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PROTEIN STRUCTURE: INSIGHTS FROM GRAPH THEORY
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The sequence and structure of a large body of proteins are becoming increasingly available. It is desirable
to explore mathematical tools for efficient extraction of information from such sources. The principles of
graph theory, which was earlier applied in fields such as electrical engineering and computer networks are
now being adopted to investigate protein structure, folding, stability, function and dynamics. This review
deals with a brief account of relevant graphs and graph theoretic concepts. The concepts of protein graph
construction are discussed. The manner in which graphs are analyzed and parameters relevant to protein
structure are extracted, are explained. The structural and biological information derived from protein
structures using these methods is presented.
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1. Introduction

Graph Theory is a branch of discrete mathematics,

distinguished by the geometric approach to the study

of objects. The principal object of the theory is a

graph and its generalization. Any problem or ob-

ject under consideration is represented in the form

of nodes (vertices, elements) and edges (connections).

Although the topic is more than two centuries old,

only in recent times it has gained momentum and

has been routinely used in various branches of sci-

ence and engineering. The mathematics developed

earlier can now be applied to systems with large num-

ber of vertices and edges, since computers can be ef-

fectively made use of in obtaining solutions to such

large graphs. Extensive applications of graph theory

are made use of in the fields such as electrical circuits,

communication and transportation networks.1 Chem-

ical molecules being a set of atoms or groups of atoms

(vertices) connected by covalent bonds (edges) have

also been extensively investigated by graph theory.2

A wealth of information has been derived on elec-

tron delocalized molecules by considering electrons

and atomic orbitals as vertices and overlap between

them as edges.3–6

The structure of biopolymers like proteins is gov-

erned to a large extent by non-covalent interactions

and recently, graph theory is being used to gain in-

sight into the structures of proteins. Non-bonded

interactions such as Van der Waal’s forces and hydro-

gen bonds confer unique three-dimensional structures

to proteins. Analysis of the topological details of pro-

teins with known structures, such as the clustering of

specific types of amino acids important for structure,

folding and function, is of great value and is an ac-

tive field of research. Since the structures of a large

number of proteins are being solved by the method of

X-ray crystallography, automatic methods of analysis

are required to analyze them and recently, the tools

from graph theory are being explored for such anal-

ysis. Further, the genome research is yielding enor-

mous amount of nucleic acid and protein sequences

and the field of proteomics has come into existence,

which deals with large scale analysis of proteins in-

cluding their structural characterization by modeling.
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Protein modeling is another area where developments

are taking place and the potentials of graph theory are

being explored. The present article aims at review-

ing the graph theoretic investigations being carried

out on proteins and discusses the future scope of this

approach. The presentation is biased towards the

clustering algorithm and its applications, due to our

involvement with this subject. However, we recog-

nize the contributions of other aspects of graph the-

ory in elucidating the structure, function, folding and

dynamics of proteins and have made a brief presenta-

tion of these topics as well.

A large number of books and articles dealing with

the mathematics of graph theory, its applications and

computer algorithms are available.1,2,7 A brief de-

scription of the graphs, properties of the graph which

are relevant to the present article is presented in the

following section and the formulation of protein struc-

ture graphs and their applications are discussed in

subsequent sections.

2. Properties of Graphs

Graph theory has been found to be useful in a variety

of problems. This has become possible by mathemat-

ically representing the graphs and studying its prop-

erties and identifying graph invariant parameters. In

this section, we deal with the basic concepts of graph

theory.

2.1. Definitions

2.1.1. Graph (vertex, edge, degree)

A graph G = G(V,E) consists of a set of vertices V

and a set of edges E, in which the vertices and edges

are related as follows. Two vertices vi and vj of a

graph G are said to be adjacent if there is an edge eij
connecting them. The vertices vi and vj are then said

to be incident to the edge eij . Two distinct edges of

G are adjacent if they have at least one vertex in com-

mon. The degree of a vertex is denoted by degi, and

(a) Methyl cyclopropane (b) Digraph (c) Multigraph, loop

(d) Clique (e) Weighted graph

Fig. 1. Types of graphs.
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is equal to the number of adjacent vertices to vertex
vi. Graph 1(a) (Fig. 1) consists of 4 vertices and 4
edges, in which the vertex set V (1) = (v1, v2, v3, v4)
and the edge set E(1) = (e12, e23, e34, e24) and the
degree set DEG(1) = (1, 3, 2, 2).

2.1.2. Types of graphs

A graph can be undirected or directed (digraph) as
shown in graphs 1(a) and 1(b) (Fig. 1) respectively.
In an undirected graph, the direction of the edges is
immaterial or in other words, eij = eji. Chemical
graphs representing bonds between two atoms are rep-
resented by undirected graphs. An edge (or edges) in
a digraph on the other hand is directed and hence, eij
need not be equal to eji. The graph representation
of a chemical reaction from states A to B is directed.
Digraphs are extremely common in electrical circuits,
where the current flows in a directed fashion. In this
article, we deal with undirected graphs since molec-
ular topology is represented as undirected connection
between atoms or groups of atoms.

