrate can jump

from one pathway to another. In principle, however, it should

be possible for large multi-domain proteins to engage with

both. It would be of interest to determine whether ER

sub-regions exist that are enriched in either pathway.

Supplementary Table 1S shows the phenotypes of

cells, mice and patients in which individual chaperones,

enzymes or sensor molecules are insufficient or absent

altogether. BiP�/�, ERp57�/�, CNX�/� and CRT�/� mice

show embryonic or perinatal lethality, but their phenotypes

vary considerably: CRT�/� mice have severe problems in

cardiac development, while large myelinated fibers in per-

ipheral nerves are the main targets in CNX�/� animals

(Mesaeli et al, 1999; Denzel et al, 2002; Garbi et al, 2006).

BiP is essential also for survival of cells in culture, in

agreement with its role in regulating translocation and ER

signalling. In contrast, CRT�/� and CNX�/� cells are viable,

and their phenotypes surprisingly mild, suggesting redun-

dancy in substrate recognition by the two chaperones.

Oxidative folding

In terms of ionic composition and redox potential, the ER is

similar to the extracellular space, providing an ideal folding

place/test bench for proteins destined to the external world.

Although certainly important, the higher ratio between

oxidized and reduced glutathione (GSSG/GSH) in the ER,

compared with the cytosol (Hwang et al, 1992), is not enough

to guarantee efficient oxidative folding. Indeed, for many
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Figure 3 QC in the early secretory pathway. Chaperones and folding assistants can be grouped in different classes according to their specificity
and subcellular localization. The majority of secretory proteins utilize public chaperones: some initially go with BiP, PDI and their partners,
others enter the CNX/CRTcycle, the choice depending on the location of the N-glycans. Certain proteins that are produced in large amounts, or
are intrinsically difficult to fold, are assisted by specific (private) chaperones and enzymes (see also Box 2). In addition, QC can occur in
sequential steps. After a proximal QC, certain substrates (generally multimeric proteins) seem to undergo also distal QC checkpoints in ERGIC
and cis-Golgi. This model could mediate cargo concentration and selective export of oligomerized species, thus coupling fidelity and efficiency
in the secretory protein factory. While proximal QC can rely on simple retention, the distal checkpoints likely imply substrate retrieval to the
ER, either for further attempts to fold, or for retrotranslocation and degradation.
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proteins to fold correctly, disulfide bond isomerization, and

sometimes also reduction (Jansens et al, 2002), is needed. A

hyper-oxidizing environment in the ER lumen may hence

inhibit folding of proteins with multiple disulfides, and promote

aggregation (Molteni et al, 2004). Therefore, oxidative folding

relies primarily on protein–protein interchange relays. The

main pathway involves disulfide transfer from PDI or PDI-

like proteins to nascent cargoes. PDI consists of four

thioredoxin (trx) domains: the two lateral domains (a and a0)

are endowed with oxidoreductase activity, while the two

central ones, b and b0, provide a hydrophobic surface suited

to bind and present nascent proteins to the active sites in a and

a0. This overall structure is likely important for the redox-

dependent chaperone function of PDI (Wilkinson and Gilbert,

2004; Forster et al, 2006a), particularly with terminally mis-

folded proteins, which must be reduced before dislocation to

the cytosol for proteasomal degradation (Gillece et al, 1999;

Fagioli et al, 2001; Tsai et al, 2001, 2002; Molinari et al, 2002).

After transferring a disulfide bond to nascent proteins, PDI is

re-oxidized by members of the Ero1 flavoprotein family (Frand

and Kaiser, 1998; Pollard et al, 1998; Cabibbo et al, 2000; Pagani

et al, 2000; Mezghrani et al, 2001). In vitro, yeast Ero1p can use

molecular oxygen as terminal electron acceptor, in a reaction

that produces hydrogen peroxide in stoichiometric amounts to

the disulfides formed (Tu and Weissman, 2002; Gross et al,

2006). Studies are ongoing in several laboratories to determine

whether H2O2 is generated in living cells as a byproduct of

oxidative folding, because this could serve signalling purposes.

However, at least in yeast, disulfide bond formation can proceed

in anaerobic conditions (Gross et al, 2006), suggesting that

alternative electron acceptors exist.

