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Abstract 
Among a wide variety of mass spectrometry (MS) methodologies available for structural 
characterizations of proteins, ion mobility (IM) provides structural information about protein shape 
and size in the form of an orientationally averaged collision cross-section (CCS). While IM data 
have been predominantly employed for the structural assessment of protein complexes, CCS data 
from IM experiments have not yet been used to predict tertiary structure from sequence. Here, we 
are showing that IM data can significantly improve protein structure determination using the 
modeling suite Rosetta. The Rosetta Projection Approximation using Rough Circular Shapes 
(PARCS) algorithm was developed that allows for fast and accurate prediction of CCS from 
structure. Following successful rigorous testing for accuracy, speed, and convergence of PARCS, 
an integrative modelling approach was developed in Rosetta to use CCS data from IM experiments. 
Using this method, we predicted protein structures from sequence for a benchmark set of 23 
proteins. When using IM data, the predicted structure improved or remained unchanged for all 23 
proteins, compared to the predicted models in the absence of CCS data. For 15/23 proteins, the 
RMSD (root-mean-square deviation) of the predicted model was less than 5.50 Å, compared to 
only 10/23 without IM data. We also developed a confidence metric that successfully identified 
near-native models in the absence of a native structure. These results demonstrate the ability of IM 
data in de novo structure determination. 
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Introduction 
Proteins are at the core of virtually all cellular processes. Therefore, comprehensive 

knowledge of protein structures with atomistic detail can be beneficial for several pharmaceutical 
applications such as vaccine design1, drug discovery2, 3, enzyme design4, self-assembling 
molecular machines5, and many more6. Mass spectrometry (MS) has become a prominent 
technique in the field of structural biology due to its ability to provide structural information for 
proteins and protein complexes. MS can be particularly beneficial because it is faster, can work 
for heterogeneous samples, can be used routinely at all stages of a project, and has fewer sample 
preparation complications compared to high-resolution techniques such as X-ray crystallography, 
cryo-electron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy. 
Several findings for protein structures in the gas phase also suggest that features such as elements 
of secondary structure, compactness and quaternary structure can be preserved during the 
transition from solution to desolvated state7-9. For these reasons, structural MS can be very 
beneficial particularly when high-resolution methods are not feasible10, 11. Various methods have 
been developed and coupled to MS to study protein structures12, 13 such as chemical crosslinking 
(XL)14, covalent labeling (CL)15, surface induced dissociation (SID)16 and other ion activation 
methods such as collision-induced dissociation (CID), electron capture/transfer dissociation 
(ExD), and ultraviolet photodissociation (UVPD), hydrogen-deuterium exchange (HDX)17 and ion 
mobility (IM)18. While such MS techniques may provide diverse details and routine analysis of 
structures, experimental data collected from experiments are sparse and cannot unambiguously 
determine atomic-resolution structure19. 

An alternative approach to experimental structure determination is to use computational 
modelling methods. These approaches, such as structure prediction from sequence or protein-
protein docking, can also provide insight into atomistic details of biomolecules but are frequently 
limited in accuracy due to the large conformational sampling space among other challenges20. 
While these methods can be successfully utilized in the absence of experimental data, sparse 
experimental data are often used to guide and improve modeling19, 21, 22. Experimental data from 
various MS techniques have recently proved pivotal within integrative structural biology 
frameworks14, 17, 23-40. 