A multigraph is a graph, in which some of its ver-
tices are connected by more than one edge [graph
1(c)]. The vertices 1 and 2 in graph 1(c) are connected
by two edges. A loop is an edge joining a vertex with
itself [vertex 4 in graph 1(c)]. Multigraphs are used to
represent multiple bonds and loops are used to repre-
sent lone pair electrons in case of molecules. Graphs
without multiple edges and loops are called simple
graphs. Since we are interested in protein topology
formed by non-covalent interactions and not on the
details of electronic structures, our focus will be on
simple graphs.

A complete graph (clique) Kn has every pair of its
N vertices adjacent. Graph 1(d) is K4 and is known

as a clique of size 4. Identification of largest clique in
a graph helps in graph comparisons, especially when
dealing with large graphs.

Weighted graph is a powerful graph representa-
tion in which the vertices and edges are discriminated
from each other by giving different weights for each
of them. The vertices v1, v2, v3 and v4 in graph 1(e)
have weights 0.5, 2, 1 and 1 respectively. The four
edges also have varying weights. A chemical struc-
ture with hetero atoms and unequal bond lengths are
represented by an edge and a vertex weighted graph.

2.1.3. Subgraph

A subgraph G′ of G is a graph whose vertices and
edges are contained in G. The graphs 2(b) and 2(c)
(Fig. 2) are subgraphs of 2(a). The subgraph (G− vi)
is obtained from the graph G by deletion of the vertex
vi and its incident edges. The vertex v7 in graph 2(a)
is deleted to obtain the graph 2(b). The subgraph
(G− eij) is obtained from graph G by deletion of the
edge eij . The graph 2(c) is obtained from graph 2(a)
by deleting the edge e56.

2.1.4. Center of a graph

The distance between two vertices (separation or path
length) in a graph is measured in terms of the number
of edges connecting the two vertices. Eccentricity,1

E(v) of a vertex v in a graph G is the distance from
v to the vertex farthest from v in G, i.e.

E(v) = max
vi∈G

d(v, vi) . (1)

Now the vertex with minimum eccentricity is de-
fined as the center of the graph.1,8 The maximum

(a) (b) (c) (d)

Fig. 2. Subgraphs and the center of graph.
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(a) (b) (c) (d)

Fig. 3. Graph isomorphism.

eccentricity in graph 2(d) is 6, which is taken by ver-

tices such as A, B and D. The minimum eccentricity

(3) is taken by the vertex C and is considered as the

center of the graph.

2.1.5. Graph isomorphism

Two graphs G and G′ are said to be isomorphic to

each other if there is one-to-one correspondence be-

tween their vertices and between their edges such that

the edge–vertex relationship is preserved. Graphs 3(a)

and 3(b) (Fig. 3) are isomorphic graphs. Two isomor-

phic graphs must have the same number of vertices,

same number of edges and equal number of vertices

with a given degree. However, these conditions are

by no means sufficient to declare that two graphs are

isomorphic and a number of algorithms are available

to detect graph isomorphism.1 For example, graphs

3(c) and 3(d) have the same number of vertices, same

number of edges and equal number of vertices with a

given degree. But they are not isomorphic graphs be-

cause their connectivities are different as can be seen

by visual inspection.

2.2. Matrix representation

Pictorial graphs are useful in visualization. However,

a graph can be converted into an algebraic form of ma-

trix. When a graph is represented in a matrix form, it

becomes a mathematical entity on which operations

can be performed. Analytical solutions can be ob-

tained and numerical algorithms can be applied. So-

lutions to large graphs can be obtained by standard

computer algorithms. The reason for renewed inter-

est in graph theory is because complicated networks

in various branches of science and engineering such as

electrical engineering, circuit netlist, computer net-

works, large chemical and biological molecules can be

represented as matrices and solutions can be easily ob-

tained by computer algorithms. Graph comparisons,

quantitative characterizations, computation of topo-

logical indices, clustering and partitioning are some

of the major computations which have yielded valu-

able results in various disciplines. The type of matrix

representation depends on the property that one is

looking for. The most common one is Adjacency ma-

trix, which contains the basic information on graph

connectivity.

2.2.1. Adjacency matrix

The Adjacency matrix A = A(G) of an undirected

graph G with N vertices is the square N × N sym-

metric matrix whose ijth elements are defined as:

[A]ij = Wij if i 6= j and i and j are adjacent vertices
(i.e. connected)

0 if i = j or there is no edge between
i and j

Wij = 1, for an unweighted graph and
takes the value of the weight of the
edge eij , in a weighted graph.

