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Abstract Proteins persist longer in the fossil record than DNA, but the longevity, survival

mechanisms and substrates remain contested. Here, we demonstrate the role of mineral binding in

preserving the protein sequence in ostrich (Struthionidae) eggshell, including from the
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palaeontological sites of Laetoli (3.8 Ma) and Olduvai Gorge (1.3 Ma) in Tanzania. By tracking

protein diagenesis back in time we find consistent patterns of preservation, demonstrating

authenticity of the surviving sequences. Molecular dynamics simulations of struthiocalcin-1 and -2,

the dominant proteins within the eggshell, reveal that distinct domains bind to the mineral surface.

It is the domain with the strongest calculated binding energy to the calcite surface that is

selectively preserved. Thermal age calculations demonstrate that the Laetoli and Olduvai peptides

are 50 times older than any previously authenticated sequence (equivalent to ~16 Ma at a constant

10˚C).
DOI: 10.7554/eLife.17092.001

Introduction

Unknown mechanisms of survival of proteins into deep time
Ancient protein and DNA sequences are revolutionising our understanding of the past, providing

information on phylogeny, migration, evolution, domestication and extinction (Hagelberg et al.,

2015; Cappellini et al., 2014). However, the absence of data from warm regions and deep time

(Wade, 2015) highlights the fragility of these biomolecules and has so far hampered our ability to

answer fundamental evolutionary questions, such as resolving the phylogenetic tree of the genus

Homo in Africa. The survival of proteins and DNA in tropical environments and in fossils that go

back a few million years (Ma) is deemed extremely unlikely and therefore the impact of the ’biomo-

lecular revolution’ in palaeontology and palaeoanthropology has so far been relatively limited.

Claims for exceptional preservation in the fossil record have been put forward in a number of

studies (Towe and Urbanek, 1972; Bertazzo et al., 2015; Schweitzer et al., 2013; Cleland et al.,

2015), but these have not been satisfactorily substantiated. Morphological (Towe and Urbanek,

1972; Bertazzo et al., 2015), immunological (Schweitzer et al., 2013) and spectroscopic

(Bertazzo et al., 2015) evidence of preserved tissues in dinosaurs and other fossils seems to be

inconsistent with the observed levels of hydrolysis, dehydration and racemization

(Penkman et al., 2013) in intracrystalline proteins from the fossil mollusc shell (Sykes et al., 1995)

and eggshell (Brooks et al., 1990). The mechanisms that might allow preservation over palaeonto-

logical and geological time scales are also poorly understood: crosslinking, organo-metallic complex-

ing, including with iron, compression/confinement (Logan et al., 1991; Schweitzer et al., 2014),

and mineral stabilization (Collins et al., 2000) have all been proposed as mechanisms that enhance

the survival of ancient biomolecules.

The role of temperature in accelerating diagenesis
A confounding factor when evaluating the authenticity and antiquity of biomolecular sequences is

the geographic area of provenance of the fossils and therefore the combined effect of time and tem-

perature on the extent of degradation. Here we have used kinetic estimates of degradation rates of

DNA (Allentoft et al., 2012), collagen in bones (Buckley et al., 2008), and intracrystalline amino

acids (Crisp et al., 2013) to normalize their numerical (chronological) ages to thermal age (Wehmil-

ler, 1977) (Figure 1, Figure 1—source data 1, Appendix 1). Thermal age is a measure which ena-

bles simple comparison between ancient biomolecular targets by normalising them to an equivalent

(thermal) age, allowing all samples to be treated as having experienced a constant temperature of

10˚C. Thus samples from cooler sites, which experience slower rates of chemical reaction, will have

thermal ages younger than their geochronological age, whilst samples from warmer sites will be

thermally ‘older’. Various factors can affect the effective diagenetic temperature experienced by a

sample (and therefore impact on its thermal age), from burial depth to seasonal and interglacial /

glacial cycles (Wehmiller, 1977; Huang et al., 2000; Eischeid et al., 1995). The greatest absolute

ages for recovered DNA (Orlando et al., 2013) (0.7 Ma = 0.08 Ma@10˚C) and for protein (Rybczyn-

ski, 2013) (3.5 Ma = 0.3 Ma@10˚C) sequences are from high latitudes and their survival is consistent

with predictions from the kinetic data. Younger samples from more temperate latitudes will have

greater thermal ages, yet the oldest of these which has preserved protein (Weybourne Crag: 1.5 Ma

= 0.2 Ma@10˚C) has a thermal age similar to that of Middle Pleistocene DNA at Sima de los Huesos

(0.4 Ma = 0.2 Ma@10˚C) (Meyer et al., 2014).
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Aim of the study: understanding protein survival in ostrich eggshell
from hot environments
Here we explore the impact of strong protein binding in biominerals and its effect on sequence sur-

vival, by targeting ancient ostrich eggshell (Struthio camelus; Struthioniformes), which is abundant in

archaeological and palaeontological sites throughout Africa (Materials and methods). Our aim was

to elucidate a mechanism of preservation and to set out a rigorous methodology for the authentica-

tion of ancient protein sequences. We isolated and characterised the intracrystalline proteins (Fig-

ure 2, Figure 2—figure supplement 1, Appendix 2) and tracked their diagenesis back in time to 3.8

Ma ago. Using a systematic approach, we validated the sequences from each of the eggshell sam-

ples analysed using amino acid racemization (AAR), organic volatile compounds, ancient DNA and

proteomic analyses. All our results are supported by in-depth analysis of patterns of diagenesis in

both samples and blanks as well as the evaluation of potential contamination and carry-over.

Results

Fossil eggshell from Africa, 0–3.8 Ma: provenance and thermal age
calculations
Twenty-four eggshell samples were sourced from well-dated sites in South Africa and Tanzania (Fig-

ure 1, Table 1): Elands Bay Cave (0.3–16 ka BP, Table 3), Pinnacle Point Caves PP 5/6 and PP 30

(50–80 ka BP and ~150 ka BP, respectively, Table 4), Wonderwerk Cave (1 Ma, Table 5), Olduvai

Gorge (1.34 Ma, Table 6) and Laetoli (2.6–4.3 Ma, Table 7). The age and stratigraphy of the oldest

fossils, from Laetoli, is well-constrained despite the eggshell fragments being surface finds: their

morphology shows no evidence of long-distance transport and the fossil-bearing horizons are well

identified within the stratigraphy. The absence of lava flows in stratigraphic proximity also excludes

eLife digest The pattern of chemical reactions that break down the molecules that make our

bodies is still fairly mysterious. Archaeologists and geologists hope that dead organisms (or artefacts

made from them) might not decay entirely, leaving behind clues to their lives. We know that some

molecules are more resistant than others; for example, fats are tough and survive for a long time

while DNA is degraded very rapidly. Proteins, which are made of chains of smaller molecules called

amino acids, are usually sturdier than DNA. Since the amino acid sequence of a protein reflects the

DNA sequence that encodes it, proteins in fossils can help researchers to reconstruct how extinct

organisms are related in cases where DNA cannot be retrieved.

Time, temperature, burial environment and the chemistry of the fossil all influence how quickly a

protein decays. However, it is not clear what mechanisms slow down decay so that full protein

sequences can be preserved and identified after millions of years. As a result, it is difficult to know

where to look for these ancient sequences.

In the womb of ostriches, several proteins are responsible for assembling the minerals that make

up the ostrich eggshell. These proteins become trapped tightly within the mineral crystals

themselves. In this situation, proteins can potentially be preserved over geological time. Demarchi

et al. have now studied 3.8 million-year-old eggshells found close to the equator and, despite the

extent to which the samples have degraded, discovered fully preserved protein sequences.

Using a computer simulation method called molecular dynamics, Demarchi et al. calculated that

the protein sequences that are able to survive the longest are stabilized by strong binding to the

surface of the mineral crystals. The authenticity of these sequences was tested thoroughly using a

combination of several approaches that Demarchi et al. recommend using as a standard for ancient

protein studies.

Overall, it appears that biominerals are an excellent source of ancient protein sequences because

mineral binding ensures survival. A systematic survey of fossil biominerals from different

environments is now needed to assess whether these biomolecules have the potential to act as

barcodes for interpreting the evolution of organisms.

DOI: 10.7554/eLife.17092.002
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Figure 1. Eggshell peptide sequences from Africa have thermal ages two orders of magnitude older than those reported for DNA or bone collagen.

(A) Sites reporting the oldest DNA and collagen sequences are from high latitude sites compared to ostrich eggshell samples from sites in Africa

illustrated in (B) for which the current mean annual air temperatures are much higher. (C) Kinetic estimates of rates of decay for DNA (Lindahl and

Nyberg, 1972), collagen (Buckley and Collins, 2011) and ostrich eggshell proteins (Crisp et al., 2013) were used to estimate thermal age assuming a

constant 10˚C (Figure 1—source data 1; Appendix 1. For Elands Bay Cave and Pinnacle Point the oldest samples are shown). Note log scale on the

z-axis: struthiocalcin-1 peptide survival is two orders of magnitude greater than any previously reported sequence, offering scope for the survival of

peptide sequences into deep time.

DOI: 10.7554/eLife.17092.003

The following source data is available for figure 1:

Source data 1. Data and calculations for thermal ages reported in Figure 1 and in Supplementary file 1.

DOI: 10.7554/eLife.17092.004
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the possibility that these fragments had been exposed to additional heat. The provenance of the

fragments from Olduvai Gorge is also secure, as these were found in situ during the excavation of

the Bell Korongo site, which overlies directly a volcanic tuff dated by 40Ar/39Ar (Domı́nguez-

Rodrigo et al., 2013).

The chronological ages of the samples were normalised to thermal ages: the mean annual air

temperature (MAT) for each site was estimated from the NOAA NCDC GCPS monthly weather sta-

tion (Eischeid et al., 1995; Karl et al., 1990) and borehole data (Huang et al., 2000;

National Climatic Data Center (NCDC), 2012) (Appendix 1—table 1). Samples on the surface or

buried at shallow depth will have experienced an effective temperature which is higher than the

MAT, as rates of reaction scale exponentially with temperature (Wehmiller, 1977). The greater the

seasonal range at the site, the older the thermal age will be, but the effect of seasonal fluctuations

will be mitigated by burial depth, which dampens temperature changes. Holocene sites which today

have a MAT of exactly 10˚C will have been cooler in the past 500 years due to recent anthropogenic

Figure 2. Proteome persistence and patterns of degradation. (A) Amino acid racemization in ostrich eggshell up to 3.8 Ma old from sites in South

Africa and Tanzania. (B) Linear increase of THAA Val D/L values with the log of thermal age. (C) Exponential decrease of the number of identified MS/

MS spectra with age (THAA Val D/L). (D) The average hydropathicity of the peptides identified remains stable up to Val D/Ls ~1. Note that Val D/Ls >

1.0 are unexpected and may be due to decomposition processes occurring in the closed system. The intracrystalline proteome composition in modern

eggshell does not vary across microstructural layers (Figure 2—figure supplement 1), but patterns of degradation are different between fossil samples

and purified proteins degraded at high temperature in the absence of the mineral (Figure 2—figure supplement 2).

DOI: 10.7554/eLife.17092.005

The following figure supplements are available for figure 2:

Figure supplement 1. Structure and composition of OES.

DOI: 10.7554/eLife.17092.006

Figure supplement 2. Proteome degradation.

DOI: 10.7554/eLife.17092.007
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warming. In this study, we used borehole temperature estimates (Huang et al., 2000) or long-term

historic records (Eischeid et al., 1995) to counter this effect. Pre-Holocene samples from sites which

today have an MAT of 10˚C will have an even younger thermal age due to the reduction in tempera-

ture during glacial periods. This retards the rate of chemical degradation, and therefore slows the

advance of thermal age. While we did not correct for seasonal fluctuation, a correction was applied

for altitude. The long-term temperature model of Hansen et al. (2013), scaled to local or regional

estimates of present day values and predicted temperature decline at the last glacial maximum

(LGM), was used to project MATs from present day to the time of deposition (Appendix 1—tables

1, 2, 4).

Ostrich eggshell protein degradation was compared with the extent of degradation of DNA and

bone collagen detected in a variety of Northern Hemisphere sites (Figure 1). Published kinetic

parameters for the degradation of the molecules (Appendix 1—table 3; [Crisp et al., 2013;

Lindahl and Nyberg, 1972; Holmes et al., 2005]) were used to calculate the relative rate difference

over a given interval of the long-term temperature record and to quantify the offset from the refer-

ence temperature of 10˚C, thus estimating the thermal age in years@10˚C for each sample

(Figure 1C). It is clear that Northern Hemisphere samples are thermally younger than their chrono-

logical age (e.g. Ellesmere Island is ~0.02 Ma@10˚C), while the age of the eggshell samples consid-

ered here increases, e.g. the 3.8 Ma sample from Laetoli and the 1.34 Ma Olduvai samples are

estimated to have thermal ages of ~16 Ma@10˚C (Appendix 1—table 4; Figure 1—source data 1).

The difference in chronological age between our two oldest sites is therefore minimised by the

effect of temperature, which is dampened in Laetoli due to the greater altitude relative to Olduvai.

Eggshell contains proteins (struthiocalcin-1 and -2) that bind very
strongly to the calcite surface: good candidates for long-term survival?
This sample set, spanning the last ~16 Ma@10˚C (Table 1), was chosen in order to explore patterns

of diagenesis and protein survival using a well-established experimental approach that can isolate

the intracrystalline fraction of proteins enclosed in biominerals, including ostrich eggshell (bleaching;

Crisp et al., 2013). The intracrystalline fraction of avian eggshell typically contains C-lectins; in

ostrich these are struthiocalcin 1 & 2 (SCA-1 & SCA-2) (Mann and Siedler, 2004). The eggshell pro-

teins were characterised in terms of their amino acid composition across microstructural layers

(Appendix 2, sections A and B) and the main proteins sequenced and identified (Appendix 2, section

C) in modern eggshell, revealing uniform composition across the eggshell layers. Therefore, samples

of the archaeological and paleontological eggshell, usually recovered in a fragmentary state, can be

considered to be representative of the overall proteome.