Over the last years, many other ER-resident PDI-like

oxidoreductases have been characterized in mammalian

cells. The precise role(s) of these molecules, as well as the

mechanisms controlling their redox state and activity, remain

to be clarified (Ellgaard and Ruddock, 2005). Some of them,

for example, PDIp (Desilva et al, 1996) and PDILT (van Lith

et al, 2005; van Lith et al, 2007), are selectively expressed in

pancreas and testis, respectively, and hence belong to the

growing group of substrate- or tissue-specific (‘private’)

chaperones, including Hsp47, etc. (Box 2B).

Disulfide bond formation is crucial in the folding and QC of

secretory proteins. Since they increase the stability of the

native conformation, their absence, or even worse, their

mispairing, generally produces severely misfolded species.

Furthermore, an exposed cysteine in the proper amino acid

context is sufficient to cause retention and degradation of

otherwise transport competent intermediates (Fra et al, 1993;

Guenzi et al, 1994), likely because the reactivity of thiol

groups favors the formation of mixed disulfides with PDI,

ERp44 and other resident proteins (Reddy et al, 1996; Anelli

et al, 2003, 2007). The thiol-dependent retention mechan-

isms, originally described in the developmental control of

IgM (Sitia et al, 1990), have recently been shown to control

also adiponectin secretion (Wang et al, 2007).

Bulk flow, retention, retrieval and selective
export

Since the discovery of the KDEL motif as a means to localize

soluble proteins in the ER (Munro and Pelham, 1987), the

problem arose as to how these extremely abundant residents

rarely saturate the KDEL receptors. A possible answer lies in

the discovery of supra-molecular complexes comprising

different chaperones (BiP, GRP94, ERdj3 and UGGT, but no

CRT; Meunier et al, 2002; Gilchrist et al, 2006). Because of

their different diffusibility, these complexes could be

excluded from forward moving vesicles, and form a matrix

to retain folding intermediates in a suitable environment for

their maturation. The presence of UGGT in these complexes

may be important for shifting misfolded substrates to the

CNX–CRT pathway.

Unless retained by interactions with resident proteins, a

protein could exit from the ER by bulk flow (Wieland et al,

1987). However, many proteins are actively transported out

of the ER by interaction with specialized export machineries

(see Gurkan et al, 2006 for a review). Export from the ER

occurs at ER exit sites (ERES; Mezzacasa and Helenius, 2002),

where budding of COPII-coated vesicle takes place. It is now

evident that transportable cargoes contribute to the formation

of ERES- and COPII-coated vesicles (Forster et al, 2006b).

Moreover, in exocrine pancreatic cells, the ER–Golgi interface

is where different secretory proteins reach their highest

intracellular concentration (Martinez-Menarguez et al,

1999; Oprins et al, 2001), which could have important

consequences for the biogenesis of oligomeric proteins

(see below).

Specific transporter molecules mediate the exit from the ER

of certain glycoproteins, concentrating them into forward

transport vesicles (see Hauri et al, 2002; Lee et al, 2004 for

reviews). In mammalian cells, one of the best characterized is

ERGIC-53, a hexameric transmembrane lectin (Schindler

et al, 1993) that derives its name from being particularly

abundant in the ERGIC. ERGIC-53 is described to capture

high-mannose glycoproteins in the ER, and release them

in the ERGIC in a Ca2þ - and pH-dependent manner

(Appenzeller-Herzog et al, 2004). Mutations in ERGIC-53

(also known as LMAN1) or in MCFD2, a gene encoding a

small soluble protein that associates with ERGIC-53 (Zhang

et al, 2003, 2005; Baines and Zhang, 2007), are responsible

for most cases of combined deficiency of coagulation factors

V and VIII (F5F8D), a recessive bleeding disorder character-

ized by decreased serum levels of both clotting factors

(Nichols et al, 1998; Neerman-Arbez et al, 1999). The rather

limited phenotype of patients who lack functional ERGIC-53

suggests that other lectins serve redundant functions in

controlling glycoprotein traffic (e.g., VIP36 (Fiedler et al,

1994), VIPL (Neve et al, 2003), ERGL (Yerushalmi

et al, 2001; see Hauri et al, 2002 for a review)). The specificity

of these lectins has recently been analyzed (Kamiya et al,

2007): VIPL and VIP36 interact preferentially with glycans

carrying, on their A branch, three mannoses but no terminal

glucoses, (see also Fullekrug et al, 1999). Unexpectedly,

ERGIC-53 displays low-affinity and broad-specificity interac-

tions with high-mannose oligosaccharides also when

monoglucosylated at the A branch. Moreover, while VIPL

and ERGIC-53 bind better at pH 7, (as found in the ER), VIP36

has an optimum at pH 6.5 (as in the Golgi). From these data,

it has been suggested that VIPL binds de-glucosylated cargoes

exiting the CNX/CRT cycle, protecting them from de-manno-

sylation and hence degradation. The cargo is then passed to

ERGIC-53, perhaps owing to its hexameric structure, and

exported toward the Golgi. In the cis-Golgi, VIP36 may play

additional roles in glycoprotein QC and transport.
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Sequential QC checkpoints along the early
secretory pathway