The unweighted Adjacency matrix for methyl cyclo-

butane [graph 4(a), Fig. 4] is given as:

A =

0 1 0 1 1

1 0 1 0 0

0 1 0 1 0

1 0 1 0 0

1 0 0 0 0
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(a) (b)

Fig. 4. Graph example for matrix representation.

2.2.2. Laplacian matrix

Laplacian matrix is also known as Kirchoff matrix or

admittance matrix because of its association with Kir-

choff’s theorem and conductivity in electrical connec-

tions. The Laplacian matrix of a graph G, L = L(G),

is defined as:

L(G) = DEG(G)−A(G)(or L = D −A) (2)

where DEG(G) is the degree matrix and A(G) is the

Adjacency matrix of the graph G.

The degree matrix is a diagonal matrix, which has

the information regarding the degree of each vertex.

It is obtained by summing up each of the columns (or

rows) of the Adjacency matrix.

The degree matrix for graph 4(a) is given as:

D =

3 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1

and the Laplacian matrix for graph 4(a) is:

L =

3 −1 0 −1 −1

−1 2 −1 0 0

0 −1 2 −1 0

−1 0 −1 2 0

−1 0 0 0 1

.

2.3. Graph spectra

Graph spectral theory is concerned with the relation-

ships between the algebraic properties of the spec-

tra of certain matrices such as the Adjacency or

Laplacian matrices associated with a graph and the

topological properties of the graph. The eigenval-

ues and eigenvectors of matrices associated with a

graph are the most important graph spectral param-

eters, which provide information on the structure and

topology of the graph and analysis of these quan-

tities is known as graph spectral analysis. Many

of the mathematical proofs, which relate the struc-

ture of the graph to its spectra, is given in the

books by Norman Biggs9 and Strang.10 Spectral tech-

niques are used most often in the design of circuits,

VLSI chips and computer networks. Identification of

clusters and similarity in connectivity patterns can

be deduced from the spectral analysis of connected

graphs.11,12 Graph spectra is also extensively used in

chemical graph theory to derive topological indices

such as the resonance energy, molecular orbital en-

ergy and topology of π electron systems.2,13,14 Graph

indices such as Weiner index,15,16 Hosoya index17 and

indices derived from graph spectral analysis are exten-

sively used in quantitative structure-activity relation-

ship (QSAR) studies.3,5,18,19 Configuration statistics

such as the distribution function of the radius of gyra-

tion, inertial tensor and partition function of polymer

chains have been derived from the spectra of Laplacian

matrix.20,21 The graph spectral analysis has yielded

valuable results in the identification of clusters in pro-

tein structures22,23 and this part will be dealt in great

detail in a later section.

The eigenvalues and vector components of the Ad-

jacency and Laplacian matrices of graph 4(a) given in

Tables 1(a) and 1(b) respectively, give us significant

information about the graph. The vector components

corresponding to the largest eigenvalue contains the

information regarding the contribution of each node

to the graph. In graph 4(a), node 1 has 3 edges, nodes

2, 3 and 4 have 2 edges each and node 5 has only one

edge. The magnitude of the vector components of the

largest eigenvalue of both the matrices reflects this

observation. Nodes 2 and 4 have degenerate vector

components because they are identical in nature.

3. Graph Spectral Properties Relevant to the

Article

3.1. Spectra of isomorphic graphs

As mentioned earlier, there is no unique way of de-

tecting graph isomorphism. Graph spectral analysis
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Graph with 11 nodes and 10 vertices (Examples chosen to elucidate eigen spectra).

Table 1(a). Spectra obtained from Adjacency matrix of methyl cyclobutane shown in graph 4(a).

Eigne Values −2.1358 −0.6622 0.0000 0.6622 2.1358

Node EVC1 EVC EVC EVC EVC

1 −0.5573 −0.4352 0.0000 0.4352 −0.55732

2 0.4647 −0.1845 0.7071 −0.1845 −0.4647

3 −0.4352 0.5573 −0.0000 −0.5573 −0.4352

4 0.4647 −0.1845 −0.7071 −0.1845 −0.4647

5 0.2610 0.6572 0.0000 0.6572 −0.2610

Table 1(b). Spectra obtained from Laplacian matrix of methyl cyclobutane shown in graph 4(a).

Eigen Values −0.0000 0.8299 2.0000 2.6889 4.4812

Nodes EVC EVC EVC EVC EVC

1 0.4472 0.1380 0.0000 0.5362 0.7024

2 0.4472 −0.2560 −0.7071 0.2422 −0.4193

3 0.4472 −0.4375 0.0000 −0.7031 0.3380

4 0.4472 −0.2560 0.7071 0.2422 −0.4193

5 0.4472 0.8115 0.0000 −0.3175 −0.2018

1Eigenvector components.
2The largest vector component of the largest eigenvalue [lvc(L) is shown in bold.
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Table 2. Eigen spectra of Adjacency matrix of graphs in Fig. 5.

