
1Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

www.nature.com/scientificreports

Protein Secondary Structure
Prediction Using Deep
Convolutional Neural Fields
Sheng Wang1,2, Jian Peng3, Jianzhu Ma1 & Jinbo Xu1

Protein secondary structure (SS) prediction is important for studying protein structure and function.

When only the sequence (profile) information is used as input feature, currently the best predictors can
obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF
(Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension

of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and
shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by
a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much
more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy,
~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly
outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict
other protein structure properties such as contact number, disorder regions, and solvent accessibility.

The 3D structure of a protein is determined largely by its amino acid sequence1. However it is extremely challeng-
ing to predict protein structure from sequence alone2. Since protein structure is critical to analysis of its function
and many applications like drug and/or enzyme design3–5, understanding the complex sequence-structure rela-
tionship is one of the greatest challenges in computational biology6–8. Accurate protein structure and function
prediction relies, in part, on the accuracy of secondary structure prediction9–12.

Protein secondary structure (SS) refers to the local conformation of the polypeptide backbone of proteins.
There are two regular SS states: alpha-helix (H) and beta-strand (E), as suggested by Pauling13 more than 60
years ago, and one irregular SS type: coil region (C). Sander14 developed a DSSP algorithm to classify SS into
8 fine-grained states. In particular, DSSP assigns 3 types for helix (G for 310 helix, H for alpha-helix, and I for
pi-helix), 2 types for strand (E for beta-strand and B for beta-bridge), and 3 types for coil (T for beta-turn, S for
high curvature loop, and L for irregular). Overall, protein secondary structure can be regarded as a bridge that
links the primary sequence and tertiary structure and thus, is used by many structure and functional analysis
tools15–18.

Protein SS prediction has been extensively studied10–12,19–35. Many computational methods have been devel-
oped to predict both 3-state SS and a few to predict 8-state SS. Meanwhile, 8-state prediction may provide more
detailed local structure information33,34,36. Holley & Karplus19 and Qian & Sejnowski20 may be the first that used
neural networks (NN) to predict SS, which have been followed by a few others19,21,23,24,37. The most significant
improvement in SS prediction was achieved by Rost & Sander23 and Zvelebil et al.35 by making use of sequence
profile derived from multiple sequence alignment38–40. Jones et al.24 developed a 2-stage neural network method
PSIPRED, which takes PSI-BLAST sequence profile41 as input and obtains ~80% accuracy for 3-state SS predic-
tion. Other machine learning methods include bidirectional recurrent neural networks26,34,37 (which can capture
spatial dependency), probabilistic graphical models25,29,42, support vector machines27,28,30,43 and hidden Markov
models22,31.

Very recently Baldi et al.34 presented a template-based method for SS prediction, which can yield much better
accuracy by making use of solved structures as templates. However, when close templates are not available, Baldi’s
method performs slightly worse than PSIPRED. Cheng et al.44 proposed a deep learning approach to 3-state SS
prediction using a typical deep belief network model, in which each layer is a restricted Boltzmann machine

1Toyota Technological Institute at Chicago, Chicago, IL. 2Department of Human Genetics, University of Chicago,
Chicago, IL. 3Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL.
Correspondence and requests for materials should be addressed to S.W. (email: wangsheng@uchicago.edu) or J.X.
(email: jinboxu@gmail.com)

received: 28 June 2015

accepted: 26 November 2015

Published: 11 January 2016

OPEN

mailto:wangsheng@uchicago.edu
mailto:jinboxu@gmail.com

www.nature.com/scientificreports/

2Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

(RBM)45 and trained by contrastive divergence46 in an unsupervised manner. Zhou & Troyanskaya36 reported
another deep learning approach to 8-state SS prediction using a supervised generative stochastic network, which
to our best knowledge may be the best 8-state predictor. However, neither Cheng nor Zhou reported a better than
80% accuracy for 3-state prediction.

SS prediction is usually evaluated by Q3 or Q8 accuracy, which measures the percent of residues for which
3-state or 8-state secondary structure is correctly predicted44. So far the best Q3 accuracy for ab initio prediction
(i.e., templates are not allowed) is ~80% obtained by PSIPRED and a few other state-of-the-art approaches such as
JPRED47,48. It is very challenging to develop a method that can break this long-lasting record. This may be because
the relatively shallow architectures of existing methods cannot model well the complex sequence-structure rela-
tionship. Alternatively, 3-state SS prediction could also be measured by segment of overlap (SOV) score, which
can be interpreted as SS segment-based accuracy. SOV allows for small wrong predictions at SS segment ends, but
penalizes more on wrong predictions in the middle region of a SS segment49.

In this paper we present a machine learning method DeepCNF (Deep Convolutional Neural Fields) for both
3-state and 8-state SS prediction. DeepCNF combines the advantages of both conditional neural fields (CNF)50
and deep convolutional neural networks (DCNN)51, which captures not only complex sequence-structure rela-
tionship, but also models SS label correlation among adjacent residues. DeepCNF is similar to conditional ran-
dom fields (CRF)52 and CNF33 in modeling interdependency among adjacent SS labels. However, DeepCNF uses
DCNN to replace the shallow neural networks used in CNF so that it can capture very complex relationship
between input features and output labels. This DCNN can also include longer-range sequence information (see
Figs 1 and 2).

Figure 1. A typical deep neural network (A) vs. a convolutional deep neural network (B). A convolutional deep
neural network can capture longer-range sequence information than a typical deep neural network when both
use the same window size.

