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We investigated the correlation between the Shannon 
information entropy, ‘sequence entropy’, with respect to the 
local flexibility of native globular proteins as described by 
inverse packing density. These are determined at each re
sidue position for a total set of 130 query proteins, where 
sequence entropies are calculated from each set of aligned 
residues. For the accompanying aggregate set of 130 align
ments, a strong linear correlation is observed between the 
calculated sequence entropy and the corresponding inverse 
packing density determined at an associated residue posi
tion. This region of linearity spans the range of Ca packing 
densities from 12 to 25 amino acids within a sphere of 
9 Å radius. Three different hydrophobicity scales all mimic 
the behavior of the sequence entropies. This confirms the 
idea that the ability to accommodate mutations is strongly 
dependent on the available space and on the propensity for 
each amino acid type to be buried. Future applications of 
these types of methods may prove useful in identifying both 
core and flexible residues within a protein. 
Keywords: hydrophobicity/sequence entropy/sequence– 
structure relationship/sequence variability 

Introduction 

General studies of the geometries within proteins have a 
long history and have lead to important insights into protein 
structure (Chothia et al., 1981; Chothia and Finkelstein, 1990; 
Maritan et al., 2000; Banavar et al., 2002). Specific studies of 
the packing geometries have indicated, for coarse-grained 
structures with one point per residue, that amino acids pack 
in local clusters with the same orientations as close-packed 
spheres (Bagci et al., 2002, 2003). At the same time, cavities 
within protein structures are known to be important for func
tion (Doyle et al., 1998; Sigler et al., 1998; Zhang et al., 2003). 

Globular proteins are compact and hence densely packed 
(Richards, 1974), even to the extent that their interior is fre
quently viewed as being solid-like (Hermans and Scheraga, 
1961; Richards, 1997); however, there are still numerous 
voids and cavities in protein interiors (Liang and Dill, 2001). 
The importance of tight packing is widely acknowledged and 
is thought to be important for protein stability (Ericksson et al., 
1992; Privalov, 1996), for nucleation of protein folding 
(Ptitsyn, 1998; Ptitsyn and Ting, 1999; Ting and Jernigan, 2002) 

and for the design of novel proteins (Dahiyat and Mayo, 1997). 
In conjunction with nucleation, it has previously been posited 
that the conservation of amino acid residues through evolution 
may include essential tightly packed sites (Mirny et al., 1998; 
Ptitsyn, 1998; Ptitsyn and Ting, 1999; Ting and Jernigan, 
2002). 

However, the exact relationship between sequence and 
structure is only partially understood (Jones, 2000; Baker and 
Sali, 2001), which is the subject of this paper. Whereas protein 
sequence is easily determined, 3-D structure is significantly 
more difficult. Employing sequence alignments in conjunction 
with molecular modeling has proven to be among the most 
successful computational methodologies for protein structure 
prediction (Bryant and Lawrence, 1993; Marti-Renom et al., 
2000). One key assumption in homology-based modeling is 
that conserved regions share structural similarities, but 
the structural basis of this connection has not been clearly 
determined. 

Multiple alignments of regions of secondary structure may 
be useful in the identification of key hydrophobic residues when 
utilizing hydrophobic cluster analysis (Poupon and Mornon, 
1999; Gross et al., 2000). Determining patterns of variability 
within amino acid sequence by using information theory has 
also proven useful in identifying unique protein secondary 
structures (Pilpel and Lancet, 1999). Large-scale exploration 
of sequence space has shown clustering of sequence entropy 
values corresponding to a particular fold (Larson et al., 2002). 
The application of Shannon entropy to nucleic acid sequence 
variability has proven to be a useful tool in identifying control 
regions in DNA (Schneider et al., 1986) and has been extended 
as one of several methods of scoring amino acid conservation in 
proteins (Zou and Saven, 2000; Valdar, 2002). 

Shannon entropies for protein sequence have been shown 
to correlate with entropies calculated from local physical para
meters, including backbone geometry (Koehl and Levitt, 2002). 
Interestingly, conventional generalized chain statistics appear 
to overweigh significantly the magnitude of the entropic pen
alty associated with loop closure in proteins and RNA (Lustig 
et al., 1998; Scalley-Kim et al., 2003). It is clear that continued 
exploration of the connections between entropy, structure and 
sequence is critical to a better understanding of protein stability 
and function. 