The crystallography of SCA-1 (Ruiz-Arellano et al., 2015) reveals a similar overall structure to

ovocleidin-17 (OC-17), which has previously been proposed to play a catalytic role in the calcification

of chicken eggshell via the positively charged cluster of arginine residues interacting with the carbo-

nates on the (10.4) calcite surface (Freeman et al., 2010). OC-17 is, however, absent in ostrich;

instead, SCA-1 and 2 are negatively charged (Table 2) and thus likely to bind to calcium ions.

A molecular dynamics (MD) study of the binding of whole SCA molecules at the mineral surface

allowed the strongest binding regions of SCA-1 and SCA-2 to be identified, two for each of the two

proteins (Appendix 3). In MD simulations the four peptide sequences that cover the binding regions

(Table 2) were moved close to the (10.4) calcite surface from aqueous (bulk) solution to determine

their respective binding energies (Appendix 3). All four peptides showed negative binding energies,

Table 1. Summary of archaeological and paleontological eggshell samples analysed in this study. See also Tables 3–7.

Site Approximate age range (ka) Approximate thermal age range (ka@10˚C) Number of specimens

Elands Bay Cave 0.3–16 0.5–45 8

Pinnacle Point 5/6 50–150 120–470 8

Wonderwerk ~1000 ~3600 1

Olduvai ~1340 ~16300 4

Laetoli 2600–4300 8900–20400 3

DOI: 10.7554/eLife.17092.008
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indicating it was energetically favourable for them to bind to the calcite surface, rather than to

remain in solution. SCA-1 bound more strongly than SCA-2 and the binding energies for all four

peptides had the same relative order as in the simulations with full proteins. This indicates that the

peptides operate as effective proxies for the binding of SCA. The differences between bindings of

the different peptides are probably due to the individual amino acids and the primary structure of

the peptide enabling favoured binding configurations.

When a molecule binds at the surface there will also be changes in entropy - an entropy loss for

the molecule as it becomes bound and an entropy gain as water molecules on the surface are dis-

placed. Given only one molecule binds, compared to the displacement of multiple water molecules,

this will be an entropically favourable process. We have previously estimated the entropy associated

with the water molecules and use this as a correction to the internal energy to estimate the free

energy of binding (Freeman and Harding, 2014). These estimated free energy values (including the

influence of water displacement) demonstrate the same trends as the configurational energy, since

the number of water molecules displaced in all cases is similar.

The structure of the water close to the interface is also more ordered than bulk water and has

lower energy. Thus, when hydrolysis of the bound protein or peptide occurs, it must react with the

stabilized water at the interface, not the water in the bulk. This will raise the barrier to hydrolysis and

thus promote the survival of the sequence (see also the discussion below). We would therefore

expect that the stronger the peptide binding, the more likely the sequence is to survive in the fossil

record, as it is best stabilized by its interactions with the mineral surface and must react with stabi-

lized water. The MD simulations thus predict that the YSALDDDDYPKG sequence, with the lowest

binding energy (Table 2) will survive the longest.

Tracking protein breakdown in fossil ostrich eggshell: a multi-analytical
approach to validate ancient sequences
For fossil eggshell samples the extent of degradation, quantified by chiral amino acid analysis (AAR),

shows that both hydrolysis and racemization increase with time, and that racemic equilibrium is

reached in samples older than 1 Ma (~3.6 Ma@10˚C; Figure 2; and Appendix 4—table 1 and 2). As

degradation proceeds, the complexity of the proteome decreases, until only SCA-1 and SCA-2 are

detected by LC-MS/MS in the oldest samples (Supplementary file 1). These two proteins are

extremely well preserved in samples up to 150,000 years old, but by 3.8 Ma few peptides are recov-

ered (Figure 3, Figure 3—figure supplement 1 and 2). A total of 22 peptide sequences was recov-

ered from SCA-1 & SCA-2 in samples from Laetoli (Appendix 5, section A; Supplementary file 2),

consistent with the idea that dehydration, in addition to mineral binding, may also play a role in

retarding degradation of non-binding peptides (Collins and Riley, 2000). However, 80% of the spec-

tra, consistently identified in ten independent LC-MS/MS analyses of three ostrich eggshell samples

Table 2. Binding of proteins to the (10.4) calcite surface. The binding energies calculated as (a) mean for the full protein (by minimiza-

tion, see Appendix 3); (b) for four individual domains within the proteins (by molecular dynamics [ovocleidin]; by minimization [struthio-

calcin]); (c) for the four domains treated as peptides (by molecular dynamics, see Appendix 3).

OC-17 SCA-1 SCA-2

Charge on the protein +7 (balanced
by Cl-)

�11 (balanced by Na+, Ca2+) �10 (balanced byCa2+)

Binding energy (mean): kJ mol�1 �197 ± 22 �142 ± 33

Binding energy (domains): kJ mol�1 �422 ± 43 �423 ± 42 (YHHGEEEEDVWI)
�611 ± 44 (YSALDDDDYPKG)

�255 ± 72 (SDSEEEAGEEVW)
�231 ± 68 (ASIHSEEEHQAIV)

Binding energy (peptides only) kJ mol�1 �142 ± 19 (YHHGEEEEDVWI)
�219 ± 24 (YSALDDDDYPKG)

�131 ± 32 (SDSEEEAGEEVW)
�122 ± 41 (ASIHSEEEHQAIV)

Water molecules displaced 21.3 20.2 23.1

Estimated binding free energy: kJ mol�1 �188 ± 37 �159 ± 24 �99 ± 39

Residence times
for water (ps)
[average surface bound water molecule = 120 ps]

130 ± 3 (YHHGEEEEDVWI)
135 ± 3 (YSALDDDDYPKG)

124 ± 4 (SDSEEEAGEEVW)
123 ± 5 (ASIHSEEEHQAIV)

DOI: 10.7554/eLife.17092.009
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from Laetoli were assigned to charged species that contained the four Asp residues found in the

peptide YSALDDDDYPKG. The survival of this Asp-rich peptide region is not limited to the samples

from Laetoli; the eggshells from Olduvai (~16 Ma@10˚C) and Wonderwerk (~3.6 Ma@10˚C) also

show that this region of SCA-1 is preferentially preserved.

This peptide does not survive in the absence of the mineral, as shown by the artificial degradation

experiments we conducted on purified eggshell proteins heated at 140˚C in water (Figure 2—

figure supplement 2, Appendix 4, sections B and C). Indeed, the same region of the protein was

too flexible to be determined when the crystallographic structure of pure SCA-1 was solved (Ruiz-

Arellano et al., 2015). The patterns of degradation of the same proteins heated in water vs after

demineralisation of the eggshell mineral also differ significantly from each other. It is noteworthy

that the hydropathicity calculated for the surviving peptides decreases in eggshell mineral and
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Figure 3. Survival of struthiocalcin 1 and struthiocalcin 2 peptides. Over time (and increasing THAA Val D/L values) the spectral count decreases as

degradation progresses. Blue bars highlight the peptides investigated computationally (represented by the filled atoms in the models). Highly

degraded samples (Val D/L ~0.8–1.1) preserve the DDDD-containing peptide. The full time series is shown for SCA-1 in Figure 3—figure supplement

1 and for SCA-2 in Figure 3—figure supplement 2.

DOI: 10.7554/eLife.17092.015

The following figure supplements are available for figure 3:

Figure supplement 1. Frequency of identified spectra of SCA-1 in bleached OES (fossils) and purified proteins (kinetics).

DOI: 10.7554/eLife.17092.016

Figure supplement 2. Frequency of identified spectra of SCA-2 in bleached OES (fossils) and purified proteins (kinetics).

DOI: 10.7554/eLife.17092.017
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Figure 4. Authenticity of the ancient sequences. Amino acid analyses (A): Total concentrations in all eggshell samples (sum of Asx, Glx, Gly, Ala, Val

and Ile). Carry-over: (B) Total ion chromatogram for one eggshell sample (EBC_1823) and the blank analysed immediately after (blank_post_EBC1823).

(C) Spectral abundance of SCA-1 and SCA-2 in LC-MS/MS blanks. (D) SCA-1 coverage in the blank analysed after a Pinnacle Point eggshell sample

PP_4652. Note ’DDDD-’ and ’EEEED-’ peptides and Asn deamidation. (E) Extracted ion chromatogram for LDDDDYPK in EBC_1823,

Figure 4 continued on next page
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increases in water (Figure 2 and Figure 2—figure supplement 2), consistent with the hypothesis

that mineral binding plays a crucial role in the survival of selected peptide sequences.

The authenticity of the peptide sequences recovered in the oldest samples was thoroughly

assessed (Appendix 5). The amino acid concentration was analysed in all bleached eggshell samples

and controls (procedural blanks); concentrations in the blanks were negligible, while the samples

retain the original organic fraction within the intracrystalline environment (Figure 4A). In addition,

the presence of volatile organic compounds in 2.7 Ma ostrich eggshell demonstrates the stability of

ostrich eggshell as a closed system (Appendix 5, Section E). Ratite eggshell has previously proven to

be an excellent source of ancient DNA (Oskam et al., 2010) but, unsurprisingly, NGS sequencing

failed to recover avian DNA from the Laetoli eggshell we tested (Appendix 5, Section F). Water

blanks were injected between each LC-MS/MS eggshell sample analysis to assess carry-over

(Figure 4B–F). Despite low levels of SCA-1 being occasionally detected in some of the blanks

(Figure 4D), the effective carry-over from sample to sample can be estimated to be below 0.01%.

We also stress that each batch of fossil eggshell was analysed separately in time (Figure 4C) and

that therefore carry-over between younger and older eggshell samples is impossible. Finally, inde-

pendent analyses of the results in a second laboratory (Copenhagen) also demonstrated the replica-

bility of our results (Appendix 5, Section A). All peptides and proteins detected in this study

presented damage patterns (i.e. diagenesis-induced modifications, such as deamidation, oxidation)

that are entirely consistent with the age of the samples (Appendix 5, Section D; Supplementary file

3).

Figure 4 continued

blank_post_EBC1823 and EBC_1819. (F) Absolute and relative total abundance of ’DDDD’ peptides in Laetoli samples/blanks. Signal reduction is at

least 100-fold (more often 1000- or 10,000-fold). Independent replication and manual de novo sequencing of the peptides from Laetoli (Appendix 5,

section A; Supplementary file 2), consistency of diagenesis-induced modifications (Appendix 5, section D; Supplementary file 3) and volatile organic

compound analyses (Appendix 5, section E) were also used to validate the results obtained.

DOI: 10.7554/eLife.17092.018

Figure 5. Schematic diagram of energy barriers for peptide hydrolysis. A pictorial representation of the energy

barriers associated with the lysis of the peptide. The process in bulk water is depicted in red and the process at

the surface is depicted in blue. The surface process shows a larger barrier due to the stabilization of the reactants

at the surface.

DOI: 10.7554/eLife.17092.019
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Discussion

Surface stabilization is the mechanism for long-term survival of
biomineralizing peptides
The breakdown of the proteins and peptides should primarily occur via hydrolysis, involving water

and proteins or peptides as reactants. The rate-determining step is the attack of a water molecule

(or molecules, see Pan et al., 2011 for an extended discussion). We schematically map out the path-

way in Figure 5 (red line) where the reaction coordinate denotes approach of water to the peptide

and their subsequent reaction. The process requires energy (heat) to be given to the system in order

to overcome the energy barrier. In hot environments, such as Tanzania, the high ambient heat means

that many interactions have sufficient energy to overcome this barrier, yet our experimental findings

demonstrate that some peptides survive.

We argue that the mechanism allowing the survival of the ancient sequences over ~4 Ma (~16

Ma@10˚C) at equatorial sites is the stabilization of optimally configured peptides and associated

water molecules by surface binding at this interface. The low, negative free energy of binding

(Table 2) of the amino acid residues means that they will readily bind to the calcite surface and

remain bound indefinitely and this binding stabilizes the peptides by lowering their configurational

energy (Table 2). Thus, both the position of the ground state and the top of the barrier will be low-

ered with respect to the situation when the peptide is in bulk water (Figure 5). The binding of the

peptide also forces the hydrolysis reaction to take place with the stabilized water close to the calcite

surface.

Furthermore, the presence of the calcite surface significantly stabilizes the water molecules sur-

rounding the peptide. Estimates of the residence times (Table 2) and diffusion values of water mole-

cules trapped between the protein and mineral surface indicate that these water molecules have

greater residence times and lower diffusion rates than water molecules on the surface with no pro-

tein present. This large stabilization of water molecules selectively lowers the ground state energy of

the reactants (protein or peptide plus water) at the interface with respect to the bulk. Thus the

energy barrier will be significantly larger for the bound protein or peptide than for the unbound

one. Our surface molecules would therefore need more energy in the system (i.e. a higher tempera-

ture) to overcome the augmented barrier. The net effect of the binding of the protein or peptide is

therefore to retard hydrolysis and prolong peptide sequence survival, albeit of a select (mineral-

binding) region of the protein.

Translating this concept to real samples in geological settings, the burial temperature in Tanzania,

which may be high enough to allow rapid hydrolytic breakdown of most proteins, would not be

enough to hydrolyse mineral bound peptides over corresponding timescales because of their own

stabilization but particularly because they are surrounded by the stabilized water. This is effectively

equivalent to a localised ’cooling’ effect: the water molecules at the calcite surface would therefore

be expected to operate as if they were ’cooler’ in terms of reactivity and rates of peptide bond

hydrolysis.

Conclusions: biominerals are a source of ancient protein sequences,
preserved over geological timescales
The survival of 3.8 Ma old peptide sequences in equatorial Africa corresponds to an estimated ther-

mal age of ~16 Ma@10˚C, two orders of magnitude beyond the oldest recovered DNA (Figure 1).

We explain this exceptional preservation in terms of surface stabilization of both the peptide and

water molecules involved in the hydrolytic breakdown of the peptide. Our discovery identifies min-

eral-binding proteins as the most likely source of ancient biomolecular sequences in the fossil

record.

In this study, we also set out parameters for the authentication of ancient sequences: the combi-

nation of the consistency in patterns of protein degradation and survival of particular peptide

regions, independent replication of the results and an in-depth analysis of analytical blanks provide

overwhelming evidence for the endogeneity and integrity of the peptides recovered. We suggest

that all ancient proteomics studies undertake a similar approach to verify the authenticity of the

sequences reported.
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We anticipate that this study will open up new avenues in palaeontology and palaeoanthropol-

ogy, for the first time enabling direct comparison between morphological and molecular records of

fossils in deep time. Furthermore, the selective preservation of domains associated with biominerali-

zation offers a novel strategy for uncovering functional regions governing mineral formation.