In IM, ions are transferred into an inert gas chamber at a constant pressure and temperature 
under the influence of a weak electric field41, 42. This technique is regularly utilized to separate 
protein structures based on their shape and size. IM can also provide a rotationally averaged 
collision cross section (CCSIM) of the protein which is related to the amount of momentum 
exchanged between ion and buffer gas over the course of the collisions and can be thought of as 
somewhat like rotationally averaged cross sectional area43. Several methods have been developed 
to predict CCS from protein structure. Among these, the most physically realistic algorithms are 
the trajectory method (TJM)44, 45 and diffuse trajectory method (DTM)46 which integrate Newton’s 
equation of motion to calculate the classical scattering of gas particles. Both TJM and DTM 
explicitly account for long-range interactions through Lennard-Jones potentials to approximate 
momentum transfer from each gas particle to the collided ion. CCS obtained from these methods 
is extremely accurate45, but these calculations can be slow. Due to the high computational cost, 
prediction methods such as elastic hard sphere scattering47, projection superposition 
approximation (PSA)48, local collision probability approximation49 and projection approximation 
(PA)43 make further approximations on TJM, resulting in faster CCS calculations. Among these 
approximated methods, PA is the simplest and fastest, because it neglects the scattering and long-
range interactions43, 50. CCSPA only accounts for the collisions of a gas particle with the ion based 
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on hard sphere atomic radii by calculating the average cross-sectional area of the protein structure 
as experienced by the buffer gas. Using the CCS projection approximation calculation tool 
IMPACT, calculations are about 106 times faster43 than the most rigorous methods and are widely 
used for comparison with experimental IM data. Therefore, PA approaches are advantageous for 
use in integrative modeling, where the CCS calculation is required for thousands of structures that 
are obtained from Monte Carlo sampling.  

Several instances of structural modeling in conjunction with IM data have been reported. 
IM spectra have been successfully predicted with the structure relaxation approximation (SRA) 
method9. This method uses molecular dynamics simulations to model structures in the specific 
charge states. It then utilizes CCSPSA of the generated structures to predict an overall IM spectrum. 
The SRA method indicated that systems studied with IM methods are generally consistent with 
retention of many residue-residue contacts determined by X-ray crystallography. Furthermore, IM 
data have been incorporated in computational modelling for protein complex structure prediction. 
In these methods, coarse-grained models generated using the Integrative Modelling Platform51 
were ranked and clustered based on the agreement between predicted and experimental CCS 
measured from IM28, 35. CCSIM values for complexes and their individual subunits have also been 
successfully used to approximate rough intersubunit distance used as restraints in modeling 
methods to identify coarse-grained topologies of complexes36-39. In addition to complex structure 
prediction, work has also been done to show correlation between IM data and structural similarity 
(RMSD)9. While several studies have demonstrated that IM data can be predicted and utilized with 
various computational methods, IM data have not yet been utilized to predict tertiary structure 
from sequence.  

Therefore, in this work a non-stochastic grid-based algorithm, PARCS, has been 
implemented in Rosetta52, 53 to predict CCS from structure. It has been demonstrated that PARCS 
yields comparable results to IMPACT in terms of speed and accuracy. Next an IM score term has 
been developed for use in the ab initio54-56 and comparative modelling (CM)57 protocols in Rosetta, 
in combination with the Rosetta all-atom scoring function58. This score term scored structures 
based on their (dis)agreement with experimental IM data. When this score term was included, the 
prediction of structures improved for a benchmark of 23 proteins: the RMSD improved by an 
average of 2.01 Å and 15/23 structures were predicted accurately. 
 
Methods 
Projection approximation using rough circular shapes 

Average CCS of biomolecules are determined from IM experiments based on the amount 
of time required for the ion to traverse the region of inert buffer gas (usually helium or nitrogen) 
under the influence of a weak electric field43, 45. To use IM data in a structure prediction protocol, 
we developed Projection Approximation using Rough Circular Shapes (PARCS) in Rosetta. The 
schematic (A) and the illustration (B) in Figure 1 demonstrate how the PARCS algorithm computes 
CCS from structure and estimates area of a projection, respectively. The PARCS algorithm, as 
shown in Figure 1A, takes 3D atomic protein coordinates as input. Next, the structure is randomly 
rotated. For each rotation, the structure is projected on a 2D grid (grid cell area of 1 Å2) in the x-