Graph 5(a) 5(b) 5(c) 5(d) 5(e) 5(f) 5(g) 5(h) 5(i)

lev1 2.690 2.633 2.589 2.533 2.500 2.450 2.450 2.232 1.932

Node vc(L)2 vc(L) vc(L) vc(L) vc(L) vc(L) vc(L) vc(L) vc(L)

11 0.186 0.163 0.117 0.107 0.016 0.204 0.183 0.101 0.106

10 0.186 0.163 0.117 0.107 0.040 0.204 0.183 0.226 0.204

9 0.186 0.163 0.117 0.107 0.084 0.204 0.183 0.181 0.289

8 0.186 0.108 0.117 0.271 0.171 0.204 0.447 0.403 0.354

7 0.500 0.428 0.303 0.365 0.342 0.500 0.224 0.221 0.394

6 0.224 0.284 0.303 0.258 0.274 0.408 0.224 0.493 0.408

5 0.224 0.243 0.303 0.258 0.274 0.500 0.548 0.214 0.394

4 0.224 0.243 0.258 0.258 0.274 0.204 0.183 0.477 0.354

3 0.224 0.243 0.258 0.258 0.274 0.204 0.183 0.160 0.289

2 0.224 0.243 0.303 0.258 0.274 0.204 0.447 0.357 0.204

1 0.6022 0.640 0.667 0.653 0.685 0.204 0.183 0.160 0.106

1Largest eigenvalue.
2Vector components corresponding to largest eigenvalue.
3lvc(L) are shown in bold.

gives information on isomorphism. From the spectral

point of view, isomorphic graphs have the same spec-

tra, and hence they are said to be cospectral. How-

ever, the converse need not be true. Finding simple

criteria and efficient computer algorithms to detect

isomorphic graphs is an active area of research.24

Detection of graph or subgraph (part of a graph)

isomorphism is a powerful technique in protein struc-

ture comparison.25–27

3.2. Largest eigenvalue (lev)

The largest eigenvalue (lev) depends upon the high-

est degree in the graph. For any k regular graph G

(a graph with k degree on all the vertices), the eigen-

value with the largest absolute value is k. A corollary

to this theorem is that the lev of a clique of n ver-

tices is n − 1. In a general connected graph, the lev

is always ≤ to the largest degree in the graph. In a

graph with n vertices, the absolute value of lev de-

creases as the degree of vertices decreases. The lev

of a clique with 11 vertices is 10 and that of a linear

chain with 11 vertices [graph 5(i) in Fig. 5] is 1.932

and those graphs with 11 nodes with varying degrees

in between, take up lev within the limits of these two.

So, the upper bound for lev is (n− 1), where n is the

number of vertices.

In an irregular graph, it is difficult to analytically

deduce lev. The lev in between the two bounds de-

pends on the nature of connectivity. This is illustrated

with examples of 11 nodes and 10 edges systems given

in graphs 5(a)–5(i) (Fig. 5) and their lev and the cor-

responding vector components are given in Table 2. In

graphs 5(a)–5(e), the highest degree is 6. In graphs

5(f)–5(i), the highest degree is 5, 4, 3 and 2 respec-

tively. It can be noticed that the lev is generally higher

if the graph contains vertices of high degree. The lev

decreases gradually from the graph with highest de-

gree 6 to the one with highest degree 2. In case of

graphs 5(a)–5(e), where there is one common vertex

with degree 6 (highest degree) and the degrees on the

other vertices are different (less than 6 in all cases),

the lev also depends on the degree of the vertices ad-

joining the highest degree vertex.

3.3. Eigenvector components and branching

of nodes

Let us consider a graph G with “n” vertices. Let

x1, x2, . . . , xn be the weights assigned to “n” vertices.

We try to find a numerical value to xi, which is pro-

portional to the sum si, of all the edges emanating

from vertex “i” in the graph G. In other words, if

there are “k” vertices connected to the vertex “i”,
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then xk are to satisfy, in a non-trivial way, the system

of homogeneous linear equations

λxi =
1

di

∑
k·i

xk (3)

the value of λ being suitably chosen and di being de-

gree of vertex “i”. The above equation can be writ-

ten as:

λDX = AX (4)

where A corresponds to the Adjacency matrix and D

the diagonal matrix of G and X denotes the corre-

sponding eigenvector with components xk. Thus, the

eigenvector components may be directly interpreted as

“weights” of the corresponding vertices in the graph.

The weights are direct indication of the extent of con-

nectivity of the corresponding vertices in the graph.

This concept is explained using some simple examples

below.