Materials and methods

Summary
Ostrich eggshell samples were ground and bleached for 72 hr (NaOCl 12% wt/vol) and rinsed thor-

oughly before demineralization. Amino acid and mass spectrometry analysis of ancient proteins was

conducted using published techniques (Buckley et al., 2009; Crisp et al., 2013). Modifications

include the use of trypsin and elastase as digestion enzymes for separate preparations

(Welker et al., 2015). Liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses were

performed on Thermo Scientific Orbitrap platforms. Resulting spectra were searched against the

Struthioniformes genomes using PEAKS (version 7.5 [Ma et al., 2003]). For PEAKS, FDR rate was set

at 0.5%, with proteins accepted with �10lgp scores � 40 and ALC (%) � 80. A combination of mini-

mization and conventional MD using the DL_Poly Classic code was used to explore possible protein–

calcite binding geometries (Freeman et al., 2011).

Materials
Modern ostrich eggshell (OES)
Modern OES was purchased from Oslinc, an ostrich farm based in Boston, Lincolnshire, UK (www.

oslinc.co.uk). The complete shell was less than 1 year old; for the purposes of reproducibility all anal-

yses were performed using the same eggshell. Modern OES was used for the investigation of the

amino acid composition of the microstructural layers as well as high-temperature studies on purified

proteins (kinetic experiments).

Archaeological and palaeontological OES
The details of the archaeological and palaeontological samples included in this study are detailed in

Tables 3–7. LOT numbers and individual NEaar (sample) numbers were attributed at the NEaar labo-

ratory, University of York.

Elands Bay Cave
Elands Bay Cave (EBC) is located on the present coastline about 200 km north of Cape Town (South

Africa). Human occupation occurred repeatedly since the terminal Pleistocene. Ostrich eggshell is

present throughout the sequence. The site’s chronology has been firmly established through multi-

ple radiocarbon dates; the samples analysed in this study can each be assigned to an age range on

the basis of dates obtained on each layer and/or bracketing the OES (Parkington, 1980; Stowe and

Sealy, 2016).

Pinnacle Point
The caves at Pinnacle Point (PP) have been in the spotlight of archaeological research for the past

few years, and they have yielded extraordinary evidence for early modern human behaviour as well

as detailed palaeoclimatic information (Karkanas et al., 2015; Bar-Matthews et al., 2010;

Brown et al., 2009; Marean, 2010; Marean et al., 2007). The OES fragments analysed in this study

come from two sites in the PP complex, PP 5–6 and PP 30, and were selected from excavations

done up to 2010. PP 5–6 is a well-dated sequence, spanning ca. 50–90 ka. PP 30 is a hyena den

(~150 ka BP) and the OES material reflects a single depositional episode.

Wonderwerk Cave
Wonderwerk Cave (WW) is located in the arid interior of South Africa, near the southern border of

the Kalahari Desert. The site has yielded a unique ca. 2 million years long archaeological sequence

(Horwitz and Chazan, 2015; Berna et al., 2012). Stratum 10, from which the OES samples analysed

here are derived, bears the earliest evidence of intentional use of fire during the Acheulean,
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constrained to the Jaramillo subchron (1.07–0.99 Ma) based on a combination of paleomagnetic and

cosmogenic burial age dating (Horwitz and Chazan, 2015; Berna et al., 2012). The OES fragments

from the cave have been used as an effective proxy for refining palaeoclimatic and environmental

reconstructions, especially for the early-mid Pleistocene and Holocene levels (Ecker et al., 2015;

Lee-Thorp and Ecker, 2015).

Olduvai
Olduvai Gorge (Tanzania) contains an extensive record of the past two million years of human evolu-

tion. The eggshell samples analyzed in the present study were found in situ during the excavation of

the BK (Bell Korongo) site located in uppermost Bed II. The site is exceptional by the large amount

of ostrich eggshell fragments that were found throughout all its stratigraphic sequence. A volcanic

tuff just underlying BK was recently dated to ~1.34 Ma (Domı́nguez-Rodrigo et al., 2013). The sam-

ples analyzed were found in Level 4, which contains a wealth of fossil bones and associated stone

tools. This level has been interpreted as a central-place where the butchery of several animal car-

casses (including megafaunal remains from Sivatherium and Pelorovis) was carried out (Domı́nguez-

Rodrigo et al., 2014).

Laetoli
Laetoli (Tanzania) is one of the most famous sites for palaeoanthropologists: it has yielded hominin

and other animal remains (Harrison, 2011a, 2011b) and the first unequivocal evidence for

Table 3. Summary of samples from Elands Bay Cave, South Africa. The stratigraphic layers have been independently dated by radio-

carbon. Unpublished uncalibrated dates provided by J. Parkington. Date calibration was performed with OxCal v.4.2 (Ramsey, 2009.

Calibration curves: IntCal13 for dates obtained on charcoal; Marine13 for dates obtained on shells/crayfish, DeltaR = 93 ± 28

[Dewar et al., 2012]). Age estimates for undated layers based on estimating the median (mid-point) of two dates obtained on layers

bracketing the layer with OES samples.

LOT NEaar Layer Age (cal BP) 95.4% Material used for 14C dating/notes

1868 6887 Kaunda <323 (estimate) Layer above dates on layer NKOM

1872 6888 George Best 322–1008 Layer between dates on layers NKOM and EDDI

1866 6889 D. Lamour 906–2282 Layer between dates on layers EDDI and LARM

1849 6891 Maroon Robson 8773 ± 125 Charcoal

1850 6893 Nero 8748–10096 Layer between dates on layers Maroon Robson / Burnt Robeson

1823 6896 Crayfish 11545 ± 441 Crayfish

1819 6899 Smoke 12589 ± 104 Charcoal

1840 6907 OBS 1 15208–15940 Layer between dates on layers Smoke and SOSE

DOI: 10.7554/eLife.17092.010

Table 4. Sample details for sub-fossil OES analysed for LC-MS/MS; from Pinnacle Point, South Africa. Stratigraphic information and

weighted mean OSL age estimates (ka) for PP 5–6 (Karkanas et al., 2015) and PP 30 (Rector and Reed, 2010).

Site LOT NEaar Archaeological sample information Stratigraphic aggregate Age (ka)

PP5-6 4613 7676 Plotted Find 102627, Lot 3151 RBSR 51 ± 2

PP5-6 4649 7283 Plotted Find 165702, Lot 8038 SGS 64 ± 3

PP5-6 4671 7316 Specimen 273467, Lot 3255 SADBS 71 ± 3

PP5-6 4605 7198 Specimen 273489, Lot 3277 SADBS 71 ± 3

PP5-6 4652 7286 Plotted Find 178331, Lot 8172 ALBS 72 ± 3

PP5-6 4675 7320 Specimen 273514, Lot 7980 LBSR 81 ± 4

PP 30 4683 7328 Specimen 66008, Lot 1795 Single horizon ~151

PP 30 4697 7342 Specimen 65168, Lot 1750 Single horizon ~151

DOI: 10.7554/eLife.17092.011
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bipedalism thanks to the footprints of Australopithecus afarensis preserved in Pliocene volcanic ash,

discovered by Mary Leakey in 1976 (Leakey and Hay, 1979).

The eggshell at Laetoli are surface finds, but visual examinations show no evidence of rolling,

transportation or weathering (having been exposed on the surface for only a very short period of

time after having eroded out of the sediment). As a consequence, there is no likelihood of long-dis-

tance transport. The location and preservation of the fossils, the absence of significant spatial dis-

placement of surface finds, the short stratigraphic sections at each collecting spot, and the

identification of the fossil-bearing horizons in each of those sections, allow the fossils to be placed

quite precisely in their original stratigraphic context. The age and stratigraphy given for each of the

samples can be assigned with a high degree of confidence. There are no lava flows in stratigraphic

proximity or direct superposition to the stratigraphic units from which the Lower Laetolil and Upper

Ndolanya specimens were recovered. Given that more than 40 m of consolidated sediment, and a

time difference of 1.5 million years, separate the overlying lava flow (the Ogol Lavas) from the stra-

tum from which the Upper Laetolil fossils were obtained, and that the intervening fossil-bearing

beds show no geological evidence of having been impacted by heating, we do not believe that the

samples have been exposed to additional heating that would have made them thermally older than

we predict (Table 7).

Methods
Bleaching pre-treatment
All analyses reported in this study were conducted on bleached ostrich eggshell (OES) in order to

isolate the functionally intra-crystalline proteins. Based on the results of Crisp et al. (2013), pow-

dered eggshell was submerged in NaOCl (12% w/v) for a minimum of 72 hr.

Chiral amino acid (AAR) analyses
Sample preparation for chiral amino acid analyses (total hydrolysable and free amino acids fractions:

THAA and FAA) was carried out following the method of Crisp et al. (2013). Separation of the chiral

forms (D and L) of multiple amino acids was performed by RP-HPLC with fluorescence detection

using a modified method of Kaufman and Manley (1998). The amino acids reported here are

among those detected routinely with good chromatographic resolution in OES: Asx and Glx (Asp

+Asn and Glu +Gln due to irreversible deamidation during sample preparation), alanine (Ala), valine

(Val) and isoleucine (Ile). Serine (Ser) is not reported as its decomposition patterns are complicated

by decomposition and a reversal in D/L values, therefore its utility decreases for older samples (Val-

lentyne, 1964; Kimber et al., 1986).

Table 5. Sample details for sub-fossil OES samples from Wonderwerk Cave, South Africa. Ages based on cosmogenic isotope burial

dating and magnetostratigraphy, from Matmon et al. (2012).

LOT NEaar Stratum Independent age (Ma)

14426 10581 ME46, SPF#4390, Exc. 1, stratum 10, square Q33, depth 15–20 cm 1.07–0.99

DOI: 10.7554/eLife.17092.012

Table 6. Sample details for fossil OES samples from Olduvai, Tanzania.

LOT NEaar Locality/Stratum Independent age (Ma)

15575 10955 Sample BK09-3150 1.338 ± 0.024

15578 10958 Sample BK10-5309 1.338 ± 0.024

15579 10959 Sample BK09-2627 1.338 ± 0.024

15582 10962 Sample BK09-2706 1.338 ± 0.024

DOI: 10.7554/eLife.17092.013
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Proteomics
High-temperature experiments: purified proteins from modern OES
Bleached modern OES powders were demineralized in cold dilute acetic acid (10% v/v, 4˚C, over-
night). The solution was centrifuged at 4500 RPM for 1 hr at 4˚C, ultrafiltered (Amicon ultra-filters,

10 kDa) and rinsed repeatedly with ultrapure water. The concentrated proteins were lyophilized and

resuspended in ultrapure water. 125 mL of suspension was transferred to four individual sterile hydro-

lysis vials, each sealed with a clean teflon cap and heated at 140˚C for 2, 8, 24 and 120 hr respec-

tively. Alkylation / reduction of disulphide bonds was carried out using dithiothreitol (60˚C, 60 min;

Sigma Aldrich, St Louis, MO) and iodoacetamide (room temperature, 45 min; Sigma Aldrich). The

solutions were then dried down in a centrifugal evaporator to be analysed directly by LC-MS/MS.

Protein extraction: archaeological OES (York)
The average sample size for proteomics was 35 mg of OES powder. Two separate preparations

were carried out on two subsamples (~17 mg each), for digestion with trypsin (’T’) and elastase (’E’).

All subsamples were demineralized in cold 0.6 M HCl and the solution neutralized, lyophilized and

resuspended in ammonium bicarbonate or Tris-HCl buffer containing the RapiGest SF surfactant (1

mg/mL; Waters Ltd, Hertfordshire, UK), for ’T’ and ’E’ subsamples, respectively. Following reduction

and alkylation of disulphide bonds with DTT and IAA according to the usual protocols, digestion was

carried out overnight at 37˚C by adding: 4 mL trypsin (0.5 mg/mL; Promega, 2800 Woods Hollow

Road Madison, WI 53,711 USA) for ’T’ subsamples or 4 mL elastase (1 mg/mL; Worthington, Lake-

wood, NJ, USA) for ’E’ subsamples.

Digestion was stopped by adding trifluoroacetic acid (TFA) to a final concentration of ~0.1% (v/v)

and RapiGestÔ precipitated by incubating in an acidic environment at 37˚C for 30 min. Samples

were centrifuged on a bench-top centrifuge (13000 RPM, 30 min) and purified using C18 solid-phase

extraction (Pierce zip-tip; Thermo-Fisher) according to the manufacturer’s instructions. Eluted pepti-

des were evaporated to dryness using a centrifugal evaporator before LC-MS/MS analyses.

Protein extraction: Laetoli OES (Copenhagen)
The Laetoli eggshell samples (LOT 13901r, 13902r, 13898r), powdered and pre-bleached in York,

were sent to the University of Copenhagen for replication. A negative control sample, prepared

exactly like the ancient ones except for the initial addition of eggshell powder, was processed and

analysed together with the ancient samples, following the same procedure. All samples, including

the negative extraction control, were processed in laboratories regularly used for ancient DNA

extraction, implementing all the measures necessary to avoid potential contamination from modern

biomolecules. All surfaces were UV irradiated overnight, and repeatedly cleaned with bleach and

ethanol. In addition, facemasks, nitrile gloves, hairnets and body suits were worn continuously by

operators.

An aliquot of 58 mg, 48 mg and 64 mg was weighed from samples 13902r, 13901r and 13898r

respectively, and placed in 1.5 mL Protein Lo Bind Tubes (Eppendorf). Subsequently, they were sus-

pended in 1 mL 0.5 M EDTA pH 8.00, mechanically shaken for approximately one minute and incu-

bated overnight under rotation at room temperature. The following day, after centrifugation at

17,000 g for 10 min, the EDTA supernatant was removed and stored in a �18˚C freezer. The demin-

eralisation step with 1 mL 0.5 M EDTA was repeated one more time. The third day, after removal of

EDTA supernatant, all demineralised pellets were re-suspended with 100 mL of 0.1 M Tris pH 8.00,

Table 7. Sample details for fossil OES samples from Laetoli, Tanzania. Ages of the strata and locali-

ties (40Ar/39Ar) from Deino (2011). LOT 13901 is attributed to Struthio camelus. LOTs 13902 and

13898 are attributed to Struthio kakesiensis (Harrison and Msuya, 2005).

