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Recent laboratory experiments suggest that a molecule’s ability to evolve neutrally is important for its

ability to generate evolutionary innovations. In contrast to laboratory experiments, life unfolds on time-

scales of billions of years. Here, we ask whether a molecule’s ability to evolve neutrally—a measure of its

robustness—facilitates evolutionary innovation also on these large time-scales. To this end, we use protein

designability, the number of sequences that can adopt a given protein structure, as an estimate of the

structure’s ability to evolve neutrally. Based on two complementary measures of functional diversity—

catalytic diversity and molecular functional diversity in gene ontology—we show that more robust proteins

have a greater capacity to produce functional innovations. Significant associations among structural

designability, folding rate and intrinsic disorder also exist, underlining the complex relationship of the

structural factors that affect protein evolution.
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1. INTRODUCTION
What makes a biological system able to produce evolution-

ary innovations (Müller & Wagner 1991), new adaptations

that may aid in survival and reproduction? Do some

systems have a greater ability to innovate than others? A

rigorous answer to these questions requires a systematic

comparison of many different systems and the innovations

they have produced. Whole organisms are not readily

amenable to such systematic comparison. By contrast,

molecular innovations can be more easily studied. This is

because we know millions of protein sequences, as well as

thousands of structures, and their associated functions.

For this reason, here we address the opening questions

with protein molecules and their functional diversity,

which is a record of past evolutionary innovations.

Recent experimental work suggests that a molecule’s

ability to evolve neutrally is important for its ability to

evolve new functions. Such neutral evolution leaves a

primary function of the molecule unchanged, while paving

the way for new functions to emerge. Cases in point are the

enzymes serum paraoxonase and cytochrome P450. These

enzymes have a primary catalytic function, but they can

also metabolize other secondary substrates at greatly

reduced rates (Amitai et al. 2007; Bloom et al. 2007).

Laboratory evolution experiments show that neutral

mutations that do not change the primary function of

these enzymes can cause substantial fluctuations in their

secondary activities. Natural selection can then rapidly

increase these ‘promiscuous’ activities (Aharoni et al.

2005). A different kind of experiment with two catalytic

RNA molecules makes a similar point. In this experiment,

Schultes & Bartel (2000) mutagenized two ribozymes

unrelated in sequence, structure and catalytic activity.
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These authors created a path of single mutations through

sequence space that connected the two ribozymes. After

most of the steps in this path, the catalytic activity of the

mutated molecules did not change much, except for a

small transition region approximately halfway between the

two starting molecules. In this region, the activity of one

molecule switched to the activity of the other molecule.

Here again, neutral mutations paved the way for a

molecule with a new function. In both cases, the ability

to evolve neutrally facilitated a molecule’s ability to

acquire functional innovations.

If these observations hold more generally, the following

prediction arises for two different molecules A and B: if A

can undergo more neutral mutations than B—it has

greater mutational robustness than B—then A should

also show a greater propensity to evolve new functions.

This prediction has been confirmed for cytochrome P450

in another recent experiment (Bloom et al. 2006b), which

showed that thermostable or mutationally robust variants

of this enzyme more readily evolve new catalytic activities.

A theoretical work on RNA structures provides a larger

context and intuitive explanation for this observation

(Wagner 2007). Populations of mutationally robust

structures can explore a set of all possible genotypes

rapidly through neutral mutations. They are thus genoty-

pically diverse and can produce large amounts of

structural variation by single point mutations. This

increased access to structural diversity promotes

evolutionary innovations, even though only a small

fraction of structural variants may lead to new functions.

Laboratory experiments can explore evolutionary inno-

vations on laboratory time-scales. However, life unfolded

on time-scales of billions of years. Does the connection

between robustness and evolutionary innovation hold on

these vastly larger time-scales? This is the question we

address here. To do so, we need to analyse a protein
This journal is q 2008 The Royal Society
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structure’s ability to evolve neutrally—its mutational

robustness—for many different structures. This ability is

directly related to the number of sequences in a genotype

space that can fold into a given structure, also known as the

designability of the structure. The concept of designability

was first coined by Li et al. (1996). Using a simple lattice

model, these authors showed that the number of sequences

that can adopt a given structure is related to the structure’s

regularity and to its robustness to mutations. Further

studies have shown that designability is also related to

evolutionary rate (Bloom et al. 2006a). The sequences

folding into a structure are typically connected in large

neutral networks (Babajide et al. 1997; Bastolla et al. 2003).