y, x-z, and y-z planes as shown in Figure 1A (i). In the 2D grid, the projection of the protein is 
centered, and the grid extends 5 Å beyond the most extreme atom in each direction. For each atom 
on the 2D grid (Figure 1A(ii)), the center grid cell is filled as denoted by the blue grid cell in Figure 
1B (ii). Then, eight additional cells (red grid cells in Figure 1B (ii)) are also filled. The distance of 
these eight grid cells from the central cell (i.e., radius of the circular projection) is based on the 
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sum of the radii of the projected atom and the buffer gas (r in Figure 1B (ii)). An effective atomic 
cross-sectional radius 
of 1.91Å is used for 
heavy atoms (carbon, 
sulfur, oxygen, 
nitrogen and 
phosphorous) and 1.21 
Å is used for hydrogen 
atoms. A buffer gas 
radius of 1.0 Å and 
1.82 Å is used in the 
case of helium43 and 
nitrogen59, 
respectively. The eight 
points are positioned 
such that two adjacent 
points on the 
circumference form a 
45o angle from the 
center point as shown 
in Figure 1B (ii). This 
process is repeated for 
all atoms in the protein, 
filling the overall grid 
as shown in Figure 1B 
(iii). Finally, the 
projection area (𝐴) is 
derived by summing 
the areas of the filled 
grid cells. From the x-y, 
y-z, and x-z projections for each random rotation	𝑖, three projection areas (𝐴!"#$ , 𝐴!"#%	and 𝐴!$#%) 
are obtained. The CCS of the structure (CCSPARCS) is then acquired from the average area of the 
total number of projections (N=3R, where R is the total number of random rotations) as shown in 
Equation 1. 

 
IM score function in Rosetta 

CCS from experimental IM data were incorporated as a spatial restraint for integrative 
Rosetta modelling as it provides information about protein size and shape. Therefore, to integrate 
this information in Rosetta for protein structure prediction, a score term (IMScore) was developed 
to quantify agreement of protein structures with IM data, using CCS as the restraint. The evaluation 
score, EIM, was defined as a sum of the IMScore score term with the Rosetta REF2015 score 
function58 as shown in Equation 2.  

𝐶𝐶𝑆&'()* = ∑ ,'!
"#$-'!

"#%-'!
$#%.&

!

/
 (1) 

Figure 1: (A) Schematic of the PARCS algorithm to predict CCS from 
structure. (i) Three projections are obtained from each rotation. (ii) For 
each atom in each projection the 2D grid is filled according to a 9-point 
circle approximation. (iii) The projection area is determined from the 
number of filled grid cells. (B) (i) Illustration of a 2D projection of a 
single random rotation where the carbon, sulfur, oxygen, nitrogen, and 
hydrogen are colored grey, yellow, red, blue, and white respectively. (ii) 
Each atom is projected on a grid with a cell size of 1Å2. The center grid 
cell and eight other grid cells at a distance r (based on the radii of the 
given atom and the buffer gas) from the center of the atom are filled. 
(iii) Projection of the randomly rotated protein after the grid cells are 
filled according to the PARCS algorithm.  
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In Equation 2, ERosetta is the energy of the structure obtained from the Rosetta REF2015 

score function. The IMScore term is a penalty function (as defined and shown in Equation 3 and 
Figure S1, respectively) based on the absolute difference (ΔCCS) between CCSPARCS and CCSIM. 
This function includes a lower bound (LB) and an upper bound (UB) cutoff (as shown in Equation 
3) to account for error24. ΔCCS below LB (10Å2) are not penalized and ΔCCS above UB (100Å2) 
are given a maximum penalty of 100, with a fade function used in between. Conceptually, this 
scoring function penalizes structures with high deviation from experiment. 
 

 
 
IM datasets 

In this work, our aim was to study predominantly globular and ordered proteins within all 
datasets. Values from CCSPARCS were compared to CCSIMPACT as well as evaluated for speed and 
precision on 4465 non-homologous protein structures (PARCS evaluation dataset) extracted from 
the protein databank (PDB)60 (http://www.rcsb.org/) using the PISCES61 webserver 
(http://dunbrack.fccc.edu/pisces). For this dataset, the sequence identity was less than or equal to 
10%, sequence length was between 40 – 250 residues, non-X-ray and CA-only entries were 
excluded and the PDBs were culled by chain. For CCS prediction and speed comparison, PARCS 
was benchmarked against IMPACT43 (with flag ‘-H’ to include hydrogens) based on the 
calculations performed on the PARCS evaluation dataset. This dataset was also used to test the 
convergence of PARCS with respect to the number of rotations. In this convergence test, the 
standard deviation of 100 separate CCS calculations for each protein at varying numbers of 
rotations were obtained and assessed for the optimal number of random rotations required for 
calculations to converge. 