Figure 2. The architecture of DeepCNF, where i is the residue index and Xi the associated input features,
Hk represents the k-th hidden layer, and Y is the output label. All the layers from the 1st to the top layer form
a deep convolutional neural network (DCNN) with parameter = , , …,W k K{ 1 2 }k . The top layer and the label
layer form a conditional random field (CRF) with U and T being the model parameters. U is the parameter used
to connect the top layer to the label layer, and T is used to model correlation among adjacent residues.

www.nature.com/scientificreports/

3Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

Our DeepCNF method differs from Cheng’s method44 in that the latter uses a typical deep belief network
(see Fig. 1A) while we use a deep convolutional network (see Fig. 1B). As such, our method can capture
longer-range sequence information than Cheng’s method. Our method also differs from Cheng’s method in that
the latter does not explicitly model SS interdependency among adjacent residues. Our method differs from Zhou’s
deep learning method (denoted as ICML2014)36 in the following aspects: (1) our method places only input fea-
tures in a visible layer and treats the SS labels as hidden states while Zhou’s method places both the input fea-
tures and SS labels in a visible layer; (2) our method explicitly models the SS label interdependency while Zhou’s
method does not; (3) our method directly calculates the conditional probability of SS labels on input features
while Zhou’s method uses sampling; (4) our method trains the model parameter simultaneously from the input
to output layer while Zhou’s method trains the model parameters layer-by-layer; and (5) more importantly, our
method demonstrated a significantly improved Q3 accuracy and SOV score while Zhou’s method did not.

Our experiments show that our method greatly outperforms the state-of-the-art methods, especially on those
structure types which are more challenging to predict, such as high curvature regions (S), beta loop (T), and
irregular loop (L).

Results
Dataset. We used five publicly available datasets: (1) CullPDB53 of 6125 proteins, (2) CB513 of 513 pro-
teins, (3) CASP1054 and (4) CASP1155 datasets containing 123 and 105 domain sequences, respectively, and (5)
CAMEO (http://www.cameo3d.org/sp/6-months/) test proteins in the past 6 months (from 2014-12-05 to 2015-
05-29). Meanwhile, datasets (2–5) are only used for test. The CullPDB dataset was constructed before CASP10
(i.e., May 2012) and any two proteins in this set share less than 25% sequence identity with each other. Following
the same procedure in36, we divided CullPDB into two subsets for training and test, respectively, such that the
training proteins share no more than 25% sequence identity with our test sets (2–4). Our training set consists of
~5600 CullPDB proteins and the remaining ~500 PDB proteins are used as the test data. In total there are 403
CAMEO test targets in the past 6 months and 179 proteins are kept for test after removing those sharing more
than 25% sequence identity with the training set. The native SS labels of all the training and test proteins are
generated by DSSP14.

An alternative way to select non-redundant proteins for training and test is to pick one representative from
each protein superfamily defined by CATH56 or SCOP57. By using test proteins in different superfamilies than
the training proteins, we can reduce the bias incurred by the sequence profile similarity between the training and
test proteins. To fulfill this, we use the publically available JPRED training and test data47 (http://www.compbio.
dundee.ac.uk/jpred4/about.shtml), which has 1338 training and 149 test proteins, respectively, each of which
belongs to a different superfamily.

Programs to compare. We compare our method DeepCNF-SS (abbreviated as DeepCNF) with the fol-
lowing programs: SSpro34, RaptorX-SS833, ICML201436 for 8-state SS prediction; and SSpro, RaptorX-SS8,
PSIPRED24, SPINE-X12, JPRED47, for 3-state SS prediction. The SSpro package uses two prediction strategies:
without template and with template (i.e., using a solved structure in PDB as template). All the other test methods
do not make use of template information at all. All the programs are run with their parameters set according
to their respective papers. The program derived from the ICML2014 method is not publicly available, so we
cannot evaluate its performance on CASP10, CASP11 and CAMEO test sets. We cannot test Cheng’s deep learn-
ing method either because it is not publicly available. However, only minor improvement in Q3 accuracy over
PSIPRED was reported by Cheng’s paper44.

Performance metric. We measure the prediction results in terms of Q3 and Q8 accuracy. The Q3 (Q8) accu-
racy is defined as the percentage of residues for which the predicted secondary structures are correct32. For 3-state
SS prediction, we also calculate the SOV (Segment of OVerlap) score49, which measures how well the observed
and the predicted SS segments match. In particular, the SOV measure assigns a lower score to the prediction devi-
ating from observed SS segment length distribution even if it has high Q3 accuracy (i.e., per-residue accuracy)31.
A wrong prediction in the middle region of a SS segment results in a lower SOV score than a wrong prediction at
the terminal regions. A detailed definition of SOV is described in32, and also in our Supplemental File.

Determining the regularization factor by cross validation. Our DeepCNF has only a
hyper-parameter, i.e., the regularization factor, which is used to avoid overfitting. Once it is fixed, we can estimate
all the model parameters by solving the optimization problem in Eq. (10). To choose the right regularization fac-
tor and examine the stability of our DeepCNF model, we conduct a five-fold cross-validation test. In particular,
we randomly divide the training set (containing 5600 CullPDB proteins) into 5 subsets and then use 4 subsets
as training and one as validation. Figure 3 shows the Q8 accuracy of our DeepCNF model with respect to the
regularization factor. The optimal regularization factor is around 50, which yields 73.2% Q8 accuracy on average.
At this point, the Q8 accuracy difference of all the models is less than 1%, consistent with the previous report33.