Here we show that more robust proteins show greater

propensity to evolve new functions on vast evolutionary

time-scales. To this end, we use quantitative estimates of

protein designability that can be determined from a

protein’s contact density matrix (England & Shakhnovich

2003), or from the diversity of sequences adopting a

protein structure (Shakhnovich et al. 2005). As a record of

past evolutionary innovations, we use the functional

diversity of protein domains, as encapsulated in their

diversity of enzymatic functions (Pegg et al. 2006) and in

their gene ontology annotations (Ashburner et al. 2000) of

molecular functions.
2. MATERIAL AND METHODS
Our main source of data is the class, architecture, topology

and homologous superfamily (CATH) protein structure

classification database v. 3.1.0 (Greene et al. 2007). Here

we focus on the 1924 representative protein domains in

CATH, which exceed a minimal length of 50 residues. The

number of different functions known for a domain depends

on the time since a domain originated in evolution: for two

domains—one young and another old—with equal designa-

bility (robustness), the young domain had less time to

accumulate sequence and functional diversity. We exclude

this confounding factor by focusing some of our analyses on a

subset of ancient domains that are present in all sequenced

bacterial, archaeal and eukaryotic genomes (Ranea et al.

2006), and that were thus present in the last universal

common ancestor of extant life. Since this dataset was derived

from a previous CATH release, we filter these domains to

obtain 112 ancient domains that occur in the current release.

(a) Measures of designability

In our analysis, we use two complementary estimates of a

protein fold’s designability. We refer to these estimates as

structural designability (DS) and diversity designability (DD).

Structural designability was introduced by England &

Shakhnovich (England & Shakhnovich 2003; Shakhnovich

et al. 2005). These authors showed that the number of

sequences that can adopt a given structure is approximated by

the length-normalized maximum eigenvalue of the contact

density matrix at a defined distance cut-off, based on a

coarse-grained structural description (using only Ca and Cb

atoms). The contact density matrix AZ(aij) is a binary (0-1)

matrix, where aijZ1 if two residues i and j that are not

neighbours (jiKjjO1) are in contact. For our purpose, we

consider two non-neighbouring residues in contact, if any of

their Ca and Cb atoms occur within a 6.0 Å radius of each

other. An alternative measure of structural designability is the

average number of atomic contacts per residue (England &
Proc. R. Soc. B (2008)
Shakhnovich 2003; Bloom et al. 2006a). However, this

measure is so closely correlated with DS (Spearman’s

rZ0.989; p!10K100) that it yields virtually identical results.

We thus focus exclusively on the length-normalized structural

designability, DS.

We obtain our second estimate of designability (DD) from

diversity data of protein sequences, in an approach similar to

that of Shakhnovich et al. (2005). Specifically, we analyse

sequences in the non-redundant dataset NRDB90 (Holm &

Sander 1998). We examine each sequence in this set and

assign it to an ancient representative CATH domain, if the

sequence has 25% or more identity to the CATH representa-

tive, as suggested by the analysis of Chothia & Lesk (1986).

We use BLAST (Altschul et al. 1997) to determine the extent

of sequence identity. Since the number of similar sequences

observed per representative domain is dependent on its

length, we also normalized DD by the sequence length.

Because designability may be related to the complexity

and amount of disorder of a protein fold, we also explored

their relationship with functional diversity. As a measure of

fold complexity, we used the absolute contact order (ACO) as

introduced by Plaxco et al. (1998). ACO is the average

distance on the amino acid sequence of two residues that

contact each other in the structure. Proteins with high ACO

fold slowly. We calculate ACO as in Ivankov et al. (2003),

where we consider two residues to be in contact if any of their

Ca or Cb are inside a sphere of 6.0 Å.

To explore intrinsic disorder (ID) in the sequence domain

dataset described above, we use the tool IUPred (Dosztányi

et al. 2005a,b). Briefly, IUPred estimates for each residue in a

sequence an index that indicates the amount of disorder this

residue is subject to. We calculate the disorder average for

each sequence in the NRDB90 dataset and assign this value

to a CATH representative domain if the BLAST comparison

shows a per cent identity of the sequence that is greater than

25%. Finally, we simply calculate the average over the whole

set of disorder scores assigned to a representative domain.
(b) Functional annotation

We estimate the capacity to evolve functional innovations

using information from two sources. The first is the

structure–function linkage database (SFLD) that associates

sequence, structure and functional annotation for a diverse

spectrum of enzyme superfamilies. This functional annota-

tion is based on structural similarities of enzyme active sites

(Pegg et al. 2006). In September 2007, the SFLD contained

6280 protein sequences grouped in 138 families and six

superfamilies. We determined the diversity of functions on the

family level for all sequences that shared more than 25%

identity with any of the CATH representative domains.