Let us consider the graphs 5(a)–5(i) shown in

Fig. 5. The lev and the corresponding vector compo-

nent values [vc(L)] of the Adjacency matrices of the

graphs 5(a)–5(i) are given in Table 2. It can be no-

ticed that the largest vector component (lvc) of the

lev [lvc(L)] corresponds to either the node with high-

est degree or to the center of the graph. The first

preference for the lvc(L) is the node with the high-

est degree. For example, in graphs 5(a)–5(e), node 1,

which has the highest degree, has the lvc(L). In graph

5(f), nodes 5 and 7 have degree 5, which is the highest

degree in the graph and both of them have degenerate

values of vc(L). However, in case there are many nodes

with degenerate highest degree, the one which is clos-

est to the geometric center of the graph, takes up the

lvc(L). This can be seen in graphs 5(g)–5(i), where the

center of the graph has taken the lvc(L). It can also

be noted that the removal of the vertex with lvc(L)

results in a subgraph, which is smaller than the one

that can be obtained by removing any other vertex.

Similarly, removal of a vertex with the smallest vector

component corresponding to the lev [svc(L)] results in

a subgraph, which is larger than the one obtained by

removal of any other vertex. The contributions of the

nodes in the graph, decreases as we move away from

the lvc(L) and this is reflected in the magnitude of

the vector components corresponding to the lev. In

summary, the vector components of a graph can be

interpreted as a direct measure of the contribution of

each vertex to the overall connectivity of the graph.

The eigen spectral concept has been used in Huckel

molecular orbital theory to obtain the resonance en-

ergy levels and the composition of the corresponding

molecular orbitals.3–6 The π electron atomic orbitals

are considered as nodes and edges are made between

interacting orbitals. Weights are assigned to represent

the energy of interaction. The resulting eigenvalues of

the molecular graph are correlated with the energy

of the molecular orbital and the corresponding vector

components represent the contribution of the atomic

orbital to the concerned molecular orbital. The spec-

tral properties are made use in identifying important

nodes, which contribute to the stability of clusters in

protein structures (such as cluster centers), and will

be discussed in a later section.

3.4. Laplacian matrix and graph spectra

The Laplacian matrix L(D − A) of a graph contains

the specific degree information on each of the vertex as

elements of the diagonal. Some of the properties of the

Laplacian matrix are given below. In the properties

shown below X denotes the eigenvector of the Lapla-

cian matrix and xi denotes the vector components.

(a) The Laplacian matrix is symmetric and non-

negative definite, i.e.XTLX =
∑
ij

Lijxixj ≥ 0

 (5)

and all the eigenvalues of L are ≤ 0.

(b) The smallest eigenvalue of L is 0 with

eigenvector

X =

(
1√
n
,

1√
n
, . . . ,

1√
n

)
(6)

where n is number of vertices in the graph.

(c) The inner product XTLX can be written as

= XTDX −XTAX

=
∑
i

dix
2
i −

∑
i,j

Aijxixj

=
∑
i

dix
2
i − 2

∑
i,j

xixj

(7)

which can be written as

XTLX =
∑
i,j

(xi − xj)2 . (8)
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3.5. Relation between Adjacency and

Laplacian matrices

It is clear from the relation L = D−A that the Lapla-

cian and the Adjacency matrices are related in a very

simple way. For graphs, which are regular with de-

gree k, the eigenvalues of the Adjacency have a linear

relation with the eigenvalues of the Laplacian. For

example, if

0 = θ1 ≤ θ2 · · · ≤ θn

be the eigenvalues of the Laplacian in the increasing

order. Let

λ1, λ2 · · ·λn

be the eigenvalues of the Adjacency matrix, then a

relation of the form

θi = k − λi (9)

can be written between the eigenvalues of the Lapla-

cian and the Adjacency. This is quite straightforward

for regular graphs as the Laplacian matrix for k reg-

ular graphs can be written as

L = kI −A . (10)

This linear relation does not exist for graphs, which

are non-regular. Since most of the graphs of our in-

terest are non-regular, one cannot define a clear re-

lation between the spectra of the Adjacency and the

Laplacian.28

3.6. Clustering by graph spectra

Identifying clusters is an important operation carried

out in the field of electrical network connections.29–32

There are several algorithms to do this operation

by traditional matrix manipulations.1,33 The results,

however, depend sometimes on the method adopted

and it requires several iterative steps to achieve clus-

tering. Further, such operations can be performed

only on matrices with binary values of zero and

one. Graph spectral method is a powerful tool,

which can yield unique results by a single numeric

computation.29 Further, it can also be used to get

clustering information on weighted graphs. These con-

cepts are adopted to obtain non-bonded clusters in

protein structures22,23 and the following algorithm is

used for such investigations.