To evaluate the ability of the score term (Equation 3) to distinguish native from non-native 
protein models in the case of an error-free CCS prediction, a set of 100 proteins was randomly 
selected from the PDB (list of monomers shown in Table S1) using the PISCES webserver, where 
the sequence length ranged from 24 to 154. A set of structure prediction experiments (which will 
be described in detail in the following sections) was performed on this dataset, where the 
experimental CCS was simulated by predicting CCS of the native structure with PARCS. 
Therefore, this dataset was referred to as the ideal dataset. The simulated CCS values ranged from 
595 Å2 to 1710 Å2 for the 100 proteins in the ideal dataset. The score function was also tested on 
actual experimental IM data, i.e., structures with CCSIM (experimental dataset). The experimental 
dataset18, 62-66 consisted of 23 monomeric proteins that also had structural information deposited in 
the PDB (as outlined in Table S2). Sequence lengths ranged from 26-691 residues and CCSIM 

𝐸01 = 𝐸(234556 + 𝐼𝑀*7284 (2) 

IM*7284 = . 0 𝑖𝑓	𝛥𝐶𝐶𝑆	 < 	𝐿𝐵100(2𝑥9 − 3𝑥: + 1) 														𝑖𝑓		𝐿𝐵 < 𝛥𝐶𝐶𝑆	 < 	𝑈𝐵	100 𝑖𝑓	𝛥𝐶𝐶𝑆	 > 𝑈𝐵
𝑥 = 	− >𝛥𝐶𝐶𝑆 − 𝑈𝐵	𝑈𝐵 − 𝐿𝐵 ?

	 (3) 
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values (for the lowest charge states) ranged from 588 Å2 to 4580 Å2. Additionally, these proteins 
exhibited an average percent disorder of only 13% as calculated by the Rosetta ResidueDisorder67, 

68 application. 
  

Ab initio and comparative modeling protocol for structure prediction 
To test whether shape and size information encoded in IM data were sufficient to 

discriminate between low and high RMSD models of single-subunit proteins, we tested our 
algorithm on both the ideal and experimental dataset. For these two datasets, the Rosetta ab initio 
protocol was used for proteins with sequence length less than 155 residues, otherwise the Rosetta 
multi-template comparative modeling (CM) protocol was used. The templates and weights 
associated with all proteins for CM are provided in Table S4. The 3mers and 9mers fragments 
required for both protocols were generated using the fragment picker tool69 in Rosetta. The 
protocols (ab initio and CM) for both the ideal and experimental data set are further detailed in the 
SI. All structures generated from the ab initio and comparative modeling protocols were subjected 
to the Rosetta Relax protocol. The IM data, ideal and experimental, were then used to score all the 
structures generated for each protein in Table S1 and Table S2, respectively. The top scoring model 
was designated as the predicted structure.   

 
Analysis metrics used for evaluating predictions 

We quantitatively assessed the quality of our predicted models using several of the 
following metrics. The global RMSDs (root-mean-square deviations) of the predicted models to 
their native structures were calculated. Predictions with IM data where RMSD was within 0.5 Å 
of the RMSD of the structure predicted without IM data were defined as unchanged. Next, Pnear

70
, 

a goodness-of-energy funnel metric (at kBT and λ set to 4 and 3 Å respectively), was used to 
compare the score versus RMSD distributions predicted with and without IM data. Pnear ranges 
from 0 (a poor energy funnel) to 1 (a well-defined energy funnel). Predicted structures from both 
ideal and experimental datasets were evaluated with these two metrics. The predicted structures 
from the experimental dataset were further evaluated with the template modeling score (TM-
score)71 and global distance test total score (GDT_TS)72. Template modeling score (TM-score) 
was used to assess the topological similarity of the predicted structures to native structures using 
the TM-score program71. The TM-score metric ranges from 0 to 1, where scores below 0.17 
indicate randomly chosen unrelated proteins and a score higher than 0.5 corresponds to structures 
being generally in the same fold and a score of 1 indicates a perfect match. Global distance test 
total score (GDT_TS) values were used to assess the optimal superposition between the predicted 
and the native structure by identifying groups of residues in the predicted model that differ from 
that of the native structure by less than a distance cutoff. GDT_TS for the Cα atoms at a distance 
cutoff of 5 Å was calculated using the LGA program72. GDT_TS values range from 0 to 100 where 
higher GDT_TS is indicative of a predicted structure being similar to the native structure. 
 