LOT NEaar Locality/Stratum Independent age (Ma)

13901 10574 Loc 15, Upper Ndolanya Beds ~2.66

13902 10573 Loc 10 West, Upper Laetolil Beds ~3.8–3.85

13898 10575 Kakesio 1�6, Lower Laetolil Beds ~3.85 -> 4.3

DOI: 10.7554/eLife.17092.014
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mechanically shaken for approximately one minute, and precipitated by centrifugation at 17,000 g

for 10 min. The wash step with 100 mL of 0.1 M Tris was repeated two more times.

The samples were then further processed in a guanidinium hydrochloride lysis buffer solution fol-

lowing published methods (Kulak et al., 2014; Jersie-Christensen et al., 2016), without sonication

or equivalent steps. Samples were instead mechanically shaken for approximately one minute and a

micro-pestle (Eppendorf) was used to manually disrupt the pellet. Ancient samples and negative

control were initially diluted to 1:3 in dilution buffer (Kulak et al., 2014), 0.5 mg of rLysC (Promega)

were added, and the solution was digested at 37˚C, with mechanical shaking at 900 rpm, for two

hours. Samples were then further diluted 1:3 in dilution buffer, 0.5 mg of mass spectrometry grade

trypsin (Promega) were added, and the solution was digested overnight at 37˚C, with mechanical

shaking at 900 rpm. On the following day, samples were acidified, using 10% trifluoroacetic acid

(TFA) in ultrapure water, to reach pH < 2.00, and then centrifuged at 17,000 g for 1 hr. The resulting

peptide mixtures in the supernatant fraction were then concentrated using in house created C18

solid phase extraction stage tips as described by Cappellini et al. (2012).

LC-MS/MS analysis
Oxford TDI
Subsamples digested with trypsin and elastase were combined in a single LC-MS/MS run, with the

following exceptions:

. Subsamples E and T for all Olduvai and Laetoli OES

. Subsample LOT 13901N: digestion step was not performed

. Purified proteins heated at high temperature in water (kinetics): digestion step was not
performed

Elastase and trypsin-digested samples were analysed by LC-MS/MS as described before

(Fischer and Kessler, 2015). Briefly, peptides were separated on a PepMAP C18 column (75 mm �

500 mm, 2 mm particle size, Thermo) using a Dionex Ultimate 3000 UPLC at 250 nL/min and Acetoni-

trile gradient from 2–35% in 5% DMSO/0.1% formic acid. Peptides were detected with a Q-Exactive

mass spectrometer (Thermo) at a resolution of 70000 @ m/z 200 and an ion target value of 3e6

between m/z 380 and 1800. Up to 15 precursors were selected for HCD fragmentation at a resolu-

tion of 17,500 with an ion target of 1e5 and a maximal injection time of 128 ms. Normalized collision

energy was fixed at 28% and the isolation windows was 1.6 m/z units.

Copenhagen
The samples were separated on a 50 cm PicoFrit column (75 mm inner diameter) in-house packed

with 1.9 mm C18 beads (Reprosil-AQ Pur, Dr. Maisch) on an EASY-nLC 1000 system connected to a

Q-Exactive HF (Thermo Scientific, Bremen, Germany). The peptides were separated with a gradient

going from 2% to 25% buffer B in 110 min followed by a 25 min step to 40%. After the gradient the

column was washed by going to 60% in 5 min, held for 5 min and re-equilibrated back to 2% for 15

min, resulting in a final acquisition of 165 min. Buffers contained 0.1% TFA dissolved in either 80%

acetonitrile for buffer B, or milli-Q water for buffer A. The flow rate was 200 nL/min throughout the

gradient and wash.

The Q-Exactive HF was operated in data-dependent top 10 mode. Full scan mass spectra were

recorded at a resolution of 120,000 at m/z 200 over the m/z range 300–1750 with a target value of

3e6 and a maximum injection time of 20 ms. HCD-generated product ions were recorded with a

maximum ion injection time set to 108 ms through a target value set to 2e5 and recorded at a reso-

lution of 60,000 with a fixed first mass set to m/z 100. Normalized collision energy was 28%. The iso-

lation window was set at 1.3 m/z units and the dynamic exclusion to 30 s.

Identification of peptides and proteins
Product ion spectra were analysed using the software PEAKS Studio (v. 7.0, Bioinformatics Solutions

Inc. (BSI) [Ma et al., 2003]). Mascot generic format (mgf) files were searched against a reference

database containing the genomes of all Struthioniformes and common contaminants (40566 entries),

assuming no digestion enzyme and with fragment ion mass tolerance of 0.050 Da and a parent ion

tolerance of 5.0 ppm. Results obtained by SPIDER searches (i.e. including all modifications) were

used for the investigation of protein survival in OES using the following threshold values for
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acceptance of high-quality peptides: false discovery rate (FDR) threshold 0.5%, protein scores

�10lgP � 40, de novo sequences scores (ALC% ) � 80.

Volatiles
On crushing or demineralisation of the subfossil OES, a strong odour was emitted from some sam-

ples, so analysis of these volatiles was attempted using gas chromatography mass spectrometry

(GC-MS). A sealed container was designed that allowed in-line crushing of a sample under N2. Vola-

tiles emitted during crushing of the shells were measured using thermal desorption (Unity, Markes

International, Llantrisant, UK) coupled to gas chromatography with a high-resolution quadrupole

time of flight mass spectrometer (7200B GC/Q-TOFMS, Agilent Technologies,Wilmington, DE,

USA). Volatile organic compounds (VOCs) were flushed from the shell crusher onto the trap using

high purity nitrogen at 100 mL min�1 for 10 min. The trap was held at �30˚C during sampling, then

ballistically heated to 250˚C and held for 5 min to ensure complete desorption. The heating of the

trap triggered the start of the GC run. A 5% phenyl-polysilphenylene-siloxane capillary column was

used (50 m � 0.32 mm � 1 mm BPX5, SGE, Australia) to separate the VOCs. The oven was held at

40˚C for 5 min, followed by a ramp rate of 10˚C min�1 to a final temperature of 230˚C, which was

held for 3 min. High purity helium gas was used as the mobile phase at a flow rate of 4.5 ml min�1.

The mass spectrometer was operated in an electron ionisation mode at 70 eV and the ion source

was at 250˚C. Spectra were collected between m/z 35 and 500 at an acquisition rate of 5 spectra

s�1. The mass spectra obtained were compared to the NIST MS database (NIST MS Search Program

version 2.0) after background correction. A nitrogen blank, sampled through the shell crusher was

used to determine the method background and identify unique VOCs emitted from the egg shells.

Analysis was undertaken on a fragment of one of the subfossil OES from Laetoli (LOT 13901, ~2.7

Ma).

Ancient DNA
Two DNA extractions using ~0.05 g of eggshell (sample Laetoli LOT 13902) were made following

Dabney et al. (2013) and the extracts combined before the final elution in 25 mL TET.

Data availability
The data discussed in the paper are archived in the following databases: the mass spectrometry pro-

teomics datasets have been deposited to the ProteomeXchange Consortium via the PRIDE partner

repository with the dataset identifier PXD003786; Illumina genetic data have been deposited in the

NCBI Short Read Archive (SRA), BioProject ID PRJNA314978; computational modelling data can be

found at DOI: 10.15131/shef.data.3491387 (this contains pdb files giving the initial configurations

used for SCA-1, SCA-2 and the four peptide sequences and input files for DL_POLY that contain a

complete specification of the forcefield used and other setting parameters for the simulations).
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Appendix 1

Thermal age calculations
In this study we compared the thermal age of some of the oldest samples from which DNA and

collagen sequence had been reported with the eggshell proteins from Africa (Figure 1). To

estimate temperature fluctuation we estimated MATs for each site: each MAT was estimated

from NOAA NCDC GCPS monthly weather station (Eischeid et al., 1995; Karl et al., 1990)

and borehole data (Huang et al., 2000; National Climatic Data Center (NCDC), 2012)

(Appendix 1—Table 1). Temperature was altitude-corrected using a lapse rate of 6.4˚C /

km�1; where altitudes were not given they were estimated using the Google Maps API

Elevation Service. For simplicity and due to the antiquity of the samples, no corrections were

made for seasonal variation in temperature. Temperatures were then projected back using

estimates of temperature fluctuation from the time of deposition to the present day from

the long-term modelled temperature record of Hansen et al. (2013). For the three youngest

dates at Elands Bay Cave, the thermal ages were refined using the SST record from core

MD02-2594 - Dyez14 (Dyez et al., 2014).

Appendix 1—table 1. Historical temperature data. Weather station temperature data derived

from the NOAA Baseline Climatological Dataset - Eischeid et al. (1995): The quality control of

long-term climatological data using objective data analysis. Preprints of AMS Ninth Conference

on Applied Climatology, Dallas, TX., January 15–20, 1995.

WMO ID Wmo station name latitude longitude Alt. (m) MAT ˚C

7191700 Eureka,N.W.T. 79.98 �85.93 10 �19.6

100800 Svalbard Lufthavn 78.25 15.47 27 �6.3

420201 Dundas Radio Greenland 76.6 �68.8 20 �10.5

420200 Thule A.B. 76.52 �68.5 77 �12.1

7195702 Fort Mcpherson 67.4 �134.9 30 �9.3

7196501 Fort Selkirk 62.8 �137.4 454 �3.9

358600 Honington 52.33 0.77 54 9.6

3605801 Ust-Kan 50.92 84.75 1037 0.6

807500 Burgos/Villafria 42.37 3.63 894 10.2

6832800 Tsabong �26.05 22.45 960 20.14

6871200 Cape Columbine �32.83 17.85 60 15.6

892800 Mossel Bay (Cape St.) �34.18 22.15 59 17.7

Borehole data: data from NOAA Paleoclimatology Borehole Datasets http://www.ncdc.noaa.gov/
paleo/borehole

CA-289-2 60.99 �134 1524 0

UK-STOWLANGTOFT 52.28 0.85 47 9.1

ES-ROMANERA 37.69 �7.33 166 20.2

ES-AC-1BILLITON 37.6 �6.83 110 18.7

ES-PB1ADAROVALVERDE 37.56 �6.78 237 18.6

TZ-LONGIDO �2.61 36.47 1316 24.3

TZ-BASOTU �4.38 35.17 1736 23.9

TZ-KIZAGA �4.42 34.37 1472 23.2

TZ-SIUYU �4.9 34.88 1678 23.1

ZA-SB1 �27.28 25.5 1357 19.2

ZA-AP11 �28.3 21.05 928 23.7

ZA-PC227 �29.33 21.78 1052 21.5

DOI: 10.7554/eLife.17092.024
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Appendix 1—table 2. Long term climate records: cores used in this study to assess the extent

of depression at LGM (used to scale).

Record latitude longitude Method
SST (˚C) during
LGM Ref

ODP982 58 �16 UK37 13 (Lawrence et al., 2009)

ODP882 50.35 �167.58 UK37 9.1 (Martı́nez-Garcia et al., 2010)

MD02-
2594

�33.30 17.30 Mg/Ca �16
doi.pangaea.de/10.1594/PAN-
GAEA.810663

MD962077 �33.17 31.25 Mg/Ca �16
doi.pangaea.de/10.1594/PAN-
GAEA.810716

ODP722A 16.62 59.80 UK37 20.2 (Herbert et al., 2010)

ODP662 �1.39 �11.74 UK37 18.7 (Herbert et al., 2010)

ODP846 �3.10 �90.82 Mg/Ca 18.6 (Herbert et al., 2010)

IODP1146 19.46 116.27 UK37 24.3 (Herbert et al., 2010)

DOI: 10.7554/eLife.17092.025

Because temperature changes likely increased with latitude and proximity to ice sheets the

record of Hansen et al. (2013) was scaled to estimates of maximum decline in

temperature for the site or the region at the last glacial maximum (LGM) (Appendix 1—

Table 4). We estimate a fall of approximately 2.5˚C at LGM in East Africa, consistent with

observed reductions in Tex86 estimates of lake surface temperature reduction in Lake

Tanganyika (Tierney et al., 2010) and Lake Malawi (Konecky et al., 2011). This decline of

2.5˚C was used as the D˚C LGM for Laetoli. Note that the offset between TEX86 and in situ

temperature estimates in L. Tanganyika (Kraemer et al., 2015) does not alter estimates of

D˚C LGM. Late Pliocene global mean annual air temperature was estimated to have been

2–3˚C warmer than today, but the increase was accentuated at higher latitudes. At

Ellesmere Island (Beaver Pond) (Ballantyne et al., 2010) multiple proxies suggest Pliocene

warming of +19 ± 1.9˚C, significantly higher than mid-Pliocene simulations of the high

Arctic (Hill, 2015).

Appendix 1—table 3. Kinetic parameters used for estimating thermal age.

Target Chemical reaction Activation energy (kJ mol�1) Reference

Eggshell proteins Valine racemization 117 (Crisp et al., 2013)

DNA Depurination 123 (Lindahl and Nyberg, 1972)

Collagen Gelatinization 173 (Holmes et al., 2005)

DOI: 10.7554/eLife.17092.026

Finally the thermal age (Timeyr@10˚C) for each sample was calculated by examining the

offset from 10˚C at each time interval in the long-term temperature record and calculating

the relative rate difference over this time interval using published kinetic parameters for

the target molecule (Appendix 1—Table 3). For every year the site is warmer than 10˚C, it
accumulates thermal years faster than chronological years, while thermal years (yr@10˚C)
accrue more slowly for every year when the site is cooler than 10˚C (e.g. Figure 1). To

estimate the decomposition of ostrich eggshell proteins we used a conservative (low)

activation energy, valine racemization (Crisp et al., 2013); the same diagenetic parameter

used as the independent variable in e.g. Figure 2.