An Adjacency matrix of a weighted graph can be

constructed by assigning weights to the edges connect-

ing the vertices. Now the clustering problem is to

find the location of “n” vertices which minimizes the

weighted sum of squared distances between the points

which is given by the function34:

Z =
1

2

n∑
i=1

n∑
j=1

(xi − xj)2Aij . (11)

The details of clustering procedure34 is given in Ap-

pendix A. The essential point of interest is that the

second smallest eigenvalue of the Laplacian matrix

and its associated vector components yield the clus-

tering of points in the graph. This is illustrated with

an example. Consider the Laplacian matrix for graph

4(a) (Fig. 4) presented in Sec. 2.2.2. We combine

graph 4(a) and graph 4(b) and construct a Laplacian

matrix with edge weights (1/dij), where dij is the dis-

tance between vertices i and j. The distances between

the vertices of graph 4(a) and graph 4(b) are consid-

ered to be very large (say 100) and thus the matrix

elements corresponding to a vertex from graph 4(a)

and the other from graph 4(b) is considered to have

a very small value of 0.01. The Laplacian matrix of

8 vertices thus considered is diagonalized and their

eigenvalues and corresponding vector components are

given in Table 3. The vector components correspond-

ing to the smallest eigenvalue yields a trivial solution

as all values are degenerate. The vector components

corresponding to the second smallest eigenvalue con-

tains the desired information about clustering, where

the cluster forming residues have identical values. In

Fig. 4, nodes 1–5 form a cluster (cluster 1) and 6–8

form another cluster (cluster 2). This information can

be obtained by inspecting the vector component val-

ues of the second smallest eigenvalue because nodes

1–5 have the same value and nodes 5–8 have the same

value. Thus, clusters can be identified from the vector

components of the second smallest eigenvalue. Ad-

ditionally, the larger eigenvalues contain information

regarding only one of the clusters. If we look at the

vector components of the largest eigenvalues corre-

sponding to each of the two clusters, we can see that

the node with the largest vector component is the one

with the highest degree. In case of cluster 1, node 1

has the highest degree and hence it has the largest

vector component. And in cluster 2, nodes 6 and 7,
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both have the same degree and identical weights on

their edges. Hence, they are equivalent and therefore,

have degenerate vector component values. Though

node 8 has the same degree as nodes 6 and 7, it is dif-

ferent from nodes 6 and 7 because of the edge weights.

The nodes with the highest degree and highest edge

weights have the largest vector components in the top

eigenvalues.

4. Protein Graphs

The three dimensional structure of proteins is the key

to understanding their function and evolution. It is

often stated that the folding of proteins to its unique

native state is the second genetic code. Analysis

of stable folded three-dimensional structures of pro-

teins provides insights into their folding stability and

Table 3. Eigen spectra of the Laplacian matrix of the combined graphs 4(a) and 4(b) (Fig. 4).

Eigen Values 0.0000 0.0800 0.9016 1.5500 1.9500 2.0600 2.7420 4.5164

Node EVC1 EVC EVC EVC EVC EVC EVC EVC

1 0.3536 0.2739 0.1380 −0.0000 0.0000 0.0000 0.5362 0.70242

2 0.3536 0.2739 −0.2560 −0.0000 −0.0000 0.7071 0.2422 −0.4193

3 0.3536 0.2739 −0.4375 −0.0000 −0.0000 −0.0000 −0.7031 0.3380

4 0.3536 0.2739 −0.2560 −0.0000 −0.0000 −0.7071 0.2422 −0.4193

5 0.3536 0.2739 0.8115 0.0000 −0.0000 −0.0000 −0.3175 −0.2018

6 0.3536 −0.4565 −0.0000 −0.4082 −0.7071 0.0000 0.0000 0.0000

7 0.3536 −0.4564 0.0000 −0.4082 0.7071 −0.0000 −0.0000 −0.0000

8 0.3536 −0.4564 −0.0000 0.8165 −0.0000 0.0000 0.0000 0.0000
1Eigen vector components.
2lvc(L) is shown in bold.

(a) β-hairpin (b) Greek key (c) βαβ

(d) Graph representation of β-hairpin (e) Graph representation Greek key (f) Graph representation of βαβ

Fig. 6. Some of the common motifs in proteins (a, b and c) and their graph representations (d, e and f). The β-strand are
represented as arrows pointing from the N-terminal towards and C-terminal and the α-helix is represented as a cylinder.
The connectivities between these secondary structures are shown as loops in the motifs. The secondary structures are the
nodes (β-strand is represented as triangle and α-helix as a rectangle) and their spatial connectivites are the edges in the
graph representations (d, e and f).
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function. Results of analysis have also become founda-

tion for protein structure prediction from amino acid

sequence, design of novel proteins with desirable cat-

alytic function and rational drug design studies.

Properties of graphs and their spectra discussed

in the previous sections are made use of in eluci-

dating protein structures. The main problem is to

define nodes and edges. Depending on what is de-

fined as a node and an edge, different aspects of

protein structures can be characterized. Sub-graph

isomorphism,25–27 clustering,22,23 correlation of eigen

spectra with topological and physical properties35,36

are some of the topics that are addressed in literature.

4.1. Protein structural topology

A protein structure has geometry, expressed in the

conformation of the protein backbone and side-chains.

