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PROTEIN STRUCTURE

Protein structure determination
using metagenome sequence data
Sergey Ovchinnikov,1,2,3 Hahnbeom Park,1,2 Neha Varghese,4 Po-Ssu Huang,1,2

Georgios A. Pavlopoulos,4 David E. Kim,1,5 Hetunandan Kamisetty,6

Nikos C. Kyrpides,4,7 David Baker1,2,5*

Despite decades of work by structural biologists, there are still ~5200 protein families with

unknown structure outside the range of comparative modeling. We show that Rosetta

structure prediction guided by residue-residue contacts inferred from evolutionary

information can accurately model proteins that belong to large families and that

metagenome sequence data more than triple the number of protein families with sufficient

sequences for accurate modeling. We then integrate metagenome data, contact-based

structure matching, and Rosetta structure calculations to generate models for 614 protein

families with currently unknown structures; 206 are membrane proteins and 137 have folds

not represented in the Protein Data Bank. This approach provides the representative

models for large protein families originally envisioned as the goal of the Protein Structure

Initiative at a fraction of the cost.

T
here are 14,849 protein families in the Pfam

(1) database with 50 or more residues, of

which 4752 have at least one member with

experimentally determined x-ray crystal or

nuclear magnetic resonance (NMR) struc-

ture, and an additional 3984, for which reliable

comparative models can be built on the basis of

homologs of known structure detected using the

powerful HHsearch fold-recognition program

(2). There are an additional 902 for which less-

confident comparative models can be built, but

no structural information available for 5211 of

the remaining 6113 families (HHsearchE-value≥ 1).

Until recently, computational methods could not

generate accurate models for these 5211 families,

as they lack homologs of known structure for com-

parativemodeling, and the very large number of

conformations accessible to a polypeptide chain

made the sampling problem in de novo protein

structure prediction intractable for all but the

smallest proteins. The original goal of the Protein

Structure Initiative was to determine structures

for at least one representative of such families,

but this proved to be extremely challenging, and

the focus of the initiative shifted to targets of im-

mediate biological interest (3).

The increase in the number of known amino

acid sequences has enabled the accurate predic-

tion of residue-residue contacts by using evolu-

tionary data (4–10)—substitutions at positions

close in space in the three-dimensional structure

covary. Such contact predictions have been used

for awide range of proteinmodeling efforts (11–22).

Accurate contact prediction requires large num-

bers of aligned sequences so that residue-residue

covariance is clearly distinguished from lineage

effects.Althoughcoevolution-basedstructuremodel-

ing has been used to generate models for individual

proteinswith fold-level accuracy [templatemodeling

(TM) score (23) is >0.5 (5, 7,8, 10, 11, 14–18, 21, 22)],

it has not been clear whether such data, combined

with structure-prediction methodology, can gen-

erate accurate models on a larger scale.

Rosettadenovo structure-predictioncalculations

guided by evolutionary informationwere recently

used to generate models for 58 large protein fam-

ilies (21). The structures of proteins in six of these

families have since been published, which provides

an opportunity to assess this medium-scale pre-

diction effort. Recently solved structures of the li-

poprotein signal peptidase II (24), prolipoprotein

diacylglyceryl transferase (25), fluoride ion trans-

porter (26), cytochrome bd oxidase (27), DMT

superfamily transporter YddG (28), and fuma-

rate hydratase (29) are all very close to compu-

tational models published and publicly released

well before the structures were solved (Fig. 1). In

the caseof the three-subunit cytochromebdoxidase,

the computational model of the 788-residue com-

plex generated using both inter- and intra-subunit

contact information was used together with exper-

imental phase informationobtained from the three

heme irons and a single methionine to solve the

structure. Because thephase informationwasweak,

it was only possible to place the transmembrane

helices and a subset of the side chains on the

basis of the density, but the loops, connectivity,

location of the CydX subunit, and registration of

the amino acid sequence onmany of the helices

were unclear. Our Escherichia coli protein model

closely overlapped with the traced helices, and

Phenix-Rosetta refinement (30) of a model built

for the Geobacillus thermodenitrificans protein

resolved the above ambiguities, enabling rapid

completion of structure determination. The final

deposited structure is very similar to our prev-

iously published model of the E. coli protein

(Fig. 1A) [TM-align score (23) of 0.8]. The power

of Rosetta structure-prediction calculations cou-

pled with coevolution data for soluble proteins is

illustrated by an extremely accurate blind de novo

prediction for a complex protein structure in

the CASP11 structure-prediction experiment (31)