Determining the DeepCNF architecture. The architecture of our DeepCNF model is mainly determined
by the following 3 factors (see Fig. 2): (i) the number of hidden layers; (ii) the number of different neurons at
each layer; and (iii) the window size at each layer. We fix the window size to 11 because the average length of an
alpha helix is around eleven residues58 and that of a beta strand is around six59. To show the relationship between
the performance and the number of hidden layers, we trained four different DeepCNF models with 1, 3, 5, and 7
layers, respectively. All the models use the same window size (i.e., 11) and the same number (i.e., 100) of different
neurons at each layer. In total these four models have ~50 K, ~270 K, ~500 K, and ~700 K parameters, respectively.
We trained the models with different regularization factors. As shown in Fig. 4A, when only one hidden layer is
used, DeepCNF becomes CNF50 and its performance is quite similar to RaptorX-SS8 (single model) as shown in

http://www.cameo3d.org/sp/6-months/
http://www.compbio.dundee.ac.uk/jpred4/about.shtml
http://www.compbio.dundee.ac.uk/jpred4/about.shtml

www.nature.com/scientificreports/

4Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

Table 1. When more layers are applied, the Q8 accuracy gradually improves. To balance the model complexity
and performance, by default we set window size to 11 and use 5 hidden layers, each with 100 different neurons.

To show that it is the deep convolutional structure but not the number of model parameters that mainly
contributes to performance improvement, we trained four models with ~500 K model parameters but 4 different
numbers of layers: 1, 3, 5 and 7. We still use the same window size at 11 and for each model all the layers have the
same number of neurons. That is, for the 1-, 3-, 5- and 7-layer models, we use 1000, 140, 100, and 85 neurons for
each layer, respectively. As shown in Fig. 4B, the models with more layers have better Q8 accuracy, although they
have the same number of model parameters. Since the 7-layer model is only slightly better than the 5-layer model,
to reduce computational complexity, in the following experimental results we use a DeepCNF model of 5 hidden
layers and 100 neurons for each layer. The window size at each layer is set to 11.

Overall performances. Tables 1, 2 and 3 show the Q8, Q3 accuracy, and SOV score of our method
DeepCNF and the others on the five datasets. As listed in these tables, when templates are not used, our method
significantly outperforms the others, including the popular PSIPRED, our old method RaptorX-SS833, SPINE-X
and the recent deep learning method ICML201436. SSpro with template obtains very good accuracy on CullPDB,

Figure 3. Five-fold cross-validation results of Q8 accuracy on the CullPDB training set with different
regularization factors.

Figure 4. The Q8 accuracy on CB513 by the models of different number of layers of 1, 3, 5, and 7 (the
same window size is used). (A) Each layer of the 4 models has 100 neurons for a position. The total parameter
number of the 4 models is different. (B) Each layer of the models has different neurons for a position. The total
parameter number of the 4 models is similar.

Methods

Q8 (%)

CullPDB CB513 CASP10 CASP11 CAMEO

SSpro (without template) 66.6 63.5 64.9 65.6 63.5

SSpro (with template) 85.1 89.9 75.9 66.7 65.7

ICML2014 72.1 66.4 — —

RaptorX-SS8 69.7 64.9 64.8 65.1 66.2

DeepCNF-SS 75.2 68.3 71.8 72.3 72.1

Table 1. Q8 accuracy of the tested methods on 5 datasets: CullPDB, CB513, CASP10, CASP11 and
CAMEO. The program for ICML2014 is not publicly available. Its result is taken from its paper.

www.nature.com/scientificreports/

5Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

CB513 and CASP10, but not on CASP11 and CAMEO. This is because SSpro uses a template database built in
2013, covering only the former three sets but not CASP11 or CAMEO. Most CASP11 and CAMEO test proteins
share < 25% sequence identity with any template databases created before 2014. In terms of Q3 accuracy on
CASP10, DeepCNF obtains 84.4%, even slightly outperforming SSpro with template (84.2%). In terms of both
Q3 and Q8 accuracy on CASP11, DeepCNF obtains 83.8% and 71.9%, respectively, significantly outperforming
SSpro with template (78.4% and 66.7%, respectively). The same trend is also observed on 179 CAMEO targets,
where DeepCNF obtains 84.4% Q3 and 72.1% Q8 accuracy, respectively, much better than SSpro with template
(78.9% and 65.7%, respectively).

When only 85 CASP10 and CASP11 hard targets are evaluated, DeepCNF, PSIPRED, SPINE-X, JPRED,
RaptorX-SS8, SSpro (with template) and SSpro (without template) have Q3 accuracy 82.2%, 77.9%, 77.1%, 78.5%,
76.2%, 76.9 and 75.4%, respectively, and SOV score 83.0%, 78.1%, 77.2%, 79.8%, 77.9%, 75.3% and 73.6%, respec-
tively. All the methods have lower Q3 accuracy on these hard targets than on the whole datasets since all the
test methods use sequence profiles as input features and a hard target usually has sparse sequence profile that
carries little evolutionary information. In addition, the hard targets do not have good structure homologs in
the training set, so a predictor cannot copy SS labels from the training data as prediction. However, our method
even has a slightly larger advantage over the others on the CASP hard targets than on the whole CASP sets. This
implies that our method is slightly better than the others in dealing with sparse sequence profiles and learning
sequence-structure relationship from the training data. Similar results are observed on the 86 CAMEO hard tar-
gets, on which DeepCNF, PSIPRED, SPINE-X, JPRED, RaptorX-SS8, SSpro (with template) and SSpro (without
template) have Q3 accuracy 82.1%, 78.0%, 77.6%, 77.7%, 76.8%, 77.0%, and 76.5%, respectively, and SOV score
81.7%, 77.1%, 74.8%, 78.2%, 73.7% , 72.6%, and 72.5%, respectively.

The SOV score tolerates on small wrong predictions at the terminal regions of a segment while penalizes
more on the erroneous predictions in the middle region of a segment49. As shown in Table 3, in terms of SOV
score on all the five datasets, DeepCNF obtains 86.2%, 84.8%, 85.6%, 85.8%, and 84.5%, respectively, significantly
outperforming all the other predictors including SSpro with template. These results show that DeepCNF could
yield more meaningful SS predictions. This is mainly because our deep convolutional neural networks are better
in predicting beta turn (T), high curvature loop (S), and irregular loop (L) states, which appear more often at
the boundary of a helix or sheet segment. The other reason is that the conditional random fields in our method
models the interdependency among adjacent residues in a SS segment, which helps reduce erroneous predictions
in the middle region of a segment.