Thermal age highlights the differences in protein preservation between Ellesmere Island

(MAT �19.7˚C) and Laetoli (MAT 18.7˚C), both sites which yield protein sequence, and

both of which are estimated to be > 3.5 Ma. When corrected for thermal age, Laetoli is

three orders of magnitude older than Ellesmere Island (Appendix 1—Table 4). This is

actually a smaller difference than might be anticipated from the current difference between
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the sites (MAT D 39˚C), as despite high latitude Pleistocene glacial stage cooling, Ellesmere

Island was much warmer during the Pliocene (Ballantyne et al., 2010).
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Appendix 2

Ostrich eggshell bleached proteome

Microstructure of OES layers
We characterised the microstructure and the proteins extracted from modern S. camelus

eggshell. The whole eggshell had a dimension of 25 cm in length with a diameter of 15 cm

and an average thickness of 2 mm. We also examined one specimen of fossil eggshell from

Laetoli: LOT 13898, a fragment.

The modern OES was first sectioned in three pieces using a diamond-blade saw. Cross-

sections of approx. 10 � 4 � 2/3 mm in size were cut off with a wheel for SEM observations.

Each cross section was manually polished down to approximately 50 mm thickness using a

diamond lapping pad (30 to 0.1 mm) and a tripod holder, allowing a transversal view of each

individual layer. The surface was slightly etched using 2% acetic acid to provide topography

to the surface. The cross and transversal sections were mounted in a SEM aluminium stub

covered by a sticky carbon pad. All samples were coated with a 10 nm Pt/Pd layer. Further,

a subsample from each modern OES layer was prepared by polishing off the rest of the layer

and then each individual layer was powdered and bleached for amino acid analyses. For the

modern OES a FEI Sirion FEG FESEM (field emission, high resolution Scanning Electron

Microscope) and for the Laetoli OES a JEOL JSM-7800 were used, both operated at 5 kV for

imaging, and 5 and 10 mm working distance respectively.

The modern OES presented a well-defined structure consisting of three structural calcitic

layers, as observed by others (Heredia et al., 2005; Figure 2—figure supplement 1). The

external layer (in contact with the environment) is the thin crystalline layer with little organic

content (Heredia et al., 2005). The middle layer is the palisade, and the innermost layer is

the mammillary/cone layer (Feng et al., 2001; Patnaik, 2009). The palisade and cone layers

contain organic components, both protein (Hincke et al., 1995) and polysaccharides

(Baker and Balch, 1962), which help hold the calcite crystals together

(Heredia et al., 2005). The SEM microphotograph of the cross section of the eggshell

showed that the thickness of the crystal layer is about 40 mm, the palisade layer is the thicker

with a thickness of 1200 mm and cone layer has a thickness of 750 mm. A deeper

understanding of the microstructure of each individual layer is gained by observations in the

direction perpendicular to the cross section. The crystalline layer is very compact and dense

with porosity distributed along its surface. The palisade layer consists of an agglomeration

of flakes more or less parallel to the surface of the eggshell; the cone layer consists of a pile

of elongated crystals perpendicular to the surface of the eggshell; the organic membrane

consists of a net of different fibres which lie parallel to the eggshell surface. Sample LOT

13898 from Laetoli (Figure 2—figure supplement 1A, right), attributed to S. kakesiensis, is

33% thicker than the modern S. camelus eggshell. It has been reported before

(Harrison and Msuya, 2005) that samples from the Upper Laetolil beds present a thickness

ranging from 2.5 to 4.4 mm. In this sample, the organic layer is not present, probably due to

degradation after deposition.

AAR analyses on OES layers (modern)
Total hydrolysable amino acids (THAA) were analysed on one bleached and one unbleached

modern eggshell subsample per microstructural layer (Appendix 2—table 1). While the

absolute concentrations were higher in unbleached eggshell for all layers (Figure 2—figure

supplement 1B), the overall amino acid composition is comparable between (a) bleached

and unbleached powders and (b) the different microstructural layers (Figure 2—figure

supplement 1C). This points towards a similar composition of the proteome enclosed in the

intracrystalline fraction of the three main microstructural layers of OES.

Demarchi et al. eLife 2016;5:e17092. DOI: 10.7554/eLife.17092 30 of 50

Research article Biochemistry Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.17092


Bleached OES proteomes characterized by LC-MS/MS
66 LC-MS/MS analyses were conducted as part of this study (York/Oxford dataset): 33 bleached

ostrich eggshell subsamples and 33 blanks. 71161 product ion spectra were matched to

known peptide sequences (excluding common contaminant proteins).

Ostrich eggshell proteome
The modern bleached OES yielded 273 unique protein descriptions.(Appendix 2—Table 2)

reports the most abundant protein groups, i.e. the ones identified on the basis of 20 or

more unique peptides. A Gene Ontology (GO) analysis showed that most proteins’ function,

cellular component and biological process are presently unknown, while 26 proteins are

associated with binding and 14 with catalytic activities.

Here we summarize the roles and main characteristics of the most abundant protein groups

found in the bleached eggshell proteome.

. Struthiocalcin-1 and struthiocalcin-2 are mineralization-specific C-type lectins originally

isolated and sequenced from OES matrices (Mann and Siedler, 2004); their structure and

role in eggshell biomineralization have been recently investigated (Sánchez-Puig, 2012;

Ruiz-Arellano and Moreno, 2014; Ruiz-Arellano et al., 2015).

. Aggrecan proteins are important constituents of the cartilage and this large aggregating

chondroitin sulfate proteoglycan binds to hyaluronic acid via an N-terminal globular region

and may regulate the matrix assembly of the cartilage (Kiani et al., 2002; Watanabe et al.,

1998).

. Vitelline membrane outer layer protein 1 (VMO1): the vitelline membrane outer layer in

hens is formed in the upper oviduct after ovulation. This membrane is a fibrous layer

constructed from ovomucin (with soluble proteins bound) and proteins vitelline membrane

outer layer I and II (Shimizu et al., 1994).

. Serum albumin (ALB) is the main protein of plasma, has a good binding capacity for water,

Ca2+, Na+, K+, fatty acids, hormones, bilirubin and drugs. Its main function is the regulation

of the colloidal osmotic pressure of blood (UniProtKB - P19121 (ALBU_CHICK)). It has been

identified as abundant in the eggshell of chicken, turkey and quail (Mann and Mann, 2015).

. The tenascin (TNC) family of glycoproteins is expressed in the embryo, particularly during

neural development, skeletogenesis, and vasculogenesis, and contains a serine-proline rich

domain (Jones and Jones, 2000). They appear to accelerate collagen fibril formation and

may play a role in supporting the growth of epithelial tumours (Egging et al., 2007).

. Carbonic anhydrase is a family of enzymes with diverse amino acid sequences and structures

that catalyse the slow conversion between carbon dioxide and bicarbonate (Liljas and

Laurberg, 2000). The presence of this enzyme in the hen’s reproductive tract was linked

very early to its role in making carbonate ions available for eggshell formation

(Robinson and King, 1963; Gutowska and Mitchell, 1945).

. Mucins (LOC 100859916)are gel-forming proteins that have been linked to biomineralization

in mollusc shells (Marin et al., 2000) and have been identified in eggshell membranes, most

recently in a proteomics study which identified a 1–10 fold increase of mucin 5AC in

fertilized egg membranes (Cordeiro and Hincke, 2016).

. Apolipoprotein D (APOD)is expressed in subsets of central nervous system neurons and glia

during late chicken embryogenesis (Ganfornina et al., 2005). APOD can bind cholesterol,

progesterone, pregnenolone, bilirubin and arachidonic acid in plasma and may be involved

in repairing the nervous system (Rassart et al., 2000).

. The antibody immunoglobulin from egg exists as IgG (or IgY) in yolk and as two forms in

egg white (IgA, IgM) (Abdou et al., 2013). The polymeric immunoglobulin receptor is

involved in the secretion of antibodies and was one of the proteins identified in the acid-
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soluble organic matrix of the chicken calcified eggshell layer additionally to the

immunoglobulins (Mann et al., 2006).

. Mesothelin (MSLNL) is expressed in eggshell membranes of fertilized chicken eggs

(Cordeiro and Hincke, 2016). This cell-surface differentiation antigen is normally expressed

at low levels in humans and is restricted to tissues such as the mesothelial cells lining some

body cavities and epithelial cells of kidney, tonsil, trachea, and fallopian tube; it is

overexpressed in and represents a marker for a range of tumours, including human and hen

ovarian cancer (Yu et al., 2011).

. Golgi apparatus protein 1 or cysteine-rich fibroblast growth factor receptor was isolated in

chick embryos (Burrus and Olwin, 1989); it is located in the Golgi and may be involved in

intracellular fibroblast growth factor trafficking and the regulation of cellular responses to

these (Zuber et al., 1997).

. Stanniocalcin-1 is a member of the stanniocalcins family, present in all vertebrates and linked

to calcium homeostasis but also to embryogenesis and tumorigenesis

(Trindade et al., 2009).

. Ovomucoid (IOVO) is one of the major egg white proteins; it is a glycoprotein protease

inhibitor well-characterized in chicken, turkey and quail (Mann and Mann, 2015).

. Serotriflin belongs CRISP family protein with binding affinity for small serum protein-2 in

snake serum (Aoki et al., 2008). BLAST analysis shows that serotriflin-like proteins have

been identified in the genomes of 39 Archosauria. In ostrich the cysteine-rich secretory

protein 2 (gene: N308_13534) displays 54% identity with snake serotriflin (P0CB15

CRIS_PROFL).

. Delta and Notch-like epidermal growth factor-related receptor (DNER)is a calcium-binding

clathrin-binding protein linked to central nervous system development (GO term).

. BPI (bactericidal permeability-increasing) fold-containing family B member 4 is a lipid-

binding protein identified in fertilized eggshell membrane of chicken (Cordeiro and Hincke,

2016). It shares sequence homology with ovocalyxin-36 (OCX-36), which has an immune role

(Cordeiro et al., 2013). In S. camelus this protein (gene: N308_11956) shares only 37%

identity with chicken OCX-36 (BLASTp), although this is likely due to missing regions of

OCX-36. BLAST analysis also identified the uncharacterized protein LOC104140623 as a

homologue to BPI-fold-containing family B member 4.

. Pigment epithelium-derived factor (PEDF) or serpin F1 (SERPINF1) is a non-inhibitory serpin

and neurite-promoting factor. Human SERPINF1 and ostrich PEDF share 63% identity

(BLAST analysis).

. Prosaposin (P07602|SAP_HUMAN) shares 56% identity with Struthio proactivator

polypeptide (saposin A-D precursor); prosaposin is also found in chicken eggshell cuticle

(Rose-Martel et al., 2012) and is abundant in the calcified eggshell of quail, turkey and

chicken (Mann and Mann, 2015). The saposins are involved in lysosomal sphingolypid

metabolism and bind glycolipids (Mann and Mann, 2015).

. Pantetheinase-like isoform X1 (gene N308_06452 in Struthio camelus australis, 67% identity

with human pantetheinase) is an amidohydrolase involved in the dissimilative pathway of

CoA (Maras et al., 1999).

. Beta-microglobulin (B2M) is involved in folding of the eggshell matrix proteins (Nys et al.,

2011) and was identified in the calcified chicken eggshell (Mann et al., 2006) and in the

membranes (Cordeiro and Hincke, 2016).

. Cygnin is a small basic protein found in 62 bird genomes and analogue to Duck Basic Protein

Small 2 isolated from duck egg white and shown to perform multiple biological functions

related to reducing the risk of diseases usingin vitro experiments (Naknukool et al., 2011).

. Signal peptide CUB and EGF-like domain-containing protein 1 partial (SCUBE1) binds

calcium and may function as an adhesive molecule; it is involved in post-embryonic
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development and the Struthio analogue (gene: N308_04062) shares 83% of its sequence

with human SCUBE1.

. Ovalbumin (OVAL) is abundant both in egg white, in eggshell membranes and the calcified

layers of a range of birds (Mann et al., 2006; Mann and Mann, 2015; Cordeiro and Hincke,

2016). Ovalbumin was found to stabilize the liquid precursor phase of calcium carbonate

(Wolf et al., 2011).

. Ovostatin-like (ovomacroglobulin) in Struthio shares 80% of its sequence with chicken

ovostatin (OVST). Ovostatin is a proteinase inhibitor which reduces enzyme activity in the

presence of high-molecular weight substrates.

Appendix 2—table 2. 30 major protein groups identified in bleached modern OES (>20 unique

peptides only).

Protein
group Accession

-
lgP

Coverage
(%) #Unique Description

1 gi|46396750 344 100 346
RecName: Full = Struthiocalcin-1;
Short = SCA-1

2 gi|46396751 293 98 222
RecName: Full = Struthiocalcin-2;
Short = SCA-2

7
gi|697501075, gi|
678217626

281 39 208
Aggrecan core protein [Struthio camelus
australis]

8 gi|697508924 268 88 126
Vitelline membrane outer layer protein 1-
like [Struthio camelus australis]

10 gi|697509029 268 80 113
Serum albumin-like [Struthio camelus aus-
tralis]

13 gi|697455783 246 40 89
Tenascin isoform X3 [Struthio camelus
australis]

11 gi|697477202 234 75 84
Carbonic anhydrase 4 [Struthio camelus
australis]

14 gi|697481828 237 15 82 Mucin-5AC [Struthio camelus australis]

9
gi|697523391, gi|
678221588

228 69 77
Apolipoprotein D [Struthio camelus aus-
tralis]

12 gi|375162648 231 75 76
Immunoglobulin A heavy chain constant
region secretory form partial [Struthio
camelus]

15
gi|697470179, gi|
697470177

213 51 63
Mesothelin isoform X1 [Struthio camelus
australis]

22
gi|697433909, gi|
678206587

195 40 45
Golgi apparatus protein 1 [Struthio came-
lus australis]

17 gi|375162644 192 63 42
immunoglobulin M heavy chain constant
region secretory form partial [Struthio
camelus]

19
gi|678209093, gi|
697441180

197 66 41
Stanniocalcin-1 partial [Struthio camelus
australis]

18
gi|697514088, gi|
678219803

197 86 39 Ovomucoid [Struthio camelus australis]

20 gi|697488611 191 89 39 Serotriflin-like [Struthio camelus australis]

21 gi|678214778 192 42 38
Delta and Notch-like epidermal growth
factor-related receptor partial [Struthio
camelus australis]

23
gi|697475278, gi|
697475274, gi|
697475280

192 41 37
Polymeric immunoglobulin receptor
[Struthio camelus australis]

26 gi|697430975 181 33 33
BPI fold-containing family B member 4-like
[Struthio camelus australis]

Appendix 2—table 2 continued on next page
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Appendix 2—table 2 continued

Protein
group Accession

-
lgP

Coverage
(%) #Unique Description

25 gi|697430936 161 42 32
Uncharacterized protein LOC104140623
[Struthio camelus australis]

31
gi|697485873, gi|
678214846

172 68 28
Pigment epithelium-derived factor
[Struthio camelus australis]

28
gi|697430934, gi|
678205748

153 34 26
BPI fold-containing family B member 4-like
[Struthio camelus australis]

29 gi|697432918 172 41 26 Prosaposin [Struthio camelus australis]

16 gi|375162654 178 96 24
immunoglobulin lambda constant region
partial [Struthio camelus]

30
gi|697522911, gi|
697522913, gi|
697522916

172 50 22
Pantetheinase-like isoform X1 [Struthio
camelus australis]

24 gi|697446419 165 71 22
Beta-2-microglobulin [Struthio camelus
australis]

27
gi|678210026,gi|
678210025

154 63 22 Cygnin [Struthio camelus australis]

34 gi|678216365 173 31 21
Signal peptide CUB and EGF-like domain-
containing protein 1 partial [Struthio ca-
melus australis]

32 gi|697492053 143 42 21
Ovalbumin {ECO:0000303|
PubMed:21058653} [Struthio camelus aus-
tralis]

37 gi|697505689 147 13 20 Ovostatin-like [Struthio camelus australis]

DOI: 10.7554/eLife.17092.029
Common contaminants in bleached OES
The common contaminant proteins identified in bleached OES samples and the procedural

blanks are reported in Appendix 2—Table 3. The enzymes trypsin and elastase are

detected in all samples except in the Laetoli subsamples: one of these was prepared without

digestion step (13901N), while all the other subsamples were digested with trypsin or

elastase but analysed separately by LC-MS/MS. Keratins were also detected in all samples,

despite the thorough cleaning procedures adopted (including a long bleaching step). This

highlights the need for careful evaluation of ancient protein data from fossil samples.