For many ER-synthesized proteins, attaining the native struc-

ture is a long endeavor, requiring several hours or more. This

generally reflects the sequential execution of multiple steps,

often including oligomerization. In a factory, engineers would

most likely design a sequential assembly line, in which each

step is carefully executed and monitored. Evidence in favor of

such a physical compartmentalization within the early

secretory pathway of mammalian cells is accumulating.

ERGIC-53, ERp44 and IgM polymerization

IgM polymers are planar, multimeric proteins with an overall

hexameric shape, secreted as either [(m2L2)5�J] or (m2L2)6.

Individual subunits are linked by disulfide bonds involving

Cys575 in the C-terminal tailpiece of secretory m(ms) chains.

Cys575 acts also as a retention and degradation signal for

unpolymerized subunits (Fra et al, 1993). The first assembly

step (m2L2 formation) is fast and efficient in both B and

plasma cells: its fidelity is mainly checked by BiP (see

Hendershot and Sitia, 2005 and references therein). In con-

trast, polymerization is slow and occurs only in plasma cells.

Recent studies suggest that a post-ER QC mechanism plays a

key role in the sequential assembly of IgM polymers. An

unexpected finding was that ERp44, a soluble member of the

trx family equipped with an RDEL localization motif (Anelli

et al, 2002), accumulates in the ERGIC and cis-Golgi (Gilchrist

et al, 2006; Anelli et al, 2007; Wang et al, 2007). ERp44

mediates the thiol-dependent retention of m2L2, mL and other

unpolymerized IgM subunits that have already passed the

BiP-dependent checkpoints (Anelli et al, 2003, 2007). ERp44

localization partly depends on interactions with ERGIC-53,

which also binds IgM subunits (Mattioli et al, 2006). As a

hexameric membrane-embedded lectin, ERGIC-53 may

provide a platform for IgM polymerization (Anelli et al,

2007). In the cis-Golgi, ERp44 could capture unpolymerized

IgM subunits and retrieve them via RDEL-dependent

mechanisms. In view of its ability of binding Ero1 (Otsu

et al, 2006), ERp44 could also provide oxidative power to the

polymerization machinery. In this scenario, the compartmen-

talization of assembly and polymerization in the early

secretory pathway of professional antibody secreting cells

may couple QC and transport, thus achieving high production

capacity.

ERp44, Ero1a and adiponectin oligomerization

Another example of sequential QC comes from adiponectin, a

plasma protein secreted by adipocytes (Scherer et al, 1995;

Chandran et al, 2003), low levels of which associate with

diabetes and cardiovascular diseases (Hotta et al, 2000;

Phillips et al, 2003; Shetty et al, 2004). Plasma adiponectin

is composed of trimers, hexamers and higher molecular

weight oligomers, the latter being more active in preventing

diseases (Tonelli et al, 2004; Bobbert et al, 2005; Lara-Castro

et al, 2006). ERp44 was shown to retain folded adiponectin

trimers, forming mixed disulfides with Cys39 in one subunit

(Qiang et al, 2007; Wang et al, 2007). Ero1a, whose synthesis

is regulated by hypoxia, SIRT1 and PPARg, sequesters ERp44

and favors secretion of adiponectin oligomers (Wang et al,

2007). As in the case of IgM, therefore, folded adiponectin

intermediates are retained by thiol-dependent mechanisms.

ERp44-bound adiponectin may provide a reservoir of

molecules easily mobilized for rapid release. The wide

distribution of ERp44 in secretory cells (see www.hpr.se)

and its high evolutionary conservation in worms and insects

imply a wider role for ERp44 in the early secretory compart-

ment, including the coupled control of Ca2þ and redox

homeostasis and signalling (Higo et al, 2005).