Recall and precision. Table 4 shows the recall and precision on each of the 8 states obtained by our method
DeepCNF and the second best method ICML201436 on the CullPDB test set. Both methods fail on state I since it
is too rare to even appear in the test set. The result of the ICML 2014 method is taken from its paper. Overall, our
method obtains better recall and precision for each state, especially those non-ordinary states such as G, S and T.
For the high curvature loop (S), our method has recall and precision 0.323 and 0.543, respectively, while ICML2014
obtains 0.159 and 0.423. For beta turn (T), our method obtains recall and precision 0.594 and 0.613, respectively,
while ICML2014 obtains 0.506 and 0.548, respectively. DeepCNF also outperforms ICML2014 for the loop (L) state.

Methods

Q3 (%)

CullPDB CB513 CASP10 CASP11 CAMEO

SSpro (without template) 79.5 78.5 78.5 77.6 77.5

SSpro (with template) 88.7 90.7 84.2 78.4 78.9

SPINE-X 81.7 78.9 80.7 79.3 80.0

PSIPRED 82.5 79.2 81.2 80.7 80.1

JPRED 82.9 81.7 81.6 80.4 79.7

RaptorX-SS8 81.2 78.3 78.9 79.1 79.4

DeepCNF-SS 85.4 82.3 84.4 84.7 84.5

Table 2. Q3 accuracy of the tested methods on 5 datasets: CullPDB, CB513, CASP10, CASP11 and
CAMEO.

Methods

SOV score (%)

CullPDB CB513 CASP10 CASP11 CAMEO

SSpro (without template) 77.4 77.2 75.9 77.3 75.4

SSpro (with template) 81.3 79.4 80.7 77.4 76.3

SPINE-X 79.1 78.7 78.7 79.3 79.4

PSIPRED 81.8 81.0 80.9 81.4 80.1

JPRED 82.5 83.3 82.4 82.0 80.7

RaptorX-SS8 80.9 79.5 80.2 81.1 78.1

DeepCNF-SS 86.7 84.8 85.7 86.5 85.5

Table 3. SOV score of the tested methods on 5 datasets: CullPDB, CB513, CASP10, CASP11 and CAMEO.

www.nature.com/scientificreports/

6Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

This result could be due to the fact that S, T, and L state may be impacted by medium-range information on the pro-
tein sequence36 and our method is better than the others in modeling this kind of information. Our DeepCNF has
a similar performance trend on the CB513 test set (see Table 5). DeepCNF outperforms ICML2014, especially on
those non-ordinary states, as well as the ordinary beta sheet state. The largest advantage lies in predicting curvature
loop (S) and 310 helix (G). We cannot do a detailed comparison between our method and the ICML2014 method on
the other test sets since the program derived from the ICML2014 method is not publicly available.

Prediction accuracy with respect to homologous information. We further examine the performance
of DeepCNF with respect to the amount of homologous information measured by Neff 33. The Neff of a protein
measures the average number of effective amino acids across all the residues, ranging from 1 to 20 since there are
only 20 amino acids in nature. A small Neff indicates that the protein has a sparse sequence profile. By contrast,
a large Neff implies that the protein may have a large amount of homologous information. Figure 5 shows the Q3
accuracy of the five tested methods on the CB513 and the two CASP datasets with respect to Neff. When Neff ≤ 2,
DeepCNF performs slightly better than the others. However, when Neff > 2, DeepCNF greatly outperforms the
others.

SS8 label

Recall Precision

DeepCNF ICML2014 DeepCNF ICML2014

L 0.707 0.633 0.615 0.541

B 0.046 0.001 0.638 0.5

E 0.867 0.823 0.814 0.748

G 0.302 0.133 0.535 0.496

I 0.0 0.0 0.0 0.0

H 0.937 0.935 0.878 0.828

S 0.323 0.159 0.543 0.423

T 0.594 0.506 0.613 0.548

Table 4. Recall and precision of DeepCNF and ICML2014 on the CullPDB test set.

SS8 label

Recall Precision

DeepCNF ICML2014 DeepCNF ICML2014

L 0.657 0.655 0.571 0.518

B 0.026 0.0 0.433 0.0

E 0.833 0.797 0.748 0.717

G 0.26 0.131 0.49 0.45

I 0.0 0.0 0.0 0.0

H 0.904 0.9 0.849 0.831

S 0.255 0.14 0.487 0.444

T 0.528 0.503 0.53 0.496

Table 5. Recall and precision of DeepCNF and ICML2014 on the CB513 dataset.

Figure 5. Q3 accuracy on CB513 and two CASP (CASP10-11) test sets with respect to Neff. Each point
represents the average Q3 accuracy on those proteins falling into an Neff interval.

www.nature.com/scientificreports/

7Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

Where is the improvement from? We used 25% sequence identity as cutoff to remove redundancy
between the training and test sets. Although the training and test proteins may not have similar primary
sequences, their sequence profiles may be still similar, so one may wonder if our improvement is due to the
sequence profile similarity between the test and training proteins. We conducted one stricter experiment to study
this problem. In particular, we retrained our DeepCNF models using the 1338 JPRED training proteins and
tested the resultant models on the 149 JPRED test proteins47. All the test and training proteins belong to different
superfamilies. That is, it is unlikely that one test protein shares similar sequence profile with one training protein.
The sequence profiles of these JPRED training and test proteins are generated from an NR database dated in 2012-
10-26. We divided the training set into 7 groups according to the JPRED cross-validation sets (available at http://
www.compbio.dundee.ac.uk/jpred4/about.shtml) and then trained 7 DeepCNF models separately. Each model is
trained by the proteins in 6 groups. Tested on the 149 JPRED test proteins, the resultant 7 DeepCNF models have
an average Q3 accuracy of 84.9% (see Supplemental Table 1), far better than what can be obtained by the other
methods. For example, on this test set, JPRED, which is one of the best SS predictors, has Q3 accuracy 82.1%.