Appendix 2—table 3. List of contaminant proteins detected in the 66 analyses, with total

number of spectra identified per protein.

Row labels Count of #Spec

sp|TRYP_PIG| 771

sp|K2C1_HUMAN| 493

Chymotrypsin-like elastase family member 1 OS = Sus scrofa GN = CELA1 PE = 1 SV = 1 422

sp|K1C9_HUMAN| 301

sp|K1C10_HUMAN| 216

sp|K22E_HUMAN| 213

sp|TRFE_HUMAN| 98

sp|ALBU_HUMAN| 94

PREDICTED: keratin type II cytoskeletal cochleal isoform X1 [Struthio camelus australis] 80

PREDICTED: keratin type II cytoskeletal cochleal isoform X2 [Struthio camelus australis] 32

PREDICTED: keratin type II cytoskeletal 5-like [Struthio camelus australis] 25

sp|RS27A_HUMAN| 23

Keratin type II cytoskeletal 75 partial [Struthio camelus australis] 20

Appendix 2—table 3 continued on next page
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Appendix 2—table 3 continued

Row labels Count of #Spec

sp|GFP_AEQVI| 19

sp|TRY1_BOVIN| 19

Keratin type II cytoskeletal cochleal partial [Struthio camelus australis] 16

PREDICTED: keratin type II cytoskeletal cochleal isoform X3 [Struthio camelus australis] 16

sp|ANT3_HUMAN| 8

sp|HBB_HUMAN| 8

Keratin type II cytoskeletal 75 [Struthio camelus australis] 5

sp|TRFL_HUMAN| 5

Keratin type I cytoskeletal 14 partial [Struthio camelus australis] 3

PREDICTED: keratin type II cytoskeletal 4-like [Struthio camelus australis] 3

sp|HBA_HUMAN| 3

sp|K1C15_SHEEP| 2

sp|GSTP1_HUMAN| 1

DOI: 10.7554/eLife.17092.030
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Appendix 3

Computational
Conventional molecular dynamics (MD) was used to explore possible protein–calcite binding

geometries. In order to determine the most likely structure of SCA-1 and SCA-2 in solution,

initial structural estimates were obtained from crystal structures. The model structure for

SCA-2 was obtained using a homology model (Biasini et al., 2014) based on the published

crystal structure (Ruiz-Arellano et al., 2015). Calcite structures were optimized using the

Raiteri forcefield (Raiteri et al., 2010), selected due to its parameterization against the free

energy of dissolution of calcium carbonate, which provides reliable descriptions of the

structuring and interactions between water and the surface. The resultant structures

possessed the known density of calcite, 2.71 g/mL, and their exposed surfaces maintained

the (10.4) structure. Since the calcite blocks were of sufficient thickness, it was not necessary

to freeze the atoms in the middle of the calcite block. Charges for SCA-1 and SCA-2 were

calculated using Mulliken charges obtained from the AMBER Antechamber program

(Wang et al., 2004). The overall charges for SCA-1 and SCA-2 were determined to be �11

and �10 respectively using the Avogadro code (Hanwell et al., 2012) at pH 8.0 to 10, the

point of zero charge for calcite. Cross terms for the interaction of the atoms within the

protein and peptide molecules were calculated using Lorentz-Berthelot mixing rules

(Lorentz, 1881; Berthelot, 1898); cross terms for interactions between the protein and

peptide molecules and the calcium carbonate surface were taken from the Raiteri potential

(Raiteri et al., 2010) or otherwise fitted via scaling methods based on the charge

differences of the ions as described previously in the literature (Freeman et al., 2007;

Schröder et al., 1992). A mean cut-off of 12 Å was used for van der Waals interactions. All

calculations were performed using the DL POLY Classic program (Todorov et al., 2006).

The surface unit cell for the (10.4) surface was defined by two perpendicular vectors of

length 83.544 Å, which gives a total surface area of 6979 Å2, sufficient to accommodate the

proteins or the peptide sequences. A block of 10 layers of calcite was used (giving a

thickness of 32 Å). The water layer was a depth of 82 Å (about 30,000 water molecules),

which is sufficient for an adequate coverage of the biomolecules.

Since performing full adsorption studies of these proteins in every possible binding

configuration was not computationally tractable, it was necessary to perform an initial study

of the relative binding energies of the proteins placed at the surface in various

configurations. This was accomplished by performing Euler transformations on the proteins,

rotating them in 5 degree increments over the angles alpha, beta, and gamma from 0 to 180

degrees. The reoriented protein was then placed at the calcite surface with 30,000 TIP3P

water molecules, providing a water density of 0.99 g/mL, and subjected to an energy

minimization routine in DL POLY Classic with the calcite block held rigid. Five calcium

counterions were placed in each solution with one additional sodium counterion needed for

SCA-1.

This enabled us to choose low energy configurations for more detailed investigation.

Binding energy calculations were performed using the following set of simulations upon

each: protein/amino acid sequence in aqueous solution, protein/amino acid sequence

starting in an unbound position above the surface and adsorbing onto the surface and a

simulation of the protein/amino acid sequence in aqueous solution bound to the surface. If

compared to simulations of the calcite-water interface and pure water itself, it is possible to

obtain information based solely upon the interaction of these proteins/amino acid

sequences and the surfaces. The following equations were used, employing configurational

energies in all cases:
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EðaqueousÞ ¼ Eðmolecule; aqueousÞ�EðwaterÞ�EðmoleculesÞ (1)

Eðmolecule; bindingÞ ¼ Eðmolecule;hydrated surfaceÞ � Eðhydrated surfaceÞ � Eðmolecule; aqueousÞ þ EðwaterÞ (2)

In Equations 1 and 2 the meaning of the symbols is as follows: EðaqueousÞ is the solvation

energy of the protein/amino acid sequence in water; Eðmolecule; aqueousÞ is the total energy of

the molecule in water; EðwaterÞ is the energy of a box of water containing the same number of

water molecules as the calculation for Eðmolecule; aqueousÞ to ensure Equation (2) is balanced;

and EðmoleculeÞ is the energy of the protein/amino acid sequence molecule in vacuum;

Eðmolecule; bindingÞ is the energy of binding of the molecule to the surface; Eðmolecule; hydrated surfaceÞ

is the total energy of the molecule on the surface in the presence of water; Eðhydrated surfaceÞ is

the energy of the hydrated surface with the same number of calcium carbonate units as the

previous calculation.

Additionally we have estimated the entropic contribution to the molecular binding arising

from the displacement of water molecules from the surface to bulk water. From our previous

work (Freeman and Harding, 2014) we expect this to be the dominant contribution to the

entropy of binding for molecules of this kind. Our results show that the number of water

molecules displaced is in the range 20.2–23.1 for the proteins and 6.6–8.3 for the amino acid

sequences. This corresponds to an entropic contribution of 36.4–41.6 kJ mol�1 for the

proteins and 11.8–14.9 kJ mol�1 for the amino acid sequences at 300 K, sufficiently small to

justify the use of configurational energies in this work to estimate the strength of binding. It

should also be noted that a smaller, negative contribution to the entropy is expected from

the reduced freedom of motion of the protein/amino acid sequences at the calcite surfaces,

which is considered to be constant between all binding profiles and expected to be smaller

than that of many water molecules.

Simulations of these protein/amino acid sequences in water were performed by studying

each of the systems for 10 ps in steps of 10 K from 10 K to 330 K. The lowest energy

configurations of these proteins/amino acid sequences in aqueous solution were obtained

from averages of 3 separate simulations over 3 ns of simulation time post equilibration at a

temperature slightly above that used for other experiments, 330 K, which was selected as an

efficient method to explore configurations at energies near the lowest energy configuration

without having to resort to more expensive methods such as replica exchange or

metadynamics. These structures were utilized for further calculations on surfaces, and for

calculations in aqueous solution at 300 K. It was found that at this given temperature these

protein/amino acid sequences would adopt a low energy conformation within approximately

500 ps and would not vary in energy by more than 5% of the total energy during the

remainder of the simulation. 3 ns of simulation time at 300 K with a 1 fs timestep was

sufficient to provide acceptable statistics for analysis. The simulations were performed at a

constant volume (NVT ensemble) employing a Nose-Hoover thermostat with a relaxation

time of 1 ps. For the systems containing surfaces, the lowest energy configuration of each

protein or peptide sequence is placed such that the nearest atom to the surface is within 3 Å

of the surface to ensure absorption to the surface within a reasonable timeframe (accounting

for the slow kinetics of molecules diffusing through the adsorbed water layers) and again

simulated for 3 ns. Molecules were placed at this distance due to the large barriers to

crossing the organized water layers at the surface.

Water residence times were calculated and averaged within 1.1 Å regions surrounding

atoms comprising each individual amino acid within the sequences identified as being most

likely to be present at the surface during protein binding to calcite. Water residence times

were calculated by fitting survival probability functions as defined below:
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PaðtÞ ¼
XNw

j¼1

1

N�mþ 1

Xm

n¼1

pa jðt0; t0 þ t=;dtÞ (3)

where t ¼ mdt and t0 ¼ ndt. The binary function Pajðt0; t0 þ t0; dtÞ takes the value of 1 when

the water molecule remains within the shell defined by a during both times t0 and t0 þ t0 and

is otherwise equal to zero. t is set to 0.1 ps; N is the total number of configurations

produced during the molecular dynamics simulation and Nw is the total number of water

molecules in the system. Average residence times can be obtained by fitting these functions

to a simple exponential assuming a single relaxation time, Pat ¼ P0 expð�t=tÞ. The values

were further averaged for each amino acid in the relevant amino acid sequences in order to

get an estimate of how much each amino acid within the sequence affected water mobility

within its sphere of influence.

Loss of entropy of water molecules
We provide a conservative estimate of the loss of entropy due to surface stabilization in the

main text. However, this might be even more significant than estimated, as suggested by

further computational examination of the water on the mineral surface around the peptides,

which shows that this value may underestimate the total entropy loss of the water molecules.

The average residence time for the water molecules (120 ps) increases in the presence of the

peptides (Table 2), particularly with the tightest binding peptide sequence (with the DDDD

component) to 135 ± 3 ps. We also examined the self-diffusion coefficients of the water

molecules in the different environments present within these simulations. In a simulation of

pure water, the diffusion coefficient for TIP3P water is approximately 6 � 10�9 m2s�1, a

value which drops significantly for molecules bound near the surface to approximately 1 �

10�9 m2s�1. For water molecules trapped between SCA-1 or its substituent peptides and

the calcite surface, this diffusion coefficient is of the order of 1 � 10�10 m2s�1.
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Appendix 4

Degradation patterns

A. AAR on archaeological OES
Here we report the results of chiral amino acid analyses on all OES samples included in this

study. All FAA and THAA D/L values increase with increasing age of the samples (estimated

from the numerical dates obtained on the archaeological layers and reported in Tables 3–

7). The extent of hydrolysis (estimated as the percentage of free amino acids: FAA = [FAA]/

[THAA]*100) also increases with time, although the values are more variable than the DL

ratios, mainly due to imprecisions in the measurement of the small masses and volumes

involved. (Appendix 4—table 1 and 2) report the amino acid racemization (D/Ls and % FAA

data) for all samples analysed in this study. Thermal age estimates are also reported for each

sample.

Appendix 4—table 1. D/L values of archaeological OES samples analysed in this study. b =

bleached; H* = THAA obtained by 24-hr acid hydrolysis; F = FAA. Ile A/I values could not be

calculated for Laetoli samples due to the presence of a compound co-eluting with

D-alloisoleucine. Analytical errors measured on replicate analyses are <5% (D/Ls: Asx = 0.54%;

Glx = 1.18%; Ala = 3.94%; Val = 2.09%; Ile = 3.77%. Concentrations: Asx = 3.80%; Glx = 3.81%;

Gly = 4.89%; Ala = 3.67%; Val = 3.98%; Ile = 3.63%). (H) Sample 4605 yielded high D/L values

because this sample had been exposed to high temperatures in the burial environment (burning

[Crisp, 2013]). Note: thermal age calculations were performed on the basis of the Hansen model

(Hansen et al., 2013); due to the absence of more continuous record for younger (last 2000

years) samples in the Hansen record, the Elands Bay Cave time points <1600 years refined using

the SST record from core MD02-2594 - Dyez14 (Dyez et al. 2014).