Confidence metric used for identifying accurate and inaccurate predictions 

A metric was developed to quantify confidence in predictions in the absence of known 
structure. This confidence metric was defined as the average per-residue score of the top 100 
scoring models predicted with IM data (using Equation 2). The specific metric was chosen because 
lower scores per residue are generally associated with more native-like structures. Thus, structures 
were defined as high confidence if the average residue score was less than -2.54 (above which 
structures were defined as low confidence). Instances where the RMSD of the prediction was less 
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5.50 Å and average residue score less than -2.54 were considered successful confidence measure 
cases. We chose an RMSD cutoff of 5.5 Å since below that RMSD, protein topologies are 
generally predicted correctly. 
 
Results and discussion 
 In this study, to utilize IM data to predict tertiary (monomeric) structures in Rosetta, an 
algorithm designed for rapid prediction of CCS has been developed and implemented. This method 
uses Projection Approximation via a grid-based calculation of Rough Circular Shapes (PARCS). 
Subsequently, a score function was developed that assessed the agreement of Rosetta-generated 
models to the CCSIM for tertiary structure prediction. 
 
Calculation of CCS 
using PARCS was 
fast, accurate, and 
results were 
comparable to 
existing software  
 Area 
calculation in 
projection 
approximation 
methods is typically 
performed using 
Monte Carlo 
integration methods. 
In such an approach, 
probes representing 
the buffer gas 
particle are fired 
upon the randomly 
oriented 2D-
projected target 
structure to calculate 
the area of the 
projection. A large 
number of probes is 
usually required for 
CCS calculations to 
converge. However, 
when a large number 
of probes is used, 
random probes frequently survey areas with no protein present, resulting in unnecessary 
calculations and thus adding to the computational cost73. Therefore run-to-run variability in probe-
based projection area calculation per rotation is common. To circumvent this issue, in PARCS, the 
projection area is calculated by projecting the structure on a 2D grid and then geometrically 
estimating the projection area directly (by geometrically filling the grid based on locations of 

Figure 2: Analysis of PARCS algorithm. (A) Convergence of PARCS 
calculation over 100-400 random rotations.  For more than 250 rotations the 
mean standard deviation was below 1.5 Å2 (B) Comparison of CCSPARCS to 
that of CCSIMPACT exhibited a very strong correlation (R2 of 0.9996). (C) A 
strong correlation (R2 of 0.993) was observed for predicted CCSPARCS values 
of PARCS when compared with CCSIM from nitrogen (blue) and helium (red) 
buffer gas for the experimental dataset. (D) Comparison of CCS calculation 
time of PARCS and IMPACT showed that PARCS and IMPACT performed 
equally well in terms of speed. 
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atoms and radii of atoms and probes). This approach eliminates the variability in projection area 
calculation. Therefore, the only attribute contributing to the variability in CCS calculations using 
PARCS is the random rotations.  

To benchmark our PARCS algorithm, CCS values for 4465 non-homologous protein 
structures in the PARCS evaluation dataset were calculated. Results for convergence of CCS 
calculations at varying number of random rotations on the PARCS evaluation dataset are shown 
in Figure 2A. The average standard deviation of the CCS distributions for 100 rotations was only 
2.26 Å2 (which was less than 0.2% of the CCSPARCS on average) and decreased as the number of 
rotations increased. The average of the standard deviations of the CCS distributions was well 
below 2.0 Å2 for more than 100 rotations as shown in Figure 2A and summarized in Table 1. For 
CCSPARCS, the default number of rotations was set to 300, where the average standard deviation of 
the distribution was 1.31 Å2. 
 

 
Table 1: Average standard deviation of CCS calculations for proteins in the PARCS evaluation 

dataset at various rotations. 