Oligomeric membrane proteins

Different mechanisms exist for ER retrieval of membrane

proteins (reviewed in Lee et al, 2004). Yeast Rer1p, a Golgi

transmembrane protein, binds and mediates the retrieval of

the ER-localized proteins Sec12p, Sec63p, Sec71p via their

transmembrane domains (Sato et al, 1995, 1996, 1997, 2001).

Interestingly, yeast Rer1p has also a role as quality controller

for the iron transporter subunit Fet3p, retrieving it back in the

ER by interactions with the TMD, unless the subunit is

correctly assembled with its partner Ftr1p (Sato et al,

2004). The mammalian homologue of Rer1p localizes in the

Golgi (Fullekrug et al, 1997). RER1 binds unassembled

nicastrin and regulates transport of the g-secretase complex

(Spasic et al, 2007). On the contrary, the thermosensitive

mutant tsO45 VSV-G protein can no longer be retained once it

reaches the ERGIC or Golgi (Mezzacasa and Helenius, 2002),

impying that the machineries recognizing mutant tsO45

VSV-G protein are not present downstream of the ER.

Therefore, QC occurs in multiple stations of the early

secretory compartments, each station likely recognizing

particular features in cargo molecules.

Multiple ways for ERADicating proteins
from the early secretory pathway

Because of mutations and/or lacking of cofactors, partner

proteins or prosthetic groups, some proteins cannot reach

their native conformation and hence must be degraded.

Substrates vary widely in size, structure and topology, and

multiple pathways are active in cells to handle them.

However, some common features exist. Aberrant proteins

must be first recognized. As anticipated above, mannose

trimming allows discrimination between unfolded and term-

inally misfolded glycoproteins (Helenius and Aebi, 2001);

the latter are recognized by the concerted action of a1/a2

mannosidase-like proteins like Htm1p/Mnl1p in yeast

(EDEM1, 2, 3 in mammalian cells) (Molinari et al, 2003;

Oda et al, 2003; Mast et al, 2005; Olivari et al, 2005; Hirao

et al, 2006), yeast Yos9p (Buschhorn et al, 2004) and mam-

malian OS-9 and erlectin/XTP3-B. The latter two mammalian

lectins interact with SEL1L (J Christianson and R Kopito,

personal communication), a membrane-bound molecule in-

volved in ERAD (Mueller et al, 2006) and capable of binding

the E3 ligase HRD1 (Neuber et al, 2005), providing a possible

link between substrate recognition, translocation and ubiqui-

tination. Much less is known on how terminally misfolded

proteins that lack N-glycans are targeted to destruction.

Once recognized, aberrant proteins likely undergo partial

unfolding and reduction (Tortorella et al, 1998; Fagioli et al,

2001) before retrotranslocation. Both BiP and PDI have been

implicated in this process (Nishikawa et al, 2001; Tsai et al,

2001; Molinari et al, 2002). Certain exogenous toxins utilize

ERAD pathways to reach the cytosol. Since their folding

occurs in the producer cell (generally a bacterium or a
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plant), toxins provide powerful tools to analyze the interac-

tions occurring during retrotranslocation independently from

the ones occurring during folding. Using these models,

reduced PDI was shown to bind and unfold cholera toxin

before dislocation. Upon Ero1-dependent oxidation, PDI

releases dislocation-competent A subunits, thus acting as a

redox-dependent chaperone (Tsai et al, 2001, 2002; Tsai and

Rapoport, 2002).

ERdj5 might play an important role in the dislocation of

certain substrates that form interchain disulfide bonds. Both

its oxidoreductase and DnaJ activities are essential, sugges-

ting that ERdj5 could couple reduction and BiP-mediated

unfolding (K Nagata, personal communication).

Dislocation is the least understood step in ERAD. Besides

Sec61 (Gillece et al, 2000; Jarosch et al, 2002; Clemons et al,

2004; Ng et al, 2007), additional transmembrane proteins

(yeast Der1p and its homologues Derlin1, 2 and 3 in mam-

malian cells) have been implicated. It remains to be seen

whether derlins directly mediate dislocation, or act by

recruiting additional essential components such as the

AAA-ATPase p97, which provides part of the energy neces-

sary for this step (Ye et al, 2001, 2004; Rabinovich et al, 2002;

Oda et al, 2006). It has been recently suggested that also lipid-

based mechanisms mediate the transport of large substrates

across the ER membrane, as observed for the entry in the cell

of certain non enveloped viruses.