LOT NEaar Asx D/L Glx D/L Ala D/L Val D/L Ile A/I Thermal age (years)

1868 6887bH* 0.291 0.061 0.066 0.075 0.052 401�564

1868 6887bF 0.346 0.074 0.119 0.098 0.076

1872 6888bH* 0.268 0.056 0.061 0.025 0.032 1313–1932

1872 6888bF 0.212 0.079 0.100 0.000 0.000

1866 6889bH* 0.278 0.057 0.066 0.028 0.052 3962�5704

1866 6889bF 0.331 0.062 0.116 0.000 0.076

1849 6891bH* 0.414 0.095 0.142 0.053 0.081 19,759–27,951

1849 6891bF 0.555 0.136 0.226 0.138 0.169

1850 6893bH* 0.524 0.141 0.215 0.080 0.133 19,759–27,951

1850 6893bF 0.698 0.177 0.368 0.166 0.254

1823 6896bH* 0.462 0.117 0.185 0.073 0.091 25,657–36,249

1823 6896bF 0.621 0.161 0.301 0.158 0.208

1819 6899bH* 0.714 0.222 0.317 0.112 0.184 26,878–37,877

1819 6899bF 0.806 0.294 0.442 0.217 0.332

1840 6907bH* 0.469 0.123 0.187 0.095 0.122 32,379–44,863

1840 6907bF 0.665 0.171 0.327 0.168 0.241

4605(H) 7198bH* 0.866 0.717 0.840 0.525 0.708 166,094–198,795

4605(H) 7198bF 0.931 0.782 0.931 0.692 0.955

4613 7676bH* 0.661 0.226 0.411 0.210 0.269 122,139–148,223

4613 7676bF 0.800 0.345 0.570 0.349 0.472

4649 7283bH* 0.712 0.314 0.500 0.255 0.320 151,169–181,807

4649 7283bF 0.846 0.380 0.729 0.428 0.590

Appendix 4—table 1 continued on next page
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Appendix 4—table 1 continued

LOT NEaar Asx D/L Glx D/L Ala D/L Val D/L Ile A/I Thermal age (years)

4652 7286bH* 0.678 0.277 0.463 0.233 0.302 168,899–202,088

4652 7286bF 0.822 0.355 0.698 0.391 0.528

4671 7316bH* 0.681 0.270 0.468 0.242 0.299 166,094–198,795

4671 7316bF 0.863 0.339 0.687 0.384 0.577

4675 7320bH* 0.687 0.279 0.494 0.279 0.330 192,147–230,607

4675 7320bF 0.832 0.321 0.688 0.423 0.590

4683 7328bH* 0.764 0.392 0.676 0.373 0.505 378,398–467,602

4683 7328bF 0.879 0.425 0.821 0.523 0.737

4697 7342bH* 0.752 0.388 0.653 0.368 0.497 378,398–467,602

4697 7342bF 0.904 0.659 0.920 0.777 0.973

14426 10581bH* 0.730 0.870 0.855 0.855 0.985 3,238,624–4,188,207

14426 10581bF 0.790 0.930 0.960 1.010 1.280

15575 10955bH* 0.860 1.035 0.981 1.001 >1.2 14,387,543–18,460,416

15575 10955bF 0.924 1.001 0.961 1.005 >1.2

15578 10958bH* 0.891 1.040 0.984 1.007 >1.2 14,387,543–18,460,416

15578 10958bF 0.916 1.009 0.960 0.999 >1.2

15579 10959bH* 0.811 1.021 0.965 1.007 >1.2 14,387,543–18,460,416

15579 10959bF 0.926 1.006 0.969 1.005 >1.2

15582 10962bH* 0.881 1.033 0.976 1.012 >1.2 14,387,543–18,460,416

15582 10962bF 0.915 1.002 0.947 1.016 >1.2

13902 10573bH* 0.965 1.050 0.925 1.12 >1.2 13,764,246–18,893,425

13902 10573bF 0.935 1.030 0.925 1.065 >1.2

13901 10574bH* 0.920 1.040 0.945 1.16 >1.2 8,943,148–11,841,107

13901 10574bF 0.935 1.015 0.930 1.08 >1.2

13898 10575bH* 0.945 1.050 0.930 1.17 >1.2 14,746,875–20,367,942

13898 10575bF 0.935 1.010 0.930 1.095 >1.2

DOI: 10.7554/eLife.17092.031

Appendix 4—table 2. %FAA values (%FAA = [FAA]/[THAA] * 100). b = bleached. Total% FAA

for Laetoli are calculated on the basis of Asx, Gly, Ala, Val only. * [Ala] and [Gly] > 100% are

likely due to the effect of decomposition of other amino acids to FAA Gly and FAA Ala (e.g.

Ser) (Walton, 1998). (H) Sample 4605 had been exposed to high temperatures in the burial

environment (burning) (Crisp 2013).

LOT NEaar Asx Gly Ala Val Ile Average

1868 6887 7 16 18 19 6 13

1872 6888 4 11 10 3 2 6

1866 6889 18 35 39 15 13 24

1849 6891 26 41 41 21 18 30

1850 6893 17 14 57 34 30 30

1823 6896 36 41 47 23 21 34

1819 6899 22 45 56 31 28 36

1840 6907 18 40 51 26 23 32

4605(H) 7198 70 74 83 61 56 69

4613 7676 53 57 66 44 41 52

Appendix 4—table 2 continued on next page
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Appendix 4—table 2 continued

LOT NEaar Asx Gly Ala Val Ile Average

4649 7283 49 49 63 40 39 48

4652 7286 48 47 61 42 40 48

4671 7316 50 61 72 47 45 57

4675 7320 62 59 74 48 47 58

4683 7328 90 71 91 64 66 76

4697 7342 55 83 96 64 58 71

14426 10581 50 122* 138* 90 84 97

15575 10955 53 47 55 46 n/a 50

15578 10958 70 62 72 62 n/a 67

15579 10959 29 27 31 26 n/a 28

15582 10962 78 62 74 64 n/a 69

13902 10573 74 64 82 65 n/a 71

13901 10574 88 78 92 74 n/a 83

13898 10575 87 76 93 73 n/a 82

DOI: 10.7554/eLife.17092.032

B. Proteome persistence and patterns of degradation

Fossil OES
Systematic analyses of the bleached proteomes surviving in sub-fossil OES shows that:

1. The complexity of the proteome decreases with increasing age of the sample (using the

extent of racemization of Val, a slow racemizer, as a proxy for time).

2. The loss of proteins (number of identified product ion spectra; number of identified proteins)

follows an exponential pattern over time.

3. The major proteins identified in modern OES are excellently preserved in samples up to

150,000 years old (Val THAA D/L ~0.5).

4. Beyond Val D/L ~0.5, quasi-exponential degradation of the proteome proceeds and only the

main mineralization proteins, SCA-1 and SCA-2, are detected in the OES analysed from

Wonderwerk and Laetoli.

5. The average length of the peptides identified appears to be stable (10–12 amino acids)

across all samples, but the characteristics of the amino acid residues change drastically in the

oldest samples, with mean hydropathicity index up to �17, due to the preferential

preservation of ’DDDD’-containing peptides.

Purified OES proteome heated at 140˚C
The major proteins identified from the organic fraction extracted by demineralization of

bleached OES and, once purified and lyophilized, heated at high temperature (140˚C) for 2,
8, 24 and 120 hr are a subset of the sequences identified in modern and fossil OES powders.

SCA-1 and SCA-2 are the dominant proteins, followed by the vitelline-membrane outer layer

protein 1, von Willebrand factor, immunoglobulin and apolipoprotein D. SCA-1 and SCA-2

do not survive beyond 8 hr heating, while peptide sequences from other proteins were

identified in samples heated for 24 hr. However, this is likely to be arising from

contamination, due to lengthy and more complex sample preparation. No peptides were

detected in the 120-hr heated sample.

Figure 2—figure supplement 2(C–F) shows that while degradation proceeds rapidly

andfollows an exponential trajectory (as for fossil OES), the peptides surviving

duringaccelerated diagenesis in water display increasing hydrophobicity, contrary to that
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observed in OES fossil eggshell. This difference offers further support to the hypothesis that

mineral binding of charged (acidic) peptides is key for survival.

Appendix 4—table 3. : Proteins identified in the purified extract from bleached OES, heated at

140˚C in ultrapure water for 2, 8, 24 and 120 hr (identified by at least 2 unique peptide

sequences). Values are number of peptide sequences identified.

Protein description
2
hr

8
hr

24
hr

120
hr Total

RecName: Full = Struthiocalcin-1; Short = SCA-1 295 21 316

RecName: Full = Struthiocalcin-2; Short = SCA-2 124 8 132

Vitelline membrane outer layer protein 1-like [Struthio camelus
australis]

22 2 24

von Willebrand factor partial [Struthio camelus australis] 20 20

immunonoglobulin heavy chain variable region partial [Struthio
camelus]

18 18

Apolipoprotein D [Struthio camelus australis] 14 2 16

Mitogen-activated protein kinase MLT [Struthio camelus australis] 7 9 16

Aggrecan core protein [Struthio camelus australis] 13 13

iron binding protein [Struthio camelus] 9 9

Histone H4 [Struthio camelus australis] 4 4 8

Cyclin-K [Struthio camelus australis] 7 7

BPI fold-containing family B member 4 partial [Struthio camelus
australis]

4 2 6

Histone H2B 1/2/3/4/6 [Struthio camelus australis] 3 3 6

Complement C3 [Struthio camelus australis] 2 3 5

PREDICTED: histone H2B 1/2/3/4/6 [Struthio camelus australis] 2 2 4

PREDICTED: polymeric immunoglobulin receptor [Struthio camelus
australis]

3 3

Carbonic anhydrase 4 partial [Struthio camelus australis] 2 2

DOI: 10.7554/eLife.17092.033

C. Persistence of SCA-1 and SCA-2

Fossil OES
Figure 3—figure supplement 1 displays the combined spectral count for the sequence of SCA-

1. Unmodified peptides, as well as peptides with modifications, were considered for

all samples. This allows us to visualize the frequency (intensity) at each amino acid position

and to identify patterns of survival in time. It is obvious that the occurrence of diagenesis-

induced modifications (e.g. deamidation) increases over time (see also Supplementary file

3), and that samples older than 150,000 years display a striking pattern of preservation, with

the only low-frequency region detected consistently being the ’DDDD-’ containing peptides.

The main features of the protein structure also highlight that highly-structured regions are

not preferentially preserved and that the DDDD-motif is part of a highly flexible (disordered)

domain.

Figure 3—figure supplement 2 shows the degradation pattern of the second major protein

in OES: SCA-2. Similarly to SCA-1, modifications increase in frequency over time, and

the overall frequency decreases. SCA-2 is however not detected with high confidence in

samples older than 150,000 years old. Furthermore, the 150-ka old SCA shows two main

regions surviving: one, around positions 45�55, contains an ’EEE’ motif and broadly

corresponds to peptide ASIHSEEEHQAIV, investigated computationally; the second, around

positions 72–82, follows another E-rich region (corresponding to peptide SDSEEEAGEEVW

investigated computationally) but contains instead a ’VWIG’ motif that is highly conserved in

all C lectins sequenced in biomineralized organisms (eggshell, sea-urchin spicules). By
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analogy with the structure of SCA-1, it is likely that this region is helical. Therefore, this

points towards two preservation mechanisms: mineral-binding (’EEE’ region) and

dehydration (’VWIG’). Dehydration is also observed (water loss) as PThigh frequency in this

region, further supporting this hypothesis

Extracted OES matrix heated at 140˚C
SCA-1 and SCA-2 were not detected in OES matrix heated for 24 hr and 120 hr. Therefore here

we show the results from the 2 hr and 8 hr heating experiments (Figure 3—figure

supplement 1 and 2).

Around 50% of the sequence of SCA-1 survives 2 hr heating at 140˚C in the absence of the

mineral phase; the regions covered with higher frequency are: around residues 40�50,

between two beta strands; and around residues 83–100, thus containing the D93-D96 motif.

The dominant modification in this region, rather counter-intuitively, is water loss (�18.01

Da). By 8 hr heating this region is however almost disappeared; the AHLASIHT peptide (38–

45) between the two alpha-helices is the most long-lived SCA-1 region when accelerated

diagenesis takes place in water. SCA-2 appears to survive better during the experiment;

most of the sequence can be detected after 8 hr heating, albeit with low spectral counts.

Overall, the patterns of degradation of SCA-1 and SCA-2 in water, as well as the signal

detected from the whole OES matrix, are sufficiently different from those detected in fossil

OES to support the hypothesis that different preservation mechanisms and degradation

pathways operate in the OES and in aqueous environment (Figure 3—figure supplement 1

and 2). However, the survival of highly-acidic regions in SCA-1 combined with the frequency

of observed dehydration might also support the idea that these peptides stick to the glass

surface of the vial during the high-temperature experiments, and are thus protected from

the water.
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Appendix 5

Authenticity of the ancient sequences

A. Independent replication
In order to authenticate the fossil peptide sequences obtained from the oldest OES examined

in this study (from Laetoli) and to obtain any additional information on possible bias

introduced by our sample preparation and analytical methods, a subsample of bleached

powder from each OES (LOT 13901, 13902, 13898) was sent to the Proteomics Laboratory,

Center for Geogenetics, University of Copenhagen. The matrix was re-extracted and

analysed as detailed in the Materials and methods section.

The results from the three analyses were merged in a single MGF file and searched against

the Struthioniformes database using the same parameters as described for all other OES

samples considered in this study. For comparison, a search was also performed on all Laetoli

subsamples analysed in Oxford, combined in PEAKS to yield a single output deriving from

all fractions. The results are reported in and Appendix 5—table 1.

Two of us (JTO and BD) performed manual de novo identification of the sequences from raw

product ion spectra without prior knowledge of the PEAKS assignments

(Supplementary file 2 reports all the raw spectra, manually annotated).

Appendix 5—table 1. Peptides identified in all Laetoli OES samples, prepared in York (analysed

in Oxford) and Copenhagen. (*Gla) = this residue was found to be in the decarboxylated form,

i.e. glutamate residues that have been post-translationally modified by vitamin K-dependent

carboxylation to form gamma-carboxyglutamic acid (Gla), which binds calcium. We conducted

manual de novo analyses of all product ion spectra and determined either complete or partial

sequences for all of them, independently identifying sequences assigned (assisted de novo) by

the software (PEAKS Studio).