This experimental result indicates that the improvement mainly comes from the DeepCNF model itself
instead of the profile similarity between the test and training proteins. In fact, as shown in previous sections, our
method also greatly outperforms the others on the CASP11 and CAMEO hard targets (which do not have similar
profiles as our training proteins), which further confirms this conclusion.

Conclusion and Future Work
We have presented a new sequence labeling method, called DeepCNF (Deep Convolutional Neural Fields),
for protein secondary structure prediction. This new method can not only model complex sequence-structure
relationship by a deep hierarchical architecture, but also exploit interdependency between adjacent SS labels.
The overall performance of DeepCNF is significantly better than the state-of-the-art methods, breaking the
long-lasting ~80% Q3 accuracy34. DeepCNF is even better than the other methods in terms of SOV score. In par-
ticular, DeepCNF performs much better on the SS types which are challenging to predict, such as high curvature
region (state S), beta loop (state T), and irregular loop (state L). DeepCNF also performs reasonably well on pro-
teins without any good homologs in PDB, better than the other methods. However, DeepCNF has no significant
advantage over the others when a protein under prediction has very sparse sequence profile (i.e., Neff ≤ 2). That
is, it is still challenging to predict SS structure from primary sequence instead of sequence profile.

In addition to secondary structure prediction, DeepCNF can be directly applied to many sequence label-
ling problems50,60–62. For example, DeepCNF can be used to predict solvent accessibility34,63,64, contact number65,
structural alphabet66–69 and order/disorder regions70–72, which are useful for other purposes such as protein
threading, remote homology detection73–75, and protein model quality assessment76,77.

Method
DeepCNF model. As shown in Fig. 2, DeepCNF consists of two modules: (a) the Conditional Random Fields
(CRF) module consisting of the top layer and the label layer, and (b) the deep convolutional neural network
(DCNN) module covering the input to the top layer. When only one hidden layer is used, this DeepCNF becomes
Conditional Neural Fields (CNF), a probabilistic graphical model described in50.

Conditional Random Field (CRF). Given a protein sequence of length L, let = (, …,)Y Y Y L1 denote its SS
where Yi is the SS type at residue i. Let = (, …,)X X X L1 denote the input feature where Xi is a column vector
representing the input feature for residue i. Using DeepCNF, we calculate the conditional probability of Y on the
input X as follows,

()∑() = Ψ(, ,) + Φ(, ,) / () ()=
Y X Y X Y X XP i i Zexp [] 1i

L

1

where Ψ(, ,)Y X i is the potential function quantifying correlation among adjacent SS types at around position i,
Φ(, ,)Y X i is the potential function modeling relationship between Yi and input features for position i, and Z(X)
is the partition function. Formally, Ψ () and Φ () are defined as follows,

∑ δ δΨ(, ,) = (=) (=) (), , +Y X i T Y a Y b 2a b a b i i 1

∑ ∑ δΦ(, ,) = (, ,) (=) (),Y X Xi U H i W Y a 3a m a m m i

where a and b represent secondary structure states, δ() is an indicator function, Hm(X, i, W) is a neural network
function for the m-th neuron at position i of the top layer, and W, U, and T are the model parameters to be
trained. Specifically, W is the parameter for the neural network, U is the parameter connecting the top layer to
the label layer, and T is for label correlation. Below see the details of the deep convolutional neural network for
Hm(X, i, W).

Deep convolutional neural network (DCNN). Figure 6 shows two adjacent layers. Let Mk be the number
of neurons for a single position at the k-th layer. Let Xi(m) be the m-th feature at the input layer for residue i and
()H mi

k denote the output value of the m-th neuron of position i at layer k. When k = 1, Hk is actually the input
feature X. Otherwise, Hk is a matrix of dimension L × Mk. Let 2 Nk + 1 be the window size at the k-th layer.
Mathematically, ()H mi

k is defined as follows.

http://www.compbio.dundee.ac.uk/jpred4/about.shtml
http://www.compbio.dundee.ac.uk/jpred4/about.shtml

www.nature.com/scientificreports/

8Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

()∑ ∑

() = (), =

() = (′) ∗ (, ′) , <

(, ,) = () = ()

+
=− ′= +

X

H m X m k

H m h H m W m m k K

H i W H m k K

if 1

[] if

if 4

i
k

i

i
k

n N

N

m

M
i n
k

n
k

m i
k

1
1k

k k

Meanwhile, h() is the activation function, either the sigmoid (i.e., 1/(1 + exp(− x))) or the tanh (i.e.,
(1 − exp(− 2x))/(1 + exp(− 2x))) function. Wn

k where (− Nk ≤ n ≤ Nk) is a 2D weight matrix for the connections
between the neurons of position i + n at layer k and the neurons of position i at layer k + 1. (, ′)W m mn

k is shared
by all the positions in the same layer, so it is position-independent. Here m′ and m index two neurons at the k-th
and (k + 1)-th layers, respectively.

Training method. Similar to CRF52, we train the model parameters by maximum-likelihood. The
log-likelihood is as follows.