Rotations Avg std dev (Å2) 

100 2.26 
150 1.85 
200 1.60 
250 1.42 
300 1.31 
350 1.22 
400 1.16 

 
For all proteins in the PARCS evaluation dataset, CCS calculated by PARCS was 

compared to CCS calculated by IMPACT, one of the most widely used CCS calculation methods, 
as shown in Figure 2B. A strong correlation (R2 = 0.9996) was observed between CCSPARCS and 
CCSIMPACT with a root mean squared error (RMSE) of 20.38 Å2 and an average percent error of 
1.42%. The results demonstrate that PARCS calculates CCS values as accurately as other 
projection approximation methods. CCSPARCS were then compared to CCSIM for the experimental 
dataset. We observed a strong correlation (R2

PARCS = 0.993) between CCSPARCS and CCSIM values 
as shown in Figure 2C, where IM data collected in nitrogen and helium buffer gas are shown in 
blue and red respectively. We observed an average percent error of only 5.22% (similar to that of 
IMPACT at 5.61%) from CCSIM. To use IM data in computational structure prediction methods 
(where CCS prediction is required on a large number of decoy structures), the speed of CCS 
calculations should be within about a second. Therefore, calculation times of PARCS were 
compared to that of IMPACT as presented in Figure 2D. Using the PARCS evaluation dataset, 
PARCS took an average of 0.40 seconds to calculate the CCS of proteins when 300 random 
rotations were used compared to 0.32 seconds for IMPACT. Thus, the timing of PARCS was 
comparable to IMPACT. We note that the slightly longer average time for PARCS was due to 
additional steps performed by Rosetta when reading in a PDB file (such as checks for correctness 
and adding missing hydrogens52). For all 4465 proteins, calculations for PARCS completed in 
under 1.0 second as shown in Figure 2D. These results indicate that PARCS in Rosetta offers 
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similar speed and accuracy to established PA algorithms. We hypothesized that the information 
contained within CCSIM may be sufficient to predict structures using CCSPARCS. 
 
PARCS in IM score function can improve model selection in ideal dataset (predicted CCS of 
known structures) 
 In this study 
we sought to 
investigate the 
usefulness of the 
structural information 
encoded in IM data 
for predicting single-
subunit proteins. 
However, it was 
unclear whether a 
single CCS value, 
encoding overall size 
and shape, was 
sufficient to 
distinguish near-
native from incorrect 
protein models. To 
test how useful the 
information in CCS 
was for structure 
prediction, an IM score function has been developed to score structures based on the 
(dis)agreement with experimental IM data. To assess the capabilities of this score function to 
adequately distinguish good from bad models, we first tested it on the ideal dataset (where the 
experimental CCSIM was replaced with CCSPARCS of the native structure). For each protein in the 
ideal dataset 10,000 potential structures were generated using the ab initio protocol and scored 
using the developed IM score function (EIM). Prediction results with and without the inclusion of 
ideal IM data were evaluated and compared based on agreement with experimental structures 
(using the RMSD of the lowest scoring model, i.e., the predicted structure). We observed a 
significant improvement in model quality upon the inclusion of ideal IM data. As highlighted in 
Figure 3A, the RMSD of the predicted structures was improved or unchanged for 82 out of 100 
proteins when ideal IM data were included in the scoring. Three of these improvements are shown 
in Figure 3B, where the native structure (salmon) was compared to the predicted model without 
and with the inclusion of ideal IM data in blue and pink, respectively. 

For the subset of models where the RMSD improved, it improved by an average of 3.62 Å. 
While the results also suggest that 18 proteins showed an undesirable increase in RMSD (when 
compared to selection with 𝐸(234556), the average increase in RMSD of this subset was only 2.35 
Å. Within these 18 proteins, there were only four cases where the RMSD increased by more than 
2 Å. However, three of those four cases were not correctly predicted without the aid of ideal IM 
data either. The overall average RMSD improved by 0.93 Å for the ideal dataset. Along with the 
improvement of model selection, this score function also improved definition of the energy funnel, 
as quantified by the Pnear metric. From the Pnear analysis we saw a 7.3-fold increase upon the 