(Fig. 1E). In all of the cases shown in Fig. 1, stan-

dard threading or fold-recognition methods fail

to identify the correct fold. Taken together, these

data show that Rosetta modeling guided by co-

evolutionary constraints generates accuratemod-

els (in all six cases, the TM-align score is >0.7;

themodels also illustrate someof the limitations

of the approach, including the lack of explicit

modeling of ligands, cofactors, and lipids) (see

supplementary text).

Structure models with the accuracy of those

in Fig. 1 would have broad utility for framing

biological hypotheses about function and inter-

preting mutational data, as well as for guiding

experimental structure determination. To deter-

mine the number of aligned sequences required

for contact prediction accuracy sufficient to guide

generation of accurate 3D models, we carried out

Rosetta structure-prediction calculations for a

benchmark set of 27 large protein families (table

S1) with known structure. We used both the full

sequence alignments and alignments of subsets

of the sequences for contact prediction. We also

performed structure-prediction calculations using

Rosetta to hybridize and refine (32) partial struc-

tural matches identified by matching predicted

contacts with the contact patterns of known pro-

tein structures. To do this, we developed an al-

gorithm (map_align) [see the supplementary

materials (SM)] that uses iterative double-dynamic

programming (33). The two approaches are com-

plementary: De novo structure prediction (using

only sequence information) (34) can succeed

where there are no related structures in the

Protein Data Bank (PDB), whereas making use

of matches to known structures can help for

large complex proteins that otherwise present a

convergence challenge for de novo structure pre-

diction (structural matches can occur in the ab-

sence of detectable sequence similarity because

structural similarity is retained over larger evo-

lutionary distances). For large sequence families,

combining de novo structure-prediction models

and map_align structure matches using the

Rosetta iterative hybridization protocol improved

accuracy in 14 cases and decreased accuracy in

only one (solid line in Fig. 2A) (fig. S1; see SM).

Contact prediction accuracy, and hence predicted

structure accuracy, depends on the number of

sequences in the family, the diversity of these

sequences, and the length of the protein. A mea-

sure that incorporates all three factors [Nf, the
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 Fluoride ion transporter dimer (5a43) 

Prolipoprotein diacylglyceryl transferase (5azb) 

 Lipoprotein signal peptidase II (5dir)  

A 

C 

B 

D 

CASP11 target T0806 - YAAA (5caj) 

F 

E 

DMT superfamily transporter YddG (5i20) 

Cytochrome bd oxidase (5ir6)

Fumarate hydratase (5f92)

G 

Fig. 1. Comparison of

Rosetta models (left) to

subsequently published

crystal structures (right).

The models accurately reca-

pitulate the structural details

of the named proteins. The

scores are as follows: (A) the

cytochrome bd oxidase

(TM-align score 0.88),

(B) the lipoprotein signal

peptidase II (TM-align score

0.70), (C) the DMT super-

family transporter YddG

(TM-align score 0.70), (D) the

fluoride ion transporter dimer

(TM-align score 0.69), (E) the

CASP11 target T0806,

(F) prolipoprotein diacylglyc-

eryl transferase (TM-align

score 0.69), and (G) fumarate

hydratase [TM-align score

0.80 for monomer (top) and

0.76 for dimer (bottom)].
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Fig. 2. Metagenome

data greatly increased frac-

tion of structures that

can be accurately modeled.