∑() = Ψ(, ,) + Φ(, ,) − () ()=
Y X Y X Y X XP i i Zlog [] log 5i

L

1

To train the model parameters, we need to calculate the gradient with respect to each parameter. We calculate
the gradient first for CRF and then for DCNN. The gradient of the log-likelihood with respect to the parameters
T and U is given by,

∑ ∑δ δ δ δ∇ =

(=) (=)

−

(=) (=)

 ()ι= + (, , ,) = +

∼
,

 Y a Y b EXP Y a Y b 6YT i

L
i i P X W U T i

L
i1 1 1 1a b

∑ ∑δ δ∇ =

(=) (, ,)

−

(=) (, ,)

 ()= (, , ,) =
∼

,
X XY a H i W EXP Y a H i W 7Y XU i

L
i m P W U T i

L
i m1 1a m

where EXP is the expectation function and can be calculated efficiently using the forward-backward algorithm50,52.
As shown in Fig. 7, we can calculate the neuron error values at the k-th layer in a back-propagation mode as

follows.

∑

∑ ∑

δ δ

() = (()) ∗ () ∗ , =

() = (=) − (=)

() = (()) ∗ (′) ∗ (′,) , < ()

,

(, , ,)

=− ′= −
++

˜
˜

E m g H m E a U k K

E a Y a EXP Y a

E m g H m E m W m m k K

where

[] if

[] []

[] if 8

Y X

i
k

i
k

a i a m

i i P W U T i

i
k

i
k

n N

N

m

M
i n
k

n
k

1
1

k

k k 1

Figure 6. The feed-forward connection between two adjacent layers in the deep convolutional neural network.

Figure 7. Illustration of calculating the gradient of deep convolutional neural network from layer k + 1 to
layer k.

www.nature.com/scientificreports/

9Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

where g() is the derivative of the activation function; it is g(x) = (1 − x)x and g(x) = 1 − x2 for the sigmoid and
tanh function, respectively. Ek is the neuron error value matrix at the k-th layer, with dimension L × Mk. Ei(a) is
the error of the log-likelihood function with respect to the label at the i-th position and can be calculated by the
forward-backward algorithm. Finally, the gradient of the parameter W at the k-th layer is:

∑∇ = () ∗ (′) ()(, ′) =
+

+E m H m[] 9W m m i

L
i
k

i n
k

1
1

n
k

L2 regularization and L-BFGS. To reduce over-fitting, the log-likelihood objective function is penalized
with a L2-norm of the model parameters. Thus, our final objective function is as follows.

λ θ() − ()θ θ Y XPmax log 102

where θ is the set of model parameters and λ is the regularization factor used to avoid overfitting. Although
DeepCNF has a large number of model parameters, by setting the regularization factor large enough, we can
make the L2-norm of the model parameters small and thus, restrict the search space of the model parameter and
avoid overfitting. However, a very large regularization factor (e.g., infinity) may restrict the model parameter into
too small a search space and the resultant model may not learn enough from the training data (i.e., under-fitting).
We will determine the regularization factor by cross-validation.

Since the log-likelihood function is not convex, usually we can only solve the objective function to a local
instead of global optimum. Although a typical way to train a deep network is to do it layer-by-layer, in our imple-
mentation we train all the model parameters simultaneously. We use the L-BFGS78 to search for the optimal
model parameters, which has also been successfully used to train CRF and CNF50,52. In addition to learning the
model parameters simultaneously, we can also train them layer-by-layer in a supervised mode. Starting from
the first layer (i.e., input feature), we train the model parameter W1 by removing the third to the K-th layers but
keeping the label layer. After W1 is trained, we generate the neuron output values for the second layer and use
them as input to train the model parameter W2 by removing the fourth to the K-th layers but keeping the label
layer. We repeat this procedure until all the parameters are trained, and finally we fine-tune these parameters by
simultaneous training.

Input Features. We used the input features described in36. In particular, for each protein sequence, we ran
PSI-BLAST41 with E-value threshold 0.001 and 3 iterations to search UniRef9079 to generate the position specific
scoring matrix (PSSM). We then transform PSSM by the sigmoid function 1/(1 + exp(− x)) where x is a PSSM
entry. We also use a binary vector of 21 elements to indicate the amino acid type at position i. We use 21 since
there might be some unknown amino acids in a protein sequence. In total there are 42 input features for each
residue, 21 from PSSM and the other 21 from the primary sequence. Note that besides using PSSM generated by
3 iterations, we could also add the PSSM generated by 5 iterations into the input features.

Availability. DeepCNF is available at http://raptorx.uchicago.edu/download/.

References
1. Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93–96 (2001).
2. Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012).
3. Petsko, G. A. & Ringe, D. Protein structure and function. (New Science Press, 2004).
4. Whittle, P. J. & Blundell, T. L. Protein structure-based drug design. Annu. Rev. Biophys. Biomol. Struct. 23, 349–375 (1994).
5. Schaffhausen, J. Advances in structure-based drug design. Trends Pharmacol. Sci. 33, 223 (2012).
6. Whisstock, J. C. & Lesk, A. M. Prediction of protein function from protein sequence and structure. Q. Rev. Biophys. 36, 307–340

(2003).
7. Lee, D., Redfern, O. & Orengo, C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 995–1005

(2007).
8. Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10, 221–227 (2013).
9. Rost, B., Yachdav, G. & Liu, J. The predictprotein server. Nucleic Acids Res. 32, W321–W326 (2004).

10. Lin, K., Simossis, V. A., Taylor, W. R. & Heringa, J. A simple and fast secondary structure prediction method using hidden neural
networks. Bioinformatics 21, 152–159 (2005).

11. Yoo, P. D., Zhou, B. B. & Zomaya, A. Y. Machine learning techniques for protein secondary structure prediction: an overview and
evaluation. Current Bioinformatics 3, 74–86 (2008).

12. Faraggi, E., Zhang, T., Yang, Y., Kurgan, L. & Zhou, Y. SPINE X: improving protein secondary structure prediction by multistep
learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J. Comp. Chem. 33, 259–267 (2012).

13. Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide
chain. Proc. Natl. Acad. Sci. USA 37, 205–211 (1951).

14. Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen - bonded and geometrical
features. Biopolymers 22, 2577–2637 (1983).

15. Myers, J. K. & Oas, T. G. Preorganized secondary structure as an important determinant of fast protein folding. Nat. Struct. Mol. Biol.
8, 552–558 (2001).

16. Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nature protocols 7, 1511–1522 (2012).
17. Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).
18. Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein tertiary structures from fragments with similar local

sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997).
19. Holley, L. H. & Karplus, M. Protein secondary structure prediction with a neural network. Proc. Natl. Acad. Sci. USA 86, 152–156

(1989).
20. Qian, N. & Sejnowski, T. J. Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202,

865–884 (1988).

http://raptorx.uchicago.edu/download/

www.nature.com/scientificreports/

1 0Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

21. Kneller, D., Cohen, F. & Langridge, R. Improvements in protein secondary structure prediction by an enhanced neural network. J.
Mol. Biol. 214, 171–182 (1990).

22. Asai, K., Hayamizu, S. & Handa, K. I. Prediction of protein secondary structure by the hidden Markov model. Comput. Appl. Biosci.
9, 141–146 (1993).

23. Rost, B. & Sander, C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584–599 (1993).
24. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).
25. Schmidler, S. C., Liu, J. S. & Brutlag, D. L. Bayesian segmentation of protein secondary structure. J. Comput. Biol. 7, 233–248 (2000).
26. Pollastri, G., Przybylski, D., Rost, B. & Baldi, P. Improving the prediction of protein secondary structure in three and eight classes

using recurrent neural networks and profiles. Proteins: Struct. Funct. Bioinform. 47, 228–235 (2002).
27. Kim, H. & Park, H. Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng.

16, 553–560 (2003).
28. Ward, J. J., McGuffin, L. J., Buxton, B. F. & Jones, D. T. Secondary structure prediction with support vector machines. Bioinformatics

19, 1650–1655 (2003).
29. Chu, W., Ghahramani, Z. & Wild, D. L. A graphical model for protein secondary structure prediction. Proceedings of the Twenty-first

International Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004. ACM International Conference Proceeding Series 69,
ACM 2004, 21 (2004).

30. Guo, J., Chen, H., Sun, Z. & Lin, Y. A novel method for protein secondary structure prediction using dual - layer SVM and profiles.
Proteins: Struct. Funct. Bioinform. 54, 738–743 (2004).

31. Aydin, Z., Altunbasak, Y. & Borodovsky, M. Protein secondary structure prediction for a single-sequence using hidden semi-Markov
models. BMC Bioinformatics 7, 178 (2006).

32. Im, I. G. Predicting Protein Secondary Structure Using Markov Chain Monte-Carlo Simulation. (ProQuest, 2008).
33. Wang, Z., Zhao, F., Peng, J. & Xu, J. Protein 8 - class secondary structure prediction using conditional neural fields. Proteomics 11,

3786–3792 (2011).
34. Magnan, C. N. & Baldi, P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility

using profiles, machine learning and structural similarity. Bioinformatics 30, 2592–2597 (2014).
35. Zvelebil, M. J., Barton, G. J., Taylor, W. R. & Sternberg, M. J. Prediction of protein secondary structure and active sites using the

alignment of homologous sequences. J. Mol. Biol. 195, 957–961 (1987).
36. Zhou, J. & Troyanskaya, O. Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure

Prediction. Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014. JMLR
Proceedings 32, 745-753 (2014).

37. Baldi, P., Brunak, S., Frasconi, P., Soda, G. & Pollastri, G. Exploiting the past and the future in protein secondary structure prediction.
Bioinformatics 15, 937–946 (1999).

38. Higgins, D. G. & Sharp, P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73,
237–244 (1988).

39. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797
(2004).

40. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

41. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25,
3389–3402 (1997).

42. Maaten, L., Welling, M. & Saul, L. K. Hidden-unit conditional random fields. Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. JMLR Proceedings 15, 479-488
(2011).

43. Hua, S. & Sun, Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector
machine approach. J. Mol. Biol. 308, 397–407 (2001).

44. Spencer, M., Eickholt, J. & Cheng, J. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction. IEEE/
ACM Trans. Comput. Biol. Bioinform. 12, 103–112 (2015).

45. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).
46. Hinton, G. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771–1800 (2002).
47. Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res.,

gkv332 (2015).
48. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. & Barton, G. J. JPred: a consensus secondary structure prediction server.

Bioinformatics 14, 892–893 (1998).
49. Zemla, A., Venclovas, Č., Fidelis, K. & Rost, B. A modified definition of Sov, a segment - based measure for protein secondary

structure prediction assessment. Proteins: Struct. Funct. Bioinform. 34, 220–223 (1999).
50. Peng, J., Bo, L. & Xu, J. Conditional neural fields. Advances in Neural Information Processing Systems 22: 23rd Annual Conference on

Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia,
Canada. Curran Associates, Inc. 2009, 1419-1427 (2009).

51. Lee, H., Grosse, R., Ranganath, R. & Ng, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical
representations. Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec,
Canada, June 14-18, 2009. ACM International Conference Proceeding Series 382, ACM 2009, 609-616 (2009).

52. Lafferty, J., McCallum, A. & Pereira, F. C. Conditional random fields: Probabilistic models for segmenting and labeling sequence
data. Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), Williams College, Williamstown, MA,
USA, June 28 - July 1, 2001. Morgan Kaufmann 2001 (2001).

53. Wang, G. & Dunbrack, R. L. PISCES: a protein sequence culling server. Bioinformatics 19, 1589–1591 (2003).
54. Kryshtafovych, A. et al. Assessment of the assessment: evaluation of the model quality estimates in CASP10. Proteins: Struct. Funct.