We express functional diversity of a domain in two ways.

The first (FE1) is simply the number of different SFLD

families assigned per domain and normalized by the domain

length. The length-normalization is needed to correct for the

fact that the longer the sequence, the higher the chance to

find a second sequence that shares 25% of identity. The

second (FE2) is a measure akin to an entropy that takes into

account the frequency of different enzymatic functions

observed per domain. If a set of sequences associated with a

domain has k different associated enzymatic functions (some

of which may occur multiple times), and if pi is the frequency

with which each function i occurs in the set of sequences,

then FE2ZK
Pk

iZ1

pi log pi .



Table 1. Spearman’s rank correlation coefficients. (DS, structural designability; DD, diversity designability; FE1, enzymatic
functional diversity; FG1, diversity of molecular functions (based on gene ontology); FE2, entropic measure of enzymatic
functional diversity; FG2, entropic measure of molecular functional diversity (GO); ACO, absolute contact order; ID, intrinsic
disorder. The upper right triangle shows Spearman’s rank correlation coefficients (r). The lower left triangle shows the
corresponding p-values. Diversity designability as well as functional diversity measures are reported for the set of highly
conserved evolutionary domains.)

DS DD FE1 FG1 FE2 FG2 ACO ID

DS — 0.882 0.702 0.938 0.877 0.973 K0.698 0.923
DD 7.25!10K53 — 0.801 0.961 0.877 0.868 K0.662 0.897
FE1 1.09!10K30 2.31!10K40 — 0.818 0.872 0.700 K0.625 0.705
FG1 2.99!10K68 2.50!10K79 1.69!10K42 — 0.916 0.938 K0.765 0.931
FE2 7.13!10K52 7.13!10K52 6.40!10K51 5.42!10K61 — 0.886 K0.604 0.889
FG2 4.08!10K88 3.48!10K50 1.58!10K30 2.99!10K68 1.09!10K53 — K0.638 0.952
ACO 9.11!10K91 1.14!10K27 3.56!10K25 2.22!10K36 7.25!10K24 5.07!10K26 — K0.607
ID !10K100 4.07!10K56 6.23!10K31 1.08!10K65 2.50!10K54 2.29!10K74 !10K100 —
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The second source of functional information used in this

study is the GOA database that maps UniProt (The UniProt

2007) entries to gene ontology (GO) terms (Camon et al.

2004). We obtained the GOA database from the EMBL-EBI

FTP site (ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNI-

PROT), and filtered the complete database to obtain only

those UniProt entries that were annotated with molecular

functions. We then created a non-redundant database of

sequences using the NRDB90 tool (Holm & Sander 1998).

Subsequently, we examined each sequence in this database

and mapped the associated GO terms to a CATH

representative domain, if the sequence shared more than

25% identity with the CATH domain. Analogous to

enzymatic diversity, we express molecular functional diversity

in two ways. The first (FG1) is simply the number of different

GO molecular functions per domain, normalized by the

domain length. The second (FG2) is the entropy measure

described above, but now for the frequency distribution of

GO terms observed per representative domain.

(c) Statistics

All statistical analyses were carried out with the statistics

software R v. 2.1.1 (R Development Core Team 2005; http://

www.r-project.org/). For the principal component regression

(PCR) analysis, we used the R package ‘pls’.
3. RESULTS
(a) More designable proteins show a greater

capacity to produce enzymatic diversity

Here we use two complementary measures of protein

designability. The first of them is structural designabi-

lity (DS), as estimated by the length-normalized

principal eigenvalue of a protein’s contact density

matrix (England & Shakhnovich 2003). The contact

density matrix AZ(aij) is a binary (0-1) matrix, where

aijZ1 if two non-neighbouring residues i and j (jiKjjO1)

are in contact. The principal eigenvalue of the contact

density matrix tends to be larger for proteins with more

amino acid contacts per residue, adopting a value

between the average number of contacts per residue

and the maximal number of contacts of any given residue

(Porto et al. 2004). The measure DS reflects the number

of groups of interacting amino acids. A large number of

such groups allow more sequences to adopt a structure

by relaxing energy constraints for the rest of the sequence

(Shakhnovich et al. 2005).
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Our second measure is diversity designability (DD),