Although there have been some demonstrations of connec
tions between sequence conservation and structural properties 
(Demirel et al., 1998), there are no definitive studies on this 
subject. Establishing direct connections between sequences 
and structural features has proven difficult, hence the limited 
number of successes at protein design and the limited under
standing of mutagenesis. Recent applications of sequence 
variability to structure predictions have enhanced results, so 
empirical measures of sequence variability are useful by them
selves, even if their full implications are not well understood in 
terms of structural features. 
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While investigations of packing of protein atoms would 
likely be informative, we chose here to investigate coarse-
grained packing among points each representing a neighboring 
amino acid. The results we will see are then more general, even 
if not so directly useful in predictions related to protein design. 

Here we generate a large set of aligned protein sequences 
generated from a diverse sample of 130 protein sequences. 
Sequence entropies for individual residues are calculated. They 
are then compared with the corresponding local flexibility as 
measured by the extent of Ca packing calculated from the 
corresponding structures. Similar comparisons are also made 
between the residue hydrophobicity and the corresponding 
packing. 

Methods 

A diverse, well-characterized set of 130 protein sequences 
(Table I) was compiled from the Protein Data Bank (2002). 
Redundant proteins were removed. Sequences are utilized from 
a wide variety of proteins including multi-chain proteins, 
where 18% involve multi-chain proteins and the remaining 107 
sequences are single-chain proteins. Aligned sequences are 
generated against each of these protein sequences, with 
BLASTP (Altschul et al., 1997) searching GenBank as avail
able from the National Center of Biotechnology Information 
(2002). Alignments are not included if bit scores fall below 100 
and they must be at a level >40% of the best score. Calcula
tions with a representative set of proteins showed 40% of the 
BLASTP bit score as a reasonable threshold with respect to cal
culations of sequence entropy and their dependence on density. 

Also at least 10 sequences are required. A maximum number 
of 100 alignments is typically allowed. The result generates a 
representative distribution of 7143 aligned protein sequences. 
The average and median number of alignments per query 
and the overall range of numbers of alignments are 55, 55 and 
10–100, respectively. The frequency distribution of the 
BLASTP bit scores for all 130 sets of alignments is consistent 
with the right-skewed (i.e. positive skew) distribution for a 
randomized set of BLAST scores (Altschul et al., 1994). 
Here the mean, median and the overall range of BLASTP 
bit scores for all 7143 alignments are 408, 354 and 100– 
1793, respectively. 

Table I. List of 130 proteins 

1a1ia 1agm 1aqha 1bg3 1crca,b 1eeh 3clab 5acn 
1a1sab 1agx 1atpa 1biab 1crm 1hgua,b 3cna 5cha 
1a32 1ahab 1av5 1bita 1crz 1lz1a 3est 5cpa 
1a3cb 1ahn 1av6 1blz 1csr 1omdb 3gbp 5cpvb 

1a3s 1ai2a 1av7a 1bn6b 1d6m 1rbpb 3grs 5cts 
1a48 1ak2b 1aw5b 1bo6 1daj 1rhdb 3pfk 5ldha 

1a59b 1ako 1aw9b 1boh 1dcsb 1ton 3pgka 5rubb 

1a5zb 1al8 1aye 1bsia 1dhs 2acta 3pgm 6ldha 

1a6fb 1aln 1ayl 1bt3 1dht 2cts 3psga 6xia 
1a6q 1alcb 1ayx 1bula 1din 2lbp 3rn3a,b 7apia 

1aat 1amn 1azia,b 1bxq 1dmr 2ldxa 3rp2 7cata 

1ab4a 1amp 1ba3b 1bytb 1e1k 2liv 4ape 8adha 

1acb 1an9 1bc2b 1cb0 1e3h 2prk 4dfr 8atc 
1add 1angb 1bf2 1cex 1e3q 2rn2 4mdha 8dfr 
1adia 1ao5 1bfd 1cjx 1e5ma 2taa 4pepa 9papa 

1ae4 1aoba 1bg0 1ck6 1ebv 3blm 4tnca,b 9wga 
1af3b 1aq0 

aIndicates default maximum of 100 alignments.
 
bProteins with P values in the range 0.001–0.15 (all others P < 0.001).
 