Bioinform. 82, 112–126 (2014).
55. Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment of methods of protein structure

prediction (CASP)—round x. Proteins: Struct. Funct. Bioinform. 82, 1–6 (2014).
56. Sillitoe, I. et al. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 43, D376–

D381 (2015).
57. Andreeva, A., Howorth, D., Chothia, C., Kulesha, E. & Murzin, A. G. SCOP2 prototype: a new approach to protein structure mining.

Nucleic Acids Res. 42, D310–D314 (2014).
58. Andersen, C. A., Bohr, H. & Brunak, S. Protein secondary structure: category assignment and predictability. FEBS Lett. 507, 6–10

(2001).
59. Penel, S., Morrison, R. G., Dobson, P. D., Mortishire - Smith, R. J. & Doig, A. J. Length preferences and periodicity in β - strands.

Antiparallel edge β - sheets are more likely to finish in non - hydrogen bonded rings. Protein Eng. 16, 957–961 (2003).
60. Sha, F. & Pereira, F. Shallow parsing with conditional random fields. HLT-NAACL 2003, Human Language Technology Conference of

the North American Chapter of the Association for Computational Linguistics, May 27 - June 1, Edmonton, Canada, 134-141 (2003).

www.nature.com/scientificreports/

1 1Scientific RepoRts | 6:18962 | DOI: 10.1038/srep18962

61. Wang, S. B., Quattoni, A., Morency, L., Demirdjian, D. & Darrell, T. Hidden conditional random fields for gesture recognition. 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), 17-22 June 2006, New York, NY, USA.
IEEE Computer Society 2006 2, 1521-1527 (2006).

62. Taskar, B., Guestrin, C. & Koller, D. Max-margin Markov networks. Advances in Neural Information Processing Systems 16 [Neural
Information Processing Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada]. MIT Press
2004 16, 25 (2004).

63. Joo, K., Lee, S. J. & Lee, J. Sann: Solvent accessibility prediction of proteins by nearest neighbor method. Proteins: Struct. Funct.
Bioinform. 80, 1791–1797 (2012).

64. Faraggi, E., Xue, B. & Zhou, Y. Improving the prediction accuracy of residue solvent accessibility and real - value backbone torsion
angles of proteins by guided - learning through a two - layer neural network. Proteins: Struct. Funct. Bioinform. 74, 847–856 (2009).

65. Kinjo, A. R., Horimoto, K. & Nishikawa, K. Predicting absolute contact numbers of native protein structure from amino acid
sequence. Proteins: Struct. Funct. Bioinform. 58, 158–165 (2005).

66. Wang, S. & Zheng, W.-M. CLePAPS: fast pair alignment of protein structures based on conformational letters. J. Bioinf. Comput. Biol.
6, 347–366 (2008).

67. Wang, S. & Zheng, W.-M. Fast multiple alignment of protein structures using conformational letter blocks. Open Bioinformatics
Journal 3, 69–83 (2009).

68. Wang, S., Ma, J., Peng, J. & Xu, J. Protein structure alignment beyond spatial proximity. Scientific reports 3 (2013).
69. Zheng, W.-M. The use of a conformational alphabet for fast alignment of protein structures. Bioinformatics Research and

Applications, 331–342 (2008).
70. Cheng, J., Sweredoski, M. J. & Baldi, P. Accurate prediction of protein disordered regions by mining protein structure data. Data

Min. Knowl. Disc. 11, 213–222 (2005).
71. Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F. & Jones, D. T. The DISOPRED server for the prediction of protein disorder.

Bioinformatics 20, 2138–2139 (2004).
72. Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of

proteins based on estimated energy content. Bioinformatics 21, 3433–3434 (2005).
73. Ma, J., Peng, J., Wang, S. & Xu, J. A conditional neural fields model for protein threading. Bioinformatics 28, i59–i66 (2012).
74. Ma, J., Wang, S., Zhao, F. & Xu, J. Protein threading using context-specific alignment potential. Bioinformatics 29, i257–i265 (2013).
75. Ma, J., Wang, S., Wang, Z. & Xu, J. MRFalign: protein homology detection through alignment of Markov random fields. PLoS Comp.

Biol. 10, e1003500 (2014).
76. Benkert, P., Künzli, M. & Schwede, T. QMEAN server for protein model quality estimation. Nucleic Acids Res., gkp322 (2009).
77. Zhao, F. & Xu, J. A position-specific distance-dependent statistical potential for protein structure and functional study. Structure 20,

1118–1126 (2012).
78. Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Mathematical programming 45, 503–528

(1989).
79. Consortium, U. The universal protein resource (UniProt). Nucleic Acids Res. 36, D190–D195 (2008).

Acknowledgements
National Institutes of Health R01GM0897532 to J.X. and National Science Foundation DBI-0960390 to J.X. The
authors are also grateful to the computing power provided by the UChicago Beagle and RCC allocations.

Author Contributions
S.W. conceived, designed and implemented the algorithm. J.P. and J.M. helped design the algorithm. S.W. and J.X.
designed the experiments, analyzed the data and wrote the manuscript. All authors read and approved the final
manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wang, S. et al. Protein Secondary Structure Prediction Using Deep Convolutional
Neural Fields. Sci. Rep. 6, 18962; doi: 10.1038/srep18962 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images
or other third party material in this article are included in the article’s Creative Commons license,

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields
	Introduction
	Results
	Dataset
	Programs to compare
	Performance metric
	Determining the regularization factor by cross validation
	Determining the DeepCNF architecture
	Overall performances
	Recall and precision
	Prediction accuracy with respect to homologous information
	Where is the improvement from?

	Conclusion and Future Work
	Method
	DeepCNF model
	Conditional Random Field (CRF)
	Deep convolutional neural network (DCNN)
	Training method
	L2 regularization and L-BFGS
	Input Features
	Availability

	Additional Information
	Acknowledgements
	References