Figure 3: (A) Comparison of the RMSD of the predicted structure of 
100 proteins in the ideal dataset. The RMSD improved or remained 
unchanged for 82 proteins when ideal IM data were used for scoring. 
(B) Comparison of predicted structures without (blue) and with (pink) 
the inclusion of ideal IM data to their native structures (salmon). 
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inclusion of ideal IM data. This suggests that inclusion of IM data significantly improved the 
goodness of the score versus RMSD funnel. These results indicated that the overall size and shape 
information contained in the IM data indeed had a strong potential to facilitate the discrimination 
of good from bad models. Given the sparseness of the data (CCS is a single number denoting the 
average cross-sectional area of the protein) the improvement was quite significant. While an 
encouraging proof of principle, these results did not account for the uncertainty associated with 
real experimental IM data. When experimental IM data are used for the structure prediction, 
additional uncertainty is included (an average percent error of 5.22% between CCSPARCS and 
CCSIM was observed for the experimental dataset). Therefore, the effectiveness of IM data to 
improve structure prediction still needed to be tested on a dataset with experimental IM data. 
 
IM data improved model selection of protein structures in experimental dataset  

For 
proteins in the 
experimental 
dataset, 10,000 
decoy models 
were generated 
with the ab initio 
protocol for 
proteins with 
fewer than 155 
residues and 
comparative 
modeling (CM) 
for proteins with 
more than 155 
residues. Each of 
these decoy 
models was then 
scored with IM 
data (Equation 2) 
and the predicted 
models without 
and with data 
were compared. Again, we saw a notable improvement in model quality upon the inclusion of IM 
data. In Figure 4A, the RMSDs of the best scoring models without and with IM data are shown. 
The RMSD of the predicted models for proteins in the experimental dataset either improved or 
remained unchanged in all 23 cases. The RMSD improved by an average of 2.01 Å when IM data 
were utilized as restraints. Of these 23 cases, 15 proteins were ultimately predicted with an RMSD 
of less than 5.50 Å, compared to 10 proteins without IM data. Furthermore, it was observed that 
for the subset of proteins where the CM and ab initio protocols (shown as triangles and circles 
respectively in Figure 4A) were used for model generation, the average RMSD improved by 1.61 
Å and 2.44 Å respectively. Figure 4B shows structures of the predicted models (aligned to the 
native models in salmon) obtained without and with the inclusion of IM data (in blue and pink, 
respectively). The largest improvement was observed for the system β-crystallin B2 (PDB ID: 

Figure 4: (A) RMSD of the best scoring models with IM data (blue and red 
for nitrogen and helium buffer gas respectively) when compared to RMSD 
without IM data for 23 proteins in the experimental dataset. Structures 
predicted with CM and ab initio are represented with a triangle and circle 
respectively. (B) Comparison of predicted structures without (blue) and with 
(pink) the inclusion of IM data to their native structures (salmon). 
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1YTQ), which improved from 17.7 Å to 5.0 Å. The score vs RMSD distributions for several 
benchmark proteins before 
(blue) and after (pink) scoring 
with IM data are shown in 
Figure 5.  In these distributions, 
the predicted models without 
and with IM data are marked 
with a blue and pink star, 
respectively. We also observed a 
general improvement in Pnear 
upon scoring with IM data with 
a 4.5-fold average improvement.  

Additional analyses on 
the predicted structures of the 
experimental dataset further 
revealed general improvements 
upon the inclusion of IM data. 
TM score analysis of this dataset 
suggested improvements with 
IM data. We observed, as shown 
in Table S5, that 74% of the 
proteins had a TM-score greater 
than (or equal to) 0.5 when IM 
data were incorporated as 
opposed to 65% without the use of IM data. The TM-scores of the best scoring models of the CM 
subset were generally higher than those of the ab initio subset, while the biggest improvements 
were observed for the ab initio subset. General improvements were also seen in a GDT_TS analysis 
of the best models predicted upon the inclusion of IM data with an average percent score 
improvement of 2.88%. Similarly, the average GDT_TS of the CM protein subset was higher than 
that of the ab initio subset. In all cases, improvements were observed when IM data were used, 
with average improvements of 1.51% and 4.39% for the CM and ab initio subsets, respectively. 
All results, as summarized in Table 2, demonstrated that experimental IM data can offer useful 
information regarding the structural shape of the protein which consequently aids in improved 
scoring and model selection. 
 