which is the number of sequences from a non-redundant

database (see §2) that fold into a structure, normalized by

the sequence length. This second measure is vulnerable to

a confounding factor, the different age of proteins. Old

proteins may have more sequences associated with them

than younger proteins, just because they originated early

in life’s evolution. To exclude this factor, we restricted our

analysis of diversity designability (DD) to a set of 112

ancient protein domains in the CATH database, which

were probably present in the most recent common

ancestor of all extant life (Ranea et al. 2006). Both

measures of designability are highly correlated for this

age-corrected set of domains (Spearman’s rZ0.88;

p!7.25!10K53; table 1) and for the complete set of

more than 1924 CATH domains (Spearman’s rZ0.89;

p!10K100; figure 2a). Similar associations have been

reported for different domain datasets (Shakhnovich et al.

2005). They suggest that DS is reflective of the number of

sequences that adopt a structure.

We used two complementary measures of protein

functional diversity. The first is a measure of diversity of

enzymatic functions, based on structural similarities of

enzyme active sites. The relevant information is curated in

a recently developed database, which classifies enzymes

into three hierarchical levels of function, of which we use

the lowest (familial) level here (Pegg et al. 2006). We use

two quantitative indicators of enzymatic functional

diversity. These are FE1, the number of enzyme families

associated with a protein domain, and FE2, which takes

into account that different enzymatic functions occur at

different frequencies in a set of sequences associated with a

domain (see §2). We explored the association between

protein designability and functional diversity for these two

different notions of functional diversity.

Figure 1a shows an example of two structures with very

different designabilities (figure 2a). The colour spectrum in

the tertiary structure ranges from blue to red, correspond-

ing to positions with low and high sequence diversity (DD),

respectively. The structure in figure 1a(i) has lower

designability and lower functional diversity, as indicated

by the number of associated enzymatic functions, than the

structure in figure 1a(ii). The less designable domain is

associated with two enzyme superfamilies and three

families, whereas the more designable domain is associated

with four enzyme superfamilies and 11 families. Figure 1b

http://ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT
http://ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UNIPROT
http://www.r-project.org/
http://www.r-project.org/
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Figure 1. (Caption opposite.)
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shows a scatterplot of DD and enzymatic functional

diversity (FE1) for eight arbitrarily chosen ancient

structures that are colour-coded in the same way. It

suggests that the difference evident from figure 1a is not

just a peculiarity of the two sequences chosen.

For the complete dataset of ancient domains, we

observe a statistically significant and highly positive
Proc. R. Soc. B (2008)
association between enzymatic functional diversity and

DD (Spearman’s rZ0.80; p!2.31!10K40; figure 3a).

A structure with more associated sequences might be

expected to have more associated functions, but this

association persists if we normalize the number of

functions by the total number of sequences associated

with each fold (Spearman’s rZ0.44; p!1.95!10K15).



Figure 1. (Opposite.) (a) An example of protein domains with different designabilities and different functional diversities. For the
purpose of illustration, the minimum and maximum number of sequences has been scaled linearly. Thus, the colour spectrum
indicates a measure of sequence diversity, where blue (red) corresponds to minimum (maximum) sequence diversity estimated
per residue. The diversity designability of a domain DD is a domain-wide average over this sequence diversity. The enzyme
families associated with each domain are listed. (i) A domain with low designability (CATH identifier: 1mw9X04:
topoisomerase 1, domain 4). It has a complex fold and is associated with three enzyme families that fall into two superfamilies
(Pegg et al. 2006). (ii) A domain with high designability (1ls1A01: the A subunit of the four-helix bundle hemerythrin domain).
It has a simpler fold and is associated with 11 enzyme families and four superfamilies. Superfamilies and families are listed.
(b) Enzymatic functional diversity (FE1) increases with protein designability. Enzymatic functional diversity (FE1) is expressed
as the number of different enzyme families per representative CATH domain (Pegg et al. 2006). Eight highly conserved CATH
domains (1n55A00, 1qz5A01, 1q6zA03, 1rl6A02, 1k7wA03, 1ls1A01, 1vq8V00 and 2bm0A03) have been arbitrarily chosen to
illustrate the association between enzymatic functional diversity (FE1) and designability (DD, DS). The Spearman rank correlation
coefficient between DS and FE1 for these eight domains is 0.92.
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We also examined the association between structural

designability DS and enzymatic functional diversity. This

association is also positive, regardless of whether we

normalize for the number of sequences associated with

a fold (Spearman’s rZ0.55; p!1.24!10K20) or not

(Spearman’s rZ0.70; p!1.09!10K30; figure 3b). An

even higher positive association exists if we use the

frequency-weighted measure of enzymatic functional

diversity, FE2 (DD: Spearman’s rZ0.88; p!7.13!10K52;