(A) Dependence of coevolution

guided Rosetta structure-

prediction accuracy on the effec-

tive number of sequences

Nf (a function of both sequence

number and diversity;

see methods definition) in

the protein family. For each

of 27 proteins of known struc-

ture, the multiple sequence

alignment was subsampled,

and residue-residue contacts

were predicted by using GREMLIN. Rosetta structure-prediction calculations

were then used to generate ~20,000models, and a single model was selected

on the basis of the Rosetta energy and the fit to the coevolution constraints;

the average TM score of these selected models over all 27 cases is shown on

the y axis (dashed line). Hybridization-based refinement of the top 20

models together with the top 10 map_align-based models for each case

increases the average accuracy (solid line); models with fold-level accuracy

(TM score of >0.5) are obtained for Nf ≥ 16, and models with accuracy typical

of comparative modeling, for Nf of 64. (B) Fraction of protein families of

unknown structure with at least 64 Nf. Dashed line: including only sequences

in UniRef100 database; solid line: including sequences in UniRef100 database

together with metagenome sequence data from the Joint Genome Ins-

titute (37). (C) Distribution of Nf values for 5211 Pfam families with cur-

rently unknown structure, after the addition of metagenomic sequences;

25% of the protein families have Nf > 64, 34% have Nf > 32, and 45% have

Nf > 16.
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number of sequence clusters at an 80% sequence

identity–clustering threshold divided by the square

root of the protein length (21)] correlates well

with contact prediction accuracy (21) and model

accuracy (Fig. 2A and fig. S1) over a broad range

of families.

How many protein families with currently

unknown structure have Nf values in the range

where accurate models can be built? The mod-

els in Fig. 1 were all generated for families with

Nf > 64; accuracy falls off for lower values of Nf

(Fig. 2A). As shown in Fig. 2B, fewer than 8% of

families have Nf values of 64 or better. Modeling

the remaining 92% of families of unknown struc-

ture at reasonable accuracy is not currently pos-

sible by using the sequence information in the

UniRef100 database (35).

This limitation in structure modeling can be

largely overcome by taking advantage of progress

in a completely different research area. Meta-

genome sequencing projects, in which complex

biological samples are shotgun sequenced, have

provided insights into biological communities

and provide a treasure trove of new sequence

data (36, 37). The number of protein sequences

determined in metagenome sequence projects is

growing considerably faster than the UniRef100

database (solid versus dashed line in Fig. 2B).

With the inclusion of metagenome sequence data,

the number of sequences increases by as much
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Integral membrane 

protein TerC family 

MerC mercury 

resistance protein
MASE1 

Metalloendopeptidase

Immunity protein 

17

Glycosyl transferase 

WecBTagACpsF family

DNA-K related 

protein

Phage small 

terminase subunit

DUF3786

(NEW FOLD)

Beta protein

DUF4494

(NEW FOLD)

WbqC-like 

protein family

RNA-binding

protein 
DUF2911 

(NEW FOLD)

Chordin

Curli assembly 

protein CsgE

Sporulation 

protein YunB

Gas vesicle 

synthesis protein

Prokaryotic E2 

family E

Spore coat assembly 

protein SafA

(NEW FOLD)

CobS Cobalamin-5-

phosphate synthase

Ferrous iron transport protein B

DUF3418 - (C-term of ATP-

dependent RNA helicase HrpA)

Fig. 3. Representative structure models for selected Pfam families. Membrane proteins are on the top row; new folds on the bottom right. The

multidomain models of the iron transporter and RNA helicase and the dimeric model of CobS, an enzyme in vitamin B synthesis, are guided by both intra-

and inter-chain coevolution restraints.
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as 100-fold for some families (table S2), and the

fraction of families with unknown structure that

can be accurately modeled using coevolution-

guided structure-prediction methods increases

dramatically. At Nf ≥ 64, the fraction increases

from 0.08 to 0.25, and at Nf ≥ 32 [where fold

level accuracy can be achieved (Fig. 2A)], the

fraction increases from 0.16 to 0.33. To assess

structure-prediction and model evaluation ac-

curacy using metagenome data, we carried out

a second set of benchmark calculations on 81

Pfam domains with recently solved structures

and Nf ≥ 64 (fig. S1, E and F, and table S5).