Table 2: Metric analysis for the best scoring model with and without IM data for the experimental 
dataset.   
 

 
Avg 

RMSD 
(Å) 

Avg 
GDT_TS 

(%) 

Avg 
TM-
score 

Avg Pnear 
ratio 

w/o IM data 7.49 58.35 0.63 1.00 

CM 5.45 69.41 0.82 1.00 
ab initio 9.71 46.29 0.43 1.00 

w/ IM data 5.48 61.23 0.66 4.54 

Figure 5: Score vs RMSD plots without (blue) and with 
(pink) IM data for four proteins that showed significant 
improvement in the experimental dataset. The best scoring 
models from both predictions are marked with a blue and 
pink star, respectively. 
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CM 3.84 70.92 0.84 1.74  
ab initio 7.27 50.68 0.47 8.18 

 
Confidence measure successfully discriminated accurate and inaccurate models 

The inclusion of 
IM data helped improve 
structure prediction for 
all 23 proteins in the 
experimental dataset. 
However, there were 8 
cases where the RMSD 
of the selected model 
(even after 
improvement) was 
greater than 5.5 Å. This 
knowledge was available 
to us since the native 
structures were known 
for the models generated 
within this benchmark 
dataset. However, in true 
blind structure prediction 
protocols, RMSD 
information is not 
available. For this 
reason, we developed a 
confidence measure that 
allowed us to selectively 
flag successful 
prediction cases in the 
absence of native structure. The confidence measure was defined as the average residue score of 
the top 100 scoring models. According to this metric analysis, the high and low confidence 
structures were separated by a score cutoff of -2.54. This metric successfully flagged all inaccurate 
predictions as low confidence, whereas all high confidence predictions were accurate as shown in 
Figure 6. We saw similar trends when we used this confidence metric to evaluate top scoring 
models from the ideal dataset as shown in Figure S2. 
 
Conclusion 

Ion mobility has emerged as a prime tool to study proteins in their native states using MS. 
However, the information obtained is sparse, not directly allowing for full structure elucidation. 
Thus, computational techniques are needed to deduce structural information from IM data. In this 
study we developed the first such algorithm for structure prediction of single subunit proteins from 
IM data. To achieve this, we first developed a method (PARCS) that could predict CCS from 
structures, which has been implemented in Rosetta as a stand-alone application. Following the 
successful benchmarking of this application, a score term, based on restraints derived from IM 
data, has been developed to predict native-like structures. This score term was tested on a set of 

Figure 6: Confidence measure (defined as average residue score of 
top 100 predicted models) successfully separated the best scoring 
models from the experimental dataset into two groups, high 
confidence, and low confidence.  
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100 structures from the PDB, where CCSPARCS of the native structure was treated as the 
experimental CCSIM. This was done, as a proof of principle, to check if the score function could 
translate the structural information (encoded in IM data) into spatial restraints in the absence of 
model error. Based on RMSD analysis, we observed that the inclusion of IM data improved 
structure prediction results for 82 out of 100 structures. Following this positive validation, the 
score function was tested on a benchmark set of 23 proteins with experimental IM data. We showed 
that IM data improved model selection, as demonstrated by analyzing the best scoring models with 
several metrics. We also developed a confidence metric to successfully separate good predictions 
from bad predictions in the absence of native structure. Our current computational workflow 
illustrates that CCS obtained from IM experiments, despite its sparseness, provides sufficient 
information on the overall shape and size of proteins to be used as restraints to improve model 
selection in protein structure prediction. This study also further demonstrates the close connection 
between the solution and gas phase structure in native IM techniques. Our developed CCS 
calculation method and score function are freely and easily accessible through Rosetta Commons. 
A tutorial with examples on how to use the PARCS application as well as the use of IM data in 
structure prediction has been included in the SI. Further work will focus on improving methods to 
incorporate CCS data for protein complexes using RosettaDock74 and on the use of multiple 
complementary MS data (such as the combination of CL and/or SID data with IM data) for protein 
and complex structure prediction in Rosetta. 
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