For protein sequences an expression for sequence entropy Sk 

at amino acid position k is expressed as 
X

Sk ¼ � Pjk ln Pjk ð1Þ 
j¼1;20 

where the probability Pjk at some amino acid sequence position 
k is derived from the frequency fjk for an amino acid type j at 
sequence position k for all of the aligned residues. Although 
gaps could have been assigned as an additional amino acid 
type, we chose to ignore them here. In order to compare against 
the random case, we subtract the following term (Gerstein and 
Altman, 1995) from Equation 1: 

X
SR ¼ � Pj ln Pj ð2Þk 

j¼1;20 

where Pj is the probability of amino acid type j over all 
alignments. 

For each residue from the 130 sample protein sequences, Ca 

packing densities are calculated using their associated atomic 
coordinates. An optimal radius of Ca packing was determined 
for 9 Å around a given Ca residue position. In limited pre
liminary investigations this value was found to be best; greater 
scatter is observed for example in the single average entropies 
for radii of 10 and 11 Å . Smaller values omit some important 
cases in the distribution. Here we investigate the extent to 
which the inverse of the local packing density, as a measure 
of local flexibility (Bahar et al., 1997), is correlated with 
sequence variability. 

Results 

Calculated sequence entropy (Equation 1) for each protein is 
compared against the inverse Ca packing density (see Table I 
for summary). Typically, the probability P that the observed 
data could come from a randomized population (Bevington, 
1969) for individual proteins falls below 0.001. A selection of 
correlation plots are shown in Figure 1A, B and C for pepsino
gen (3psg, 365 aligned residues), dihydrofolate reductase (4dfr, 
158 aligned residues) and oncomodulin (1omd, 107 aligned 
residues), respectively. The respective slopes are 13.020, 
6.064 and 4.328, with respective correlation coefficients 
0.447, 0.274 and 0.141. Data were collected in bins for each 

˚integral number of residues falling within a sphere of per 9 A
radius. For most single protein correlation plots the slopes 
remain effectively unchanged upon averaging. 

In total, there are 41 543 query residues following the 
removal of the 89 extreme outlying values indicated outside 
the two arrows shown in Figure 2. The mean and median 
frequency values per density interval of one Ca per 9 Å radius 
are unchanged at 14.6 and 15. The overall (i.e. for all 130 
alignment sets) sequence entropy versus inverse Ca packing 
density correlation plots are shown in Figure 3A. Here, a single 
average is performed by summing individual residue entropies 
for a particular Ca packing density interval from all 130 sets of 
protein alignments. ‘Double’ averaging entails first averaging 
the entropy per density interval for individual proteins, before 
averaging over the full set of proteins. Except for a significant 
reduction in standard deviations with the ‘double’ averaging 
procedure, the two types of averaged sequence entropy are 
essentially identical. 

There are two major regions corresponding to high and 
low densities observable in the correlation plots of sequence 
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Fig. 1. Correlation between sequence entropy and inverse of packing density 
for a range of proteins. The inverse of packing density (abscissa) is calculated 
from the sample protein’s atomic coordinates, determining the number of 
residue’s Ca atoms within a 9 Å radius. Sequence entropy is calculated from 
a sequence alignment set generated by BLASTP from the query sequence. 
Average entropy (closed squares) is also determined by averaging the 
sequence entropy for all sequence positions falling within an interval of 
packing density. Error bars corresponding to standard deviation calculated 
from the data and the linear fit for all points (line) are shown. (A) For 
pepsinogen (3psg: 365 aligned residues), the straight-line fit for all data is y = 
13.020x – 0.09 with correlation coefficient 0.447 and P < 0.001. For averaged 
data y = 12.070x – 0.09 with correlation coefficient 0.898 and P < 0.001. (B) For 
dihydrofolate reductase (4dfr: 158 aligned residues), the straight-line fit for all 
data is y = 6.064x + 0.34 with correlation coefficient 0.274 and P < 0.001. For 
averaged data y = 7.350x + 0.22 with correlation coefficient 0.796 and P < 0.001. 
(C) For oncomodulin (1omd: 107 aligned residues), the straight-line fit for all 
data is y = 4.328x + 0.43 with correlation coefficient 0.141 and P < 0.15. For 
averaged data y = 1.624x + 0.59 with correlation coefficient 0.149 and P < 0.15. 