Once they emerge into the cytosol, ERAD substrates are

ubiquitinated by E2–E3 complexes generally associated with

the ER membrane (yeast E3 ligase Doa10p or Hrd1p and E2

ubiquitin conjugating enzyme Ubc7p-Cue1p (Carvalho et al,

2006; Denic et al, 2006). Then, an N-glycanase removes the

oligosaccharide moieties from glycoproteins (Hirsch et al,

2003, 2004). Proteasome inhibitors generally impair disloca-

tion (Chillaron and Haas, 2000; Mancini et al, 2000),

implying that the above steps (dislocation, ubiquitination,

proteolysis) are tightly coupled. The association of protea-

somes with the ER membranes (Kalies et al, 2005) may be

important in coupling substrate extraction and degradation.

Experiments in yeast and mammalian cells have recently

shown that molecules involved in ERAD form multiprotein

complexes specialized in the handling of topological classes

of proteins (Vashist and Ng, 2004; Lilley and Ploegh, 2005;

Carvalho et al, 2006). In yeast, the ERAD-L pathway recog-

nizes substrates with misfolded ER luminal domains (on both

soluble and membrane proteins). It needs the cytosolic factor

Cdc48p (p97), the E3 ubiquitin ligase Hrd1p (HRD1 in

mammalian cells) and its transmembrane cofactor Hrd3p

(SEL1L), the putative channel component Der1p (Derlin1),

the luminal lectins Yos9p (OS9 and XTP3-B) and Htm1p

(EDEMs). SEL1L binds substrate proteins via its luminal

domain, possibly favoring their inspection by OS9, EDEM

and other molecules capable of discriminating between

native and non-native species. Proteins with defects in their

transmembrane regions utilize instead the ERAD-M pathway.

In yeast, ERAD-M substrates require Cdc48p, Hrd1p and

Der1p, but not Yos9 and Hrd3p. Finally, ERAD-C takes care

of transmembrane proteins with misfolded cytosolic

domains. These substrates appear to be handled in a way

similar to ERAD-M substrates, but in yeast they use the E3

ubiquitin ligase Doa10p instead of Hrd1p.

In both yeast and mammalian cells, certain ERAD

substrates are stabilized when ER–Golgi transport is blocked,

while others are disposed of efficiently. An Hrd1p-indepen-

dent pathway (HIP) has been described in yeast that implies

substrate transport through the Golgi (Haynes et al, 2002). In

mammalian cells, Golgi a1,2-mannosidases were shown

to accelerate the degradation of a terminally misfolded

a1-antitrypsin variant primarily localized in the ER, suggest-

ing that mannose trimming in distal compartments contri-

butes to ERAD (Hosokawa et al, 2007). Altogether, these

findings underscore the existence of sequential checkpoints

along the early secretory compartments, finalized to optimize

protein folding and QC.

Autophagy

In addition to ERAD, cells can dispose of aberrant proteins

accumulating in the ER by autophagy. In yeast, autophagy

was shown to remodel the ER after its expansion during the

unfolded protein response (UPR) (ER-phagy; Bernales et al,

2007). Additional links are emerging between the two path-

ways. On the one hand, blocking ERAD stimulates autophagy

via signalling pathways that involve elements of the UPR- and

Ire1-dependent JNK phosphorylation (Yorimitsu et al, 2006;

Hosokawa et al, 2007; Kouroku et al, 2007; Yorimitsu and

Klionsky, 2007). On the other, since EDEM is constitutively

degraded by autophagic pathways (M Molinari, personal

communication), inhibition of the latter stimulates glyco-

protein dislocation and degradation. An intriguing possibility

is that EDEM, which concentrates in defined ER subregions

(Zuber et al, 2007), targets some glycoproteins to autophagic

degradation. Also ER Man I is rapidly degraded by non-

proteasomal pathways in hepatoma cells (Wu et al, 2007b).

It will be of interest to identify additional short-lived

ER-resident proteins, as they could include molecules

that integrate distinct proteolytic pathways and hence, ER

homeostasis.

Adapting the factory to new demands:
ER stress and signalling

The accumulation of misfolded proteins in the ER lumen

elicits a multidimensional signalling cascade finalized to

relieve ER stress. The UPR activates several mechanisms

to handle the increase of unfolded proteins (Ma and

Hendershot, 2004; Bernales et al, 2006; Ron and Walter,

2007): (i) decreased protein translation, (ii) increased tran-

scription of genes enhancing protein folding (ER-resident

chaperones and folding enzymes) and ERAD, (iii) decreased

entry of proteins into the ER (Kang et al, 2006; Orsi et al,

2006) and (iv) selective degradation of certain mRNAs

encoding secretory proteins (Hollien and Weissman, 2006).