Sequence Protein Laboratory Score MS/MS count

AGAHLASIHTSEEHR SCA-1 Copenhagen 47.14 4

HYSALDDDDYPKGK SCA-1 Copenhagen 35.69 2

AGAHLASIH SCA-1 Copenhagen 31.45 3

ERNAFICK SCA-1 Copenhagen 28.12 1

GNCYGYFR SCA-1 Copenhagen 28.1 1

DVWIGLFR SCA-1 Copenhagen 26.38 5

ALDDDDYPK SCA-1 York 39.39 28

ALDDDDYPKG SCA-1 York 41.34 14

DDDDYPKGK SCA-1 York 40.79 3

DDDYPKGK SCA-1 York 32.89 1

HYSALDDDDYPK SCA-1 York 51.09 1

KHYSALDDDDYPK SCA-1 York 34.86 2

LDDDDYPK SCA-1 York 34.35 12

LDDDDYPKG SCA-1 York 35.3 6

LDDDDYPKGK SCA-1 York 35.66 3

SALDDDDYPK SCA-1 York 41.04 10

SALDDDDYPKG SCA-1 York 39.15 5

YSALDDDDYPK SCA-1 York 34.46 3

YSALDDDDYPKG SCA-1 York 31.9 3

RAEAWCR SCA-1 York 30.65 1

Appendix 5—table 1 continued on next page
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Appendix 5—table 1 continued

Sequence Protein Laboratory Score MS/MS count

CYGFFPQELSWR SCA-2 Copenhagen 30.98 1

KPFICEYRT SCA-2 Copenhagen 25.03 1

GE(*Gla)EVWIGLHRPLGR SCA-2 York 37.33 2

LDYGSWYR SCA-2 York 35.1 1

AGE(*Gla)EVWIGLHRPLGR SCA-2 York 34.64 2

DOI: 10.7554/eLife.17092.034

The results in Appendix 5—table 1 and Supplementary file 2 show that:

a. ’DDDD’-containing peptides are found in samples prepared in Copenhagen, providing

independent validation of the York results. However, the spectral count for these peptides

is higher in the York set.

b. Only one extra SCA-1 peptide (RAEAWCR, 26–32) was found in the combined York

samples, while five additional SCA-1 sequences (AGAHLASIHTSEEHR and AGAHLASIH,

ERNAFICK, GNCYGYFR, DVWIGLFR) were identified in the Copenhagen set. We attribute

this to different sample preparation protocols and to the larger sample size used in

Copenhagen.

c. SCA-2 peptides CYGFFPQELSWR, KPFICEYRT were detected in the Copenhagen set, while

GEEVWIGLHRPLGR/AGEEVWIGLHRPLGR and LDYGSWYR were detected in the York set.

The spectral count was low in both sets.

B. Amino acid analyses
All samples were analysed for chiral amino acids, and the concentrations were always well

above the limit of detection (Figure 4). Low concentrations in the oldest samples would

have indicated that contamination is likely even in a theoretically closed system, but our

values for Wonderwerk, Olduvai and Laetoli are ~150–200 times higher than the typical

blank values calculated on a normal RP-HPLC analytical run in the NEaar laboratory

(University of York) (Demarchi et al., 2011, 2015; Pierini et al., 2016). The concentration

values are typically affected by a larger error than D/L values due to calculation errors

introduced during sample preparation, explaining the variability observed. The Laetoli

samples retain between 50–70% of the amino acids measured in modern OES. While

leaching from the carbonate matrix cannot be completely excluded, in laboratory

diagenesis experiments this leaching amounts to only ~0.5% of the original THAA

concentration in 72-hr bleached modern OES heated at high temperature

(Crisp et al., 2013). Therefore, we attribute the observed loss to decomposition processes

affecting the amino acids in these highly-degraded samples. Furthermore, all D/L values

and% FAA (and Appendix 4—table 1and 2) are consistent with the age of the samples,

excluding the possibility that the proteins analysed are simply contamination.

C. Carry-over analysis
The analysis of procedural blanks analysed before and after each sample is fundamental for

evaluating the authenticity of the fossil sequences.

We detected low levels (low number of spectra) of actin, ubiquitin/polyubiquitin, aggrecan

core protein, vitelline membrane proteins, iron-binding protein, serotransferrin, von

Willebrand factor, BPI-fold containing family B member 4, tenascin, neuronal pentraxin,

apolipoprotein D, ovomucoid, serum albumin, endoplasmin, neural proliferation

differentiation and control protein 1 and tubulin in most of the LC-MS/MS blanks. More

significantly, both SCA-1 and SCA-2 were detected (high sequence coverage, high number
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of spectra) in blanks surrounding modern and fossil samples from Elands Bay Cave and

Pinnacle Point (Figure 4). As SCA-1 and SCA-2 are the two major proteins in OES and the

number of spectra in the blanks decreases with the age of the samples, this is indicative of

carry-over, i.e. high-abundance peptides from a sample being retained in the LC column

and being eluted during the successive blank run. This would obviously create a major

issue for any claims of ancient sequences from fossil samples. Indeed, SCA sequences

identified in blanks look remarkably similar to ’old’ sequences (Figure 4D), because

peptides with ion-binding characteristics (such as the ’DDDD’-containing peptide in SCA-1)

would also exhibit equal affinity for the solid phase of the LC column. In order to exclude

that the signal detected in ancient samples by LC-MS/MS may be due to carry-over we

took the following precautions:

1. A procedural blank was run before and after each sample and the signal obtained for

samples and blanks was compared directly in order to ensure that a 200x fold decrease in

signal intensity was observed

2. Modern OES was analysed in November 2014; Elands Bay Cave and Pinnacle Point samples

were analysed in December 2014

3. Subsamples from Laetoli were analysed in two separate batches, >4 months after the

Elands Bay Cave/Pinnacle Point series: April 2015 - 13901E, 13902T; June 2015: 13901T

and 13901N, 13902E, 13898E and 13898T. The results were replicated independently in

the separate analyses.

4. Wonderwerk OES was analysed in August 2015.

5. Olduvai OES was analysed in March 2016.

A more refined analysis was carried out on the blanks in order to estimate the extent of

carry-over, because spectral counts data only give limited quantitative information. Firstly,

two representative younger fossil samples (Elands Bay Cave LOT 1823 and Elands Bay

Cave LOT 1819) and the blank analysed between the two runs were considered. The total

ion chromatogram (Figure 4B) shows an obvious reduction in signal intensity between the

sample and the following blank.

The ion chromatogram (Figure 4E) for peptide LDDDDYPK was extracted and compared

for the three samples. The signal between the first sample and the blank decreases by a

factor of 1330, indicating that a similar further decrease is expected between the blank and

the following sample. However, in the following sample (EBC_1819) the signal intensity

increases by a factor of 1254 compared to the previous blank. Therefore, the extent of

carry-over is negligible but detectable by modern mass spectrometers, indicating that a

qualitative analysis is insufficient to address sample carry-over. The signal in the blank is

just above the threshold at which a MS/MS of this peptide is triggered, therefore the

likelihood of the further carried over peptide resulting in a MS/MS in the following (sample)

run is extremely low. As a consequence, the LDDDDYPK peptides identified in sample

EBC_1819 will all be genuine IDs.

For the Laetoli and Wonderwerk OES samples (Laetoli shown in Figure 4F), a more

thorough investigation was carried out using the software Progenesis QI (nonlinear

Dynamics, Waters) and generating XICs for all features in all samples after alignment in

order to obtain an estimate of the relative abundance of each identified peptide across

samples. The abundances of all ’DDDD’-containing peptides (derived from natural

cleavage, and trypsin/elastase digestion) in the April-15 and June-15 batches were

summed in order to compensate for the different ionization potential of different species.

These were then compared across samples and blanks and the fold changes calculated.

The calculated maximal carry-over was well below 1% and is likely to be lower due to poor

signal to noise ratios especially in the blank runs. Assuming that the carry-over from a blank

into the following sample is again 1%, the effective carry-over from sample to sample can

Demarchi et al. eLife 2016;5:e17092. DOI: 10.7554/eLife.17092 47 of 50

Research article Biochemistry Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.17092


be estimated to be below 0.01%. Therefore, this is further supporting evidence for the

authenticity of the peptide sequences in these samples.

D. Damage patterns
Post translational modifications (PTMs) of fossil proteins can result from diagenesis processes

and therefore the expected trend is one of increase with increasing age of the sample for

comparable amounts of sequence preservation. Labile PTMs originally present on the

molecule (e.g. phosphorylation) are however expected to be lost over time. Finally,

preparation-induced modifications (e.g. carbamidomethylation) should be found in all

samples, irrespective of their age, if that part of the sequence is intact. We examined the

patterns of PTMs in SCA-1 and SCA-2 for all the samples analysed in this study. The graphs

in Supplementary file 3 show that the most common PTMs in bleached OES are:

. Carbamidomethylation (57.02 Da) on cysteines, as a consequence of sample preparation

(reduction-alkylation of disulfide bridges)

. Deamidation (+0.98 Da) of Asn, Gln

. Decomposition of Arg to ornithine (�42.02 Da)

. Pyroglutamic acid formation from either N-terminal Gln or Glu by loss of ammonia/water

(�17.01 Da, 18.01 Da)

. Oxidation of Met, Trp, His (single/double: 15.99 Da, 31.99 Da), or hydroxylation of Lys, Pro,

Arg, Tyr (15.99 Da)

. Phosphorylation of Ser, Thr (79.97 Da)

. Amidation of the C-terminus (�0.98 Da)

Other modifications were also detected less frequently; the full list and position of each

PTM is given in Supplementary file 4. Low spectral counts from sample 4613 (Pinnacle

Point) result in lower PTM frequencies.

For SCA-1 diagenesis-induced modifications increase in frequency in fossil samples as

compared with modern samples, and then decrease for progressively older Pleistocene

samples due to loss of protein sequence preservation. This increases confidence in the

authenticity of these older sequences reported. SCA-2 shows a very similar pattern:

deamidation of Asn and Gln and oxidation of Met, Trp and His are clearly present

throughout, and their frequency increases with age (Supplementary file 3).

E. Volatiles
A number of peaks were present in the subfossil Laetoli sample that were not present in the

blank, which corresponded with sulfur-containing VOCs in particular. The GC/QTOFMS has

a mass resolution of <3 ppm, allowing extracted ion chromatograms to be used to isolate

these sulfur-containing hydrocarbons from the complex VOC mix. The mass spectra across

each suspected thiol / thioether peak were compared to the NIST MS library and the

similarity and reverse fits for identified species are shown in Appendix 5—table 2. These

values show how well the measured mass spectrum matches the library spectrum and are

given out of 1000. Due to the low concentrations, even after background subtraction,

some contaminant ions are still present, resulting in low similarity fits (comparison of the

measured to library spectrum). However, by using the reverse fit (where the library

spectrum is compared to the measured spectrum) much higher fits are achieved, since

background contaminant ions are ignored. Therefore, the sulfur-containing VOCs have

been assigned structures based on their accurate mass measurements, and whether the

MS similarity or reverse fits are greater than 700. The Kovats retention index order of the
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identified species is consistent with previous observations (NIST chemistry webbook),

increasing the certainty in the identifications.

The volatile S-containing alkanes identified, absent in the procedural blank, are consistent

with degradation of organic matter within a closed system under anoxic conditions, and

would not be retained over these timescales within an open system. The calcium carbonate

biomineral must therefore effectively form a closed system for the entrapped organic

material, enabling predictable degradation. Analysis of the volatile fraction therefore

confirmed both the extreme degradation observed by amino acid racemization and

predicted based on the thermal age, but also highlighted the superiority of ostrich

eggshell as a closed system.

Appendix 5—table 2. Crushed eggshell sulfur-containing VOC emissions from 2.7 Ma OES

(Laetoli LOT 13901). NA = no structural isomer can be determined.

Compound
Retention
time (min)

Measured
m/z

Chemical
formula

NIST MS
similarity

Reverse
fit

Ethane thiol/di-
methylsulfide

3.42 62.0196 C2H6S NA NA

Methylthioethane 5.59 76.0354 C3H8S 726 821

Diethylsulfide 8.24 90.0511 C4H10S 725 834

1-methylthiopropane 8.63 90.0509 C4H10S 646 721

Unknown isomer 8.86 104.0663 C5H12S NA NA NA

2-ethylthio-propane 9.66 104.0664 C5H12S 535 723

2-methyl-1-
(methylthio)-propane

10.26 104.0670 C5H12S 636 798

ethylpropylsulfide 10.85 104.0671 C5H12S 628 801

2-methyl-2-
(methylthio)-butane

11.89 118.0823 C6H14S 567 777

1-(ethylthio)-2-
methyl-propane

12.18 118.0824 C6H14S 817 856

2-methyl-3-
(methylthio)-butane

12.286 118.0823 C6H14S 600 820

Unknown isomer 12.791 118.0826 C6H14S NA NA

3-methyl-1-
(methylthio)-butane

12.821 118.0827 C6H14S 779 872

Appendix 5—table 2 continued on next page
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Appendix 5—table 2 continued

Compound
Retention
time (min)

Measured
m/z

Chemical
formula

NIST MS
similarity

Reverse
fit

Tetrahydro-2,5-di-
methylthiophene

13.06 116.0670 C6H12S 657 741

Tetrahydro-2,5-di-
methylthiophene

13.14 116.0670 C6H12S 622 707

DOI: 10.7554/eLife.17092.035

F. Ancient DNA
A single-stranded library was built (Gansauge and Meyer, 2013) and sequenced on an Illumina

HiSeq 2500. Of the 282,924 reads sequenced, 68,204 remained after quality filtering and

filtering for reads larger than 30 bp using AdapterRemoval (Lindgreen, 2012). Remaining

reads were mapped to an ostrich reference nuclear and mitochondrial genomes

(Zhang et al., 2015) using BWA-aln (Version: 0.7.5a-r405) with default settings (Li and

Durbin, 2009) and the results examined using SAMtools (Li et al., 2009). No sequences

were successfully aligned to the reference genomes.
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