DS: Spearman’s rZ0.88; p!7.13!10K52).
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Figure 2. Designability, fold complexity and disorder are
associated properties. (a) Diversity designability (DD) versus
structural designability (DS). (b) Fold complexity (ACO)
(b) More designable proteins show greater overall

diversity of molecular functions

Our second measure of functional diversity encompasses

GOAs of molecular functions. The GO database includes

the most comprehensive information about functional

diversity of proteins. It is not restricted to enzymes. The

GO project has developed a dynamic controlled vocabu-

lary based on three aspects of function (molecular

function, process and location) that encompass comp-

lementary notions of gene functions in living cells

(Ashburner et al. 2000). For our purpose, the appropriate

aspect of function is molecular function. We used two

measures of molecular functional diversity. The first

(FG1) is simply the number of molecular function

annotations associated with a protein domain and the

second (FG2) weights different functions by their

frequency in a set of proteins (see §2).

We observe a statistically significant and highly positive

association between functional diversity (FG1) and DD,

regardless of whether we normalize for the number of

sequences per domain (Spearman’s rZ0.62; p!1.53!
10K24) or whether we do not normalize (Spearman’s

rZ0.96; p!2.5!10K79; figure 3c). We also examined the

association between DS and FG1, which is positive

independent of whether the values are normalized (Spear-

man’s rZ0.86; p!1.94!10K48) or whether they do not

normalize (Spearman’s rZ0.94; p!2.99!10K68;

figure 3d ). An even higher positive association exists if

we use the frequency-weighted measure of functional

diversity, FG2 (DD: Spearman’s rZ0.87; p!3.48!10K50;

DS: Spearman’s rZ0.97; p!4.08!10K88).

versus structural designability (DS). (c) Intrinsic disorder
(ID) versus structural designability (DS). DD corresponds to
the total number of sequences per residue per representative
domain. ID is calculated as a length-normalized average per
representative domain. Decadic logarithm is applied.
(c) Fold complexity and ID influence designability

and diversity

Protein designability may be correlated with a number of

other protein properties. Although such properties are not

the main focus of our analysis, we wanted to examine how

some of them relate to functional diversity. The first of

these properties is the complexity of a protein fold. Among
Proc. R. Soc. B (2008)
various available measures (Arteca 1995; Enright &

Leitner 2005), we use the ACO as a measure of fold

complexity. ACO is the average distance on the amino acid
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diversity (FG1) as a function of structural designability (DS). Functional diversity measures shown are normalized by the total
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sequences per representative domain.
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sequence of two residues that contact each other in the

structure. It can be thought of as a measure of how

‘entangled’ a structure is. It is a good predictor of a

protein’s folding rate, regardless of whether the folding

kinetics is dominated by one or several steps (Ivankov

et al. 2003). Highly designable proteins have low fold

complexity. (DS: Spearman’s rZK0.70; p!9.11!10K91;

DD: Spearman’s rZK0.66; p!1.14!10K27; figure 2b).

Second, we also explore the relationship between

designability and a measure for the amount of confor-

mational disorder a protein can tolerate. Highly dis-

ordered proteins are more flexible than others. The

measure we use is the ‘intrinsic disorder’ of a protein, as

defined in Dosztányi et al. (2005b). Specifically, here we

use the average ID of the set of sequences associated with

each CATH representative domain (see §2). We would

predict that proteins with high intrinsic disorder can

tolerate more sequence change, and that they might thus

also be more designable. This is the case (DS: Spearman’s

rZ0.92; p!10K100; DD: Spearman’s rZ0.90; p!4.07!
10K56; figure 2c). Not surprisingly, these properties are

also associated with each other (table 1).

Because protein fold complexity and disorder are

associated with designability, they might also be associated

with functional diversity. This is indeed the case (table 1).

The diversity of enzymatic and general molecular

functions increases for short proteins (FE1: Spearman’s

rZK0.685; p!2.33!10K29; FG1: Spearman’s rZK0.94;

p!1.22!10K68), for proteins with low fold complexity
Proc. R. Soc. B (2008)
(FE1: Spearman’s rZK0.63; p!3.6!10K25; FG1:

Spearman’s rZK0.77; p!2.22!10K36) and for

proteins with high intrinsic disorder (FE1: Spearman’s

rZ0.71; p!6.22!10K31; FG1: Spearman’s rZ0.93;

p!1.1!10K65).