Many structures can differ in terms of the conforma-

tional features (geometry) but still can have the same

topology (the gross shape). Over many years, many

authors have studied protein structural topology and

a number of definitions and notations have emerged.

The early work related to structural topology was

through hand drawn diagrammatic form.37–39 These

diagrams were two-dimensional schematic representa-

tions of protein folds with particular symbols used to

represent helices and strands. Figures 6(a)–6(c) show

diagrammatic representations of a few common mo-

tifs like β-hairpin, Greek key and βαβ. This kind

of representation helped in understanding how par-

ticular folding pathways would favor particular types

of topology and to what extent topological similari-

ties between structures might imply an evolutionary

relationship.

4.2. Mathematical formulation of protein

topology

A more mathematical formulation of protein struc-

tural topology was made by Koch and co-workers,40

wherein they introduced the concept of a mathe-

matical graph to represent β structures. In a β-

graph, the vertex represents a single β-strand and

the two edge sets describe sequential and hydrogen

bond connections respectively. The language of graph

theory helped in representation of any topology

however complicated. Later Grigoriev and co-

workers41 represented all α-helical structures in the

form of connected graphs. Again the approach uses

graph theoretical techniques in which the nodes rep-

resent secondary structures and the edges represent

contacts between helices, rather than hydrogen bonds

which was the case with β-graphs. Several defini-

tions of helical contacts were tested, which resulted

in number of graphs with different connectivites. The

main application of such an approach was to gain in-

sights into the folding process and domain organiza-

tion of the proteins. This method of representing the

secondary structures as nodes and their connectivi-

ties as edges is extensively used for protein structure

comparison.25–27,42 The side chains/main chains and

their connectivities are used as a nodes and edges in

the recognition of structurally and functionally impor-

tant patterns and in protein modeling studies. The

protein connectivity as whole, irrespective of the na-

ture of secondary structure, is captured by identifying

the main chain atoms that are spatially close within a

Fig. 7. A schematic representation of the sequential and
spatial neighbors of a residue “i” in a polypeptide chain.
A distance cut off is taken and the residues which fall
within this radius are the spatial neighbors of residue
“i”. Residues A, B, C and D are spatial neighbors of “i”
whereas i− 1, i − 2, i+ 1 and i + 2 are sequential neigh-
bors of i. The spatial neighbors are indicated using dotted
lines and the sequential neighbors are shown as continuous
segment of the polypeptide chain.
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Table 4. Protein graph description.

S. No Nodes Edges Graph Operation Purpose References

1 Secondary structure
(α-helix, β-strand)

Spatially close
Secondary structures

Identification
of subgraph
isomorphism

Fold and pattern
identification

Mitchell et al. 198925 ;
Grindley et al., 199326

2 Secondary structure
(α-helix, β-strand)

Spatially close
Secondary structures
(dynamically
arrived at)

Dynamical matrix
construction

Testing folding
rules

Przytycka et al., 200242

3 Side chain Spatial proximity Identification
of subgraph
isomorphism

Functionally
and structurally
important motif
recognition

Artymiuk et al., 199427

4 Side chain Spatial proximity
decided by overlap
cut off criterion
(weighted edge)

Graph spectra,
identification of
clusters and cluster
centers

Identification of
clusters important
for function,
structure and
folding

Kannan and
Vishveshwara, 199922

5 Backbone Spatial neighbours
within radius cut off
(6.5− 7.0 Å)

Graph spectra,
identification of
clusters and cluster
centers

Identification of
proteins with
similar folds

Patra and
Vishveshwara., 200023

6 Backbone Spatial neighbours
within radius cut off
(7.0 Å)

Graph spectra Protein dynamics Bahar, 199935

7 All atoms Defined based on
constraints (weighted
edge)

Graph spectra Protein dynamics Jacobs et al., 200136

prescribed distance (around 7Å, which represent the

radial distribution.43,44 An example of the edges which

result from such a representation is shown in Fig. 7

and is made use of in identifying backbone clusters23

and in GNM model35 (models to extract dynamical

information from protein static structure).

Nodes and edges in protein structures as defined

by various groups and the motivation for construct-

ing such graphs is given in Table 4. The basic unit

of a protein is its amino acid residue. This is used

as the node and the three-dimensional connectivities

between these amino acid residues (backbone and/or

side chain) is taken as edges for graph construction in

cluster identification studies.22,23 On a different level,

the secondary structures (helices and strands) are con-

sidered as nodes for pattern identification studies.25,26

Secondary structure motifs like β-hairpin [Fig. 6(a)]

and Greek key [Fig. 6(b)] motifs are considered as

nodes [Figs. 6(d) and 6(e)] to study the rules of protein

folding.42 The method of defining nodes and edges for

identifying side chain clusters in protein structures22

is described in detail in Appendix B.