Fig. 2. Frequency distribution of the number of aligned residues as a function 
of Ca density within a radius of 9 Å . The total original 41 632 query protein 
residues for the set of 130 proteins have a mean packing density of 14.6, a median 
of 15 and SD 4.056. These values remain effectively unchanged for the 41 543 
residues remaining following the removal of outlying values to the left of the 
first arrow and to the right of the second. 

entropy versus inverse packing density in Figure 3A. Note that 
a similar overall pattern of single averaged sequence entropy 
was observed when the effects of randomness were accounted 
for by subtracting the term shown in Equation 2. Region I, with 
a steep slope, corresponds to the higher packing densities of 
25 to 12 Ca atoms (inverse density from 0.040 to 0.083), where 
an increase in sequence entropy is clearly proportional to the 
inverse density. Region II to the right still includes a significant 
number of residues (10 173) and is found to be nearly constant 
in calculated sequence entropy, involving packing densities 
ranging from 11 to 6 (representing an upper bound inverse 
density of 0.17). It is logical that beyond a certain packing 
density, changes in sequence entropy remain uncorrelated. 

Region I, in the overall correlation plots (Figure 3B), 
involves 74.9% of all the sample protein residues. Here the 
single averaged and ‘double’ averaged sequence entropies 
are shown to be strongly linearly correlated with the inverse 
packing density. The straight-line fit for the single averaged 
sequence entropy versus inverse packing density is y = 
12.350x – 0.20; the correlation coefficient is 0.997; P < 0.001. 
The straight-line fit involving the ‘double’ averaged entropy 
is effectively identical. Region II, accounting for an additional 
24.4% of the sample protein residues, indicates for strongly 
hydrophobic residue types (Poupon and Mornon, 1999) an 
apparent limiting fraction (Figure 3A) of about 10%. This 
suggests a threshold for the number of hydrophobic residues 
embedded in regions that are probably accessible to water. 

Shown in Figure 4A is a superposition of normalized 
averaged sample protein hydrophobicities and single aver
aged sequence entropy, as a function of inverse packing den
sity. Using three different scales (Hopp and Woods, 1981; 
Engleman et al., 1986; Sharp et al., 1991), hydropbobicity 
is calculated for every query protein residue that is part of an 
alignment. For Hopp and Woods (1981) calculations by Levitt 
(1976) were also included. With each scale, a normalized 
hydrophobicity is calculated for the set of all residues within 
a density interval. Then those three normalized hydrophobicity 
plots (see Figure 4B) are averaged and renormalized again. 
Superimposed is the smooth curve normalized representation 
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A 

B 

Fig. 3. Correlation plots of overall average entropy for the set 130 protein 
with inverse packing density. (A) Inverse packing density (ordinate) is 
calculated from Ca packing density noted in Figure 2 and overall sequence 
entropy (ordinate) is calculated in three ways: single averaged (open 
diamonds) and corrected for randomness as noted on the right ordinate (open 
circles) and ‘double’ averaged (open triangles). Single averaged entropy is 
determined by averaging sequence entropy for each associated residue 
position within its interval of inverse of packing density (abscissa). The 
estimated standard deviation with and without corrections for randomness is 
0.5. ‘Double’ averaged sequence entropy is calculated by first averaging each 
protein’s sequence entropy for a particular density interval and subsequently 
averaging over all proteins. The estimated standard deviation is 0.3. (B) 
Linear regression of the selected Region I with 31 169 averaged residue 
entropy values (ordinate) out of the total of 41 632 aligned query residues. 
These averaged sequence entropy values correspond to the region of inverse 
packing density (abscissa) between 0.040 and 0.083 (or 25 to 12 Ca atoms within 
a 9 Å radius). Overall single averaged entropy (open squares) is fitted with a 
straight-line y = 12.350x – 0.20 with correlation coefficient 0.997 and P < 
0.001. The ‘double’ averaged entropy (open triangle) straight-line fit is y = 
12.658x – 0.22 with correlation coefficient 0.997 and P < 0.001. Note that 
between 0.040 and 0.083 inverse packing density, the single averaged 
entropy corrected for randomness has a straight-line fit y = 12.409x + 3.05 
with correlation coefficient 0.998 and P < 0.001. 