Structure-prediction accuracy was correlated

with the extent of convergence of the lowest

energy models and the fraction of predicted

contacts present in these models (figs. S1F and

S2). For 42 families, the predictions converged

with most of the predicted contacts satisfied

(see SM for convergence criteria) and of these,

25 had a TM score >0.7 and 13 a TM score >0.6

[in three of the four remaining cases, NMR struc-

tures of small transmembrane proteins, our mod-

els fit the predicted contacts much better, and

in the last case, an intertwined dimer, our mono-

mer model contained all the correct contacts

(fig. S13)].

We generated coevolution based contact pre-

dictions using GREMLIN (4, 12) for the 1297

protein families with Nf ≥ 64 and built models

for the 921 protein families (1024 domains) with

many contacts between positions separated by

more than five residues along the linear sequence

(number of long range contacts > half the number

of residues in protein). The structure-prediction

calculations converged on models with pre-

dicted TM scores (based on the benchmark cal-

culations) greater than 0.65 for 614 of the 1024

domains. A list of the Pfam families covered

by these models is in table S3; the models are

available at http://gremlin.bakerlab.org/meta/,

along with an interactive 3D interface powered

by 3Dmol.js (38) and D3.js (39) for visualiza-

tion of coevolution contacts on the models.

These structures provide close templates for

comparative modeling of 487,306 UniRef100

and 3,868,268 Integrated Microbial Genomes

metagenomic unique (less than 80% pairwise

identity) sequences.

The converged models for the 614 Pfam fam-

ilies (table S3) provide a view of the hitherto un-

seen protein universe. To determine whether the

models belong to knownprotein folds, we carried

out structure-structure comparisons against the

Structural Classification of Proteins (SCOP) (40)

domain database. For 477 of the families, the

models matched a protein of known structure

over nearly the entire length and, hence, can be

assigned to SCOP folds (52 distinct all alpha,

29 alpha/beta, 51 alpha+beta, and 28 all-beta

folds). In a number of cases, the SCOP classi-

fications are consistent with previous functional

information; for example, the restriction endo-

nuclease Xho I is assigned to the restriction en-

zyme fold, and a family of prokaryotic putative

ubiquitin-like proteins is assigned the beta-grasp

fold (to which ubiquitin belongs). For 137 of the

domains, there were no significant structure

matches of the models to the PDB (TM-align

score < 0.5), and hence, these have new folds.

Space limitations preclude showing here even a

small number of the 614 models; instead, we

show a small selection of the 3D structures in

Fig. 3. They include the key developmental

regulator Chordin; a key enzyme in cobalbumin

synthesis; a metalloendopeptidase; and mercury

and iron transporters. Six are transmembrane

proteins, four have new folds, and several have

complex topologies. These and the remaining

590 structure models not shown in Fig. 3 should

provide a basis for understandingmolecular func-

tion and mechanisms and should guide experi-

mental structure determination (such efforts should

be informed of the limitations of the modeling

approach described in the supplementary text).

While this manuscript was in preparation, crystal

structures of members of 5 of the 614 families

were published and are similar to the corre-

sponding models (TM-align score ≥ 0.7) (see

fig. S3 and table S4).

The models presented in this paper fill in

about 12% of the structural information missing

for known protein families. That this could be

accomplished using computational modeling

methods was not at all apparent 5 years ago.

This progress required integration of advances

in disparate research areas: metagenome sequenc-

ing, coevolutionary analysis, and de novo protein

structure-prediction methodology. This combined

approach has a bright future: Extrapolating from

the data in Fig. 2B suggests that in several years

the majority of families will have sufficient num-

ber of sequences for accurate structure model-

ing. A current limitation is that most sequence

data are for prokaryotes, but as fungal and other

simple eukaryote genome structure prediction

sequencing projects ramp up, the approach should

become applicable to eukaryote specific protein

families.
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