If these measures are not sufficient for eliminating misfolded

proteins from the ER, apoptotic pathways are activated

(reviewed in Szegezdi et al, 2006). The UPR serves a key

role also during the development of professional secretory

cells. A challenging problem, with important medical

implications, is what turns an adaptive response (finalized

to increase the ER folding capacity, as in the case in profes-

sional secretory cells) into a mal-adaptive response that

causes cell death (Lin et al, 2007; Rutkowski and Kaufman,

2007; Wu et al, 2007a). On the one hand, the latter can be

viewed as an organismal defence mechanism against cells

producing potentially harmful polypeptides. On the other,
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it is increasingly clear that apoptosis caused by chronic ER

stress underlies many diseases, such as diabetes, and that

preventing apoptotic pathways retards disease progression

(Ozcan et al, 2004, 2006).

QC and disease

Disturbances in the QC mechanisms are the cause of many

diseases (Supplementary Table 1S; Otsu and Sitia, 2007).

Diseases can arise because of mutations in cargo proteins

as well as in folding, transport or signalling molecules.

Clearly, different therapeutic strategies have to be envisaged

in each of the above classes (Wiseman et al, 2007).

The most frequent mutation in cystic fibrosis mutations

does not preclude chloride transport by CFTR: it is its absence

from the plasma membrane that causes a loss of function. In

such cases, therapy should aim at weakening QC. Instead,

gain of function often arises from defective degradation.

Serpinopathies are ER storage disorders in which transport-

incompetent mutants form large polymers in the ER (Lomas,

2005). Not only the intrinsic tendency of a protein to poly-

merize, but also the interactions it establishes in the secretory

pathway determine the extent and site of condensation

(Mattioli et al, 2006). Accumulation in post-ER compartments

has been described for mutant pro-insulin in the Akita

diabetes model (Zuber et al, 2004; Fan et al, 2007) and

vasopressin V2 receptor in nephrogenic diabetes insipidus

(Oueslati et al, 2007), in line with the existence of sequential

checkpoints. It remains to be seen whether these unusual

localizations reflect accumulation in a specialized early

secretory pathway subregion, the so-called ‘quality control

compartment’ originally described for ASGPR H2a mutants

(Kamhi-Nesher et al, 2001; Kondratyev et al, 2007).

The phenotypes of ERQC disorders generally involve

tissues specialized in secretion, such as exocrine and endo-

crine glands, osteoblasts, plasma cells. Pancreatic b-cells are

particularly sensitive, likely because the circadian oscillations

in insulin biosynthesis require stringent translational control.

Accordingly, the absence or insufficiency of ER stress sensors,

particularly PERK and downstream elements, are responsible

for many cases of diabetes (see Supplementary Table 1S). The

absence of CHOP (a UPR factor involved in apoptosis) delays

b-cell destruction and hyperglycemia. Type II diabetes can

also ensue from environmental factors (e.g., a high-fat diet).

The JNK-dependent phosphorylation of IRS1 inhibits insulin

signalling, thus creating an exaggerated demand on b-cells,

which in turn leads to stress and apoptosis (Ozcan et al,

2004). Confirming the role of ER stress, systemic administra-

tion of tauro-urso desoxy cholic acid (an analog of which is

particularly abundant in the bile of bears, a common

prescription in traditional Chinese medicine) leads to normal-

ization of hyperglycemia, restoration of systemic insulin

sensitivity and enhancement of insulin action in a murine

model of type II diabetes, the ob/ob mice (Ozcan et al, 2006).

Concluding remarks

The subdivision of the early secretory pathway into distinct

functional regions provides an efficient and dynamic factory

capable of handling myriads of polypeptides, while main-

taining stringent homeostatic control. The various elements

that regulate folding and QC of the secretory proteome need

to work in tight synergy and change their relative abundance

(and qualitative composition) when facing a particular

synthetic task. Signalling pathways are being identified that

regulate the efficiency of ER folding, export and degradation

so as to adapt to the changing demands of the ER protein

factory during differentiation. Clearly, a better understanding

of these pathways is bound to improve dramatically our

capability to deal with many severe chronic diseases.

Supplementary data

Supplementary data are available at The EMBO Journal

Online (http://www.embojournal.org).
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