(determined from original values in Figure 3A) of values for 
sequence entropy. Clearly, all three sets of hydrophobicity 
values, calculated for each scale (Figure 4B), resemble the 
corresponding sequence entropy values. 

Discussion 

Flexibility and sequence entropy 
Previously a strong correlation has been reported between 
computed displacements based on elastic networks reflecting 

Fig. 4. Comparison of average hydrophobicity per residue and overall single-
averaged sequence entropy with respect to inverse packing density. Ca 

Residue hydrophobicity is calculated for each query protein, weighting the 
aligned residue type with the different scales Hopp and Woods (1981), 
Englemann et al. (1986) and Sharp et al. (1991). The average 
hydrophobicity for each scale is calculated by averaging the residue 
hydrophobicities for all aligned residues within an interval of packing 
density. (A) Each of three sets of hydrophobicities corresponding to the 
different scales are normalized and then their average is renormalized 
(dotted line). The single-averaged sequence entropy from Figure 3A is 
normalized (solid line) and also plotted against inverse density. (B) Inset 
shows the corresponding three normalized sets of hydrophobicities plotted 
against inverse density, from Sharp et al. (diamonds), Hopp and Woods 
(inverted triangles) and Engelman et al. (squares). 

residue packing (Bahar et al., 1998) and measured hydrogen 
exchange (HX). The freedom to move a residue is entropic 
in character. Regions of high packing density resist hydrogen 
exchange, because of both stability and inaccessibility. Here, 
we have gone further to relate our calculated inverse Ca pack
ing density from X-ray structures to the sequence variabilities. 
Strong linear correlations are observed between sequence 
entropy and the inverse packing density, except at the highest 
and low ranges of densities. This provides a quantitative rela
tionship between these two quantities and an important struc
tural measure for determining likely sites for mutagenesis. 

The selection of sequences to be included in sequence ana
lysis is a difficult problem and results can depend strongly on 
the selection procedure. Ptitsyn (1998) advocated selection of 
conserved clusters of sequence sets determined by including 
only distantly related species. However, here we simply used 
the sequence matches from GenBank without any filtering. 
Despite this, the overall trends are extremely clear, although 
to a limited extent within individual proteins. 

In addition, the correlation between sequence variability 
and motility is consistent with a similar pattern that we noted 
with respect to peptide binding to RNA (Hsieh et al., 2002). 
Enhanced motility at a particular residue position is associated 
with the ability of local structure to accommodate mutation. 
Such behavior can more broadly be related to sequence varia
bility in a folded protein. The ability to accommodate muta
tions corresponds to allowing a range of positions, including 
possible contacts. 

Hydrophobicity and sequence variability 
The strong correlation between calculated sequence entropy 
and the hydrophobicity shown in Figure 4 is remarkable. 
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For each protein, its sequence entropy is calculated at each 
sequence position. This simply reflects the sequence variability 
at that position. The hydrophobicity for each residue position of 
each original single sequence is averaged for each bin over just 
the 130 sample proteins. It is important to remember that here 
the sequence entropy and the hydrophobicity calculations are 
both averaged over all residues within each density bin. In 
addition, the three sets of hydrophobicity scales (Hopp and 
Woods, 1981; Engleman et al., 1986; Sharp et al., 1991) are 
diverse in their origins and include experimental optimization 
and/or validation based on a variety of systems. Calculations by 
Levitt (1976) were also included for use by Hopp and Woods 
(1981). The lack of any significant differences among the three 
sets of normalized hydrophobicity values (Figure 4B) as a 
function of inverse density suggests that the relative differ
ences among individual amino acids within a hydrophobicity 
scale are largely compensated among other values within that 
set. Clearly, correlations between the sequence variabilities 
reflected in the sequence entropies and the corresponding 
hydrophobicities are consistent with the average behavior 
for residues with a given packing density. Still, this observed 
correlation between average sequence entropy and hydro
phobicity is remarkable, but both are reflecting fundamental 
properties relating to the extent of burial. The critical impor
tance of hydrophobicity for folding of model protein chains 
(Hinds and Levitt, 1994; Dill et al., 1995) is well known. This 
is consistent with the fact that key hydrophobic residues can be 
described as buried or tightly packed (Ptitsyn, 1998; Ting and 
Jernigan, 2002). 