The pairwise associations we have discussed so far may

conceal subtle interactions among the multiple variables

we consider here. To better disentangle their relationship,

we thus performed a PCR analysis. This analysis allows

us to understand how the three critical variables—

designability, fold complexity and disorder—contribute

to functional diversity. The results of this analysis reveal no

unforeseen new relationships (figure 4). One dominant

principal component accounts for more than 80% of the

variance in functional diversity. This component is

dominated by the positive role of designability and ID

for functional diversity and by the negative role of fold

complexity (figure 4). The second and third principal

components contribute only 15 and 4% of the variance,

respectively. Similar results (not shown) hold if diversity

designability or enzyme functional diversity is used in

the analysis.
4. DISCUSSION
In summary, our observations show that highly designable

proteins evolve more functional innovations on large time-

scales. Our measures of designability estimate a given

domain’s ability to explore sequence space and access a
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Figure 4. PCR analysis of molecular functional diversity
(gene ontology) against structural designability (DS), fold
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Shown are the two principal components that together
account for 96.6% of the variance observed for functional
diversity. Component 1 (black bars) and component 2 (grey
bars) accounts for 80.8 and 15.8% of the total variance,
respectively.
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diverse spectrum of functions. Because functional diver-

sity is a record of past evolutionary innovations, this means

that more designable proteins may have a greater facility to

evolve new functions. In addition, because proteins of

similar structure are connected in genotype space

(Babajide et al. 1997, 2001; Bornberg-Bauer 1997;

Bastolla et al. 1999; Wroe et al. 2007), more robust

proteins may show greater propensity to evolve functional

innovations. This association holds for two comp-

lementary measures of functional diversity: diversity of

enzymatic functions and GO-based diversity of molecular

functions. It also holds for two different measures of

designability: one based purely on structural information

and the other based on the number of sequences

associated with each protein fold. The associations persist

if we correct for the different numbers of sequences

associated with a fold. For gene ontology annotations,

these associations are also corroborated by an analysis

based on a different domain dataset (Shakhnovich et al.

2005), whose main focus was to explain different sequence

family sizes associated with different folds.

A number of other protein properties are associated

with designability, and thus, not surprisingly, with

functional diversity. Specifically, long proteins, proteins

with complex folds (and thus proteins with slower folding

rates; Ivankov et al. 2003) and proteins with low amounts

of disorder in their tertiary structure show low functional

diversity. Most of these associations have intuitive

explanations. For example, it is easy to see how a high

complexity of a fold may lead to smaller numbers of

sequences being able to adopt a fold.

With respect to disorder in protein structures, conflict-

ing interpretations can be brought to bear on its

relationship to designability. On the one hand, a more

disordered structure may be more flexible, and thus

tolerate more amino acid changes, implying greater

robustness and designability. On the other hand,

a disordered structure may be less thermodynamically

stable (Dosztányi et al. 2005b) and greater thermodynamic
Proc. R. Soc. B (2008)
stability has been associated with robustness (Bastolla &

Demetrius 2005; Bloom et al. 2006b). Although expla-

nations that could resolve this conflict have been put

forward (Bastolla & Demetrius 2005), such resolution is

not within the scope of this contribution.

A caveat to our—and any other—comparative study is

that statistical association is not equivalent to causation.

Other known features (expression level, domain architec-

ture, etc.) and unknown features of proteins may show

hidden associations with functional diversity that may

explain some of its variation. To identify such features

would be a worthwhile subject of future studies, as would

be the reduction of biases in the data, as well as the

elimination of errors contained in some measures of

structural differences among proteins. For example, the

ID estimate we use (IUPred) has a true positive rate of

85% (Dosztányi et al. 2005b), which could be improved.

Complex relationships with other variables notwith-

standing, it is clear that designable and robust proteins

have evolved many novel functions. This shows that a

pattern derived from recent experimental findings, and

applicable only to laboratory time-scales, also holds on

vastly greater geological time-scales (Aharoni et al. 2005;

Bloom et al. 2006b). The possible explanation has its root

in how populations explore vast sequence spaces:

populations of highly robust folds can explore sequence

space rapidly, and thus access large amounts of structural

diversity in their neighbourhood (Wagner 2007). A small

fraction of this diversity can subsequently give rise to

proteins with new functions.

A.W. acknowledges support through grant 315200-116814
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