Packing and the resulting interactions associated with hydro
phobicity are not a simple matter of just accounting for pairs 
of contacts (Dima and Thirumalai, 2004). In packing multiple 
contacts are usual. Our calculation of Ca packing density repre
sents a coarse-grained counting of such contacts, but is a less 
detailed consideration. We show that the local flexibility is 
closely related to the inverse of the coarse-grained packing 
density. 

Here, sequence variability as measured by sequence entropy 
is correlated with the inverse of the residue packing. The pro
pensity for packing of a particular amino acid type reflects its 
hydrophobicity and side chain entropy (Pickett and Sternberg, 
1993). Notably, average contact energies for the various amino 
acid pairs also correlate well with existing hydrophobicity 
scales (Young et al., 1994). This suggests that in principle 
these are strongly entropic in nature. It might be possible to 
calculate more directly configurational entropies in lieu of the 
comparable inverse density measure of relative flexibility, by 
using full atomic representation. Such calculations would 
depend upon a residue’s environment in more realistic ways 
than given by simple residue density. This might also reduce 
the range for individual residue entropies calculated from 
sequence variability within a density bin. 

Progress in this direction would assist with protein design 
a closely related problem (Dahiyat and Mayo, 1997; Li et al., 
1998; Buchler and Goldstein, 1999; Shih et al., 2000; Tiani 
et al., 2001; Koehl and Levitt, 2002; Larson et al., 2002; 
England et al., 2003). Further studies in the direction of 
the present work could lead to better predictions of sustainable 
sequence substitutions. However, from the present results it 
appears that every measure of packing density for single resi
dues of a single protein does not necessarily correlate well 
with the sequence conservation at that site. Further efforts 

are clearly required to achieve this goal; however, the present 
results begin to point out a way for achieving such a goal. 

Conclusion 
Here packing at the residue level for coarse-grained structures 
has been shown to exhibit a strong connection to sequence 
conservation, by the practice of averaging over large numbers 
of residues. Why is this averaging necessary? One possible 
explanation is that the large number of combinations of ways 
in which a residue’s atoms can be packed together requires 
averaging over large numbers of occurrences, in order to obtain 
a meaningful single representation of all these combinations. 
It is also possible that residue size may affect the results, so that 
averaging over many occurrences will fully account for all of 
the various types of neighboring residues including individual 
side chain conformations. 

Two distinct behaviors are identified for different inverse 
packing density regions (Figures 3 and 4). In the first region, 
74.9% of sequence positions exhibit a linear dependence of 
sequence entropy over the inverse Ca packing density range 
0.040–0.083, whereas in the second region, having inverse 
packing density >0.083, another 24.4% of query positions typi
cally indicate a nearly constant sequence entropy. This satura
tion suggests that up to a certain minimum number of residues 
are allowed in low-density regions. Moreover, a certain frac
tion of those residues are hydrophobic and would appear to be 
accessible to water, consistent with a considerable lack of 
restrictions on the types of residues that can be accommodated. 
All of this suggests that for most residue positions the ability to 
accommodate sequence substitutions as measured by sequence 
entropy is inversely correlated with their extent of their pack
ing. Also, on average for a particular amino acid type, hydro
phobicity is correlated with the degree of residue packing. 
Deeper understanding of the connections between structural 
properties and sequence entropy awaits further study. How
ever, the future development of such sequence entropy meth
ods for the identification of core as well as flexible residues 
appears promising. 
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