5. Applications of Graph Theoretic Concepts

for Protein Structure Analysis

So far we have examined the protein structures and

learnt to represent them in the form of graphs and

matrices. In this section, we present the impor-

tant results obtained on protein graphs. A range of

exciting and important problems related to protein

structure is addressed, which includes recognition of

patterns such as protein topology (folds) and active-

site motifs, detection of a variety of functionally and
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(a) (b)

(c) (d)

Fig. 8. Protein folds and their representations.96 The helices are shown as cylinders and strands as shaded arrows. Different
protein folds representing all the major protein classes, namely the all α-class (myoglobin), all β-class (immunoglobulin),
α/β-class (triose phosphate isomerase) and α+ β class (Ribonuclease A) are shown in a, b, c and d respectively. It can be
seen that the all-α class consists mainly of α-helices, the all β-class is mainly made up of β-strands, the α/β class consists
of parallel β-sheets connected through α-helices and the α+β class has both α-helices and β-strands, but they do not occur
alternatively as in α/β class.

structurally important amino acids, protein structure

prediction and extracting dynamical information from

static structures.

5.1. Protein structure comparison:

Pattern identification in proteins

by graph isomorphism

It is known that although the number of proteins in

nature is enormous, they adopt a limited number of

three-dimensional structures,45 which are represented

as folds, families and superfamilies and motifs.46 A

few samples of such protein folds are presented in

Figs. 8(a)–8(d). One of the present challenges is to

identify the fold adopted by the polypeptide chain

and to sort out similarities in protein structures.47

Further, the proteins also take up specific side chain

patterns to carry out their biological functions and

identification of such motifs is extremely helpful in

structure-function correlation. An example of the cat-

alytic unit of a class of proteins known as serine pro-

teases is given in Fig. 9. Both trypsin [Fig. 9(a)]

and elastin [Fig. 9(b)] are serine proteases and

have the characteristic catalytic triad consisting of
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(a)

(b)

Fig. 9. Active site cluster in serine proteases. The active
site cluster consisting of Ser-His-Asp triad in trypsin and
elastin are shown using Van der Waal’s spheres in a and b
respectively. This catalytic triad pattern is characteristic
of the serine proteases and is known to be conserved.

Ser-His-Asp. Graph-theoretic approaches have been

successfully used in such pattern identification stud-

ies. The basic task again is to specify what nodes

and edges are. Once a graph is constructed, the pat-

terns can be identified by recognizing different levels

of isomorphism.

The process of node and edge identification begins

from the co-ordinates of protein atoms obtained from

Protein Data Bank.48 The regular secondary struc-

tures, like α-helices and β-strands can be detected

from crystallographic co-ordinates using parameters

such as hydrogen bonds49 or the dihedral angles φ or

ψ.50 The major axes of helices and strands and their

direction can then be evaluated from the co-ordinates

of selected atoms. The identified secondary structures

are considered as labeled nodes. The distances and

angles between the secondary structures are then eval-

uated. Based on selection criteria, edges are made be-

tween nodes and a protein secondary structure graph

is constructed.25,26 An example of such a secondary

structure graph is given in Figs. 6(d)–6(f). The helices

and strands occurring in proteins are represented as

nodes and their three-dimensional connectivities con-

sidered for edge formation. On the other hand, the

three dimensional patterns of side chains require a dif-

ferent definition of nodes and edges. A side chain is

defined by two pseudoatoms, one near the start (S)

and the other near the end (E) of the functional part

of the side chain.27 The distances and angles between

the pseudoatoms of functionally important side chains

are considered as edges. The nodes and edges thus

identified in a protein with a well-known pattern are

taken as the query. Such patterns are searched in pro-

teins with unrecognized patterns where the edges are

defined with some tolerance criteria. Obviously, strin-

gent criteria can pick up patterns, which are very close

to the query and relaxing them can broadly recognize

the patterns.

Two protein graphs can be compared to see if

they share common features by graph isomorphism

detection methods. A number of methods are avail-

able for subgraph isomorphism detection.6 Ullman’s

algorithm24 has been extensively used by Willet’s

group. It is a tree searching algorithm which com-

pares successive subgraph isomorphism from a query

motif with the protein structure. Matrices are set up

for the query and a selected protein structure and the

subgraph isomorphism is detected by a series of matrix

permutations. The method is further refined to iden-

tify maximal common subgraph (MCS). An MCS al-

gorithm allows one to determine the largest subgraph

that is common to a pair of graphs. This approach can

highlight areas of structural overlap, which may in-

volve structural/functional commonalities, which are

not obvious from other methods. The problem of MCS

identification however is computationally demanding

since it involves up to P !Q!/R!(P − R)!(Q − R)!

comparisons, where the two graphs contain P and

Q nodes, with R nodes in common.51 A number of
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heuristic methods are available,51–53 which cleverly

reduce the number of comparisons. Since measure-

ment of protein structural similarity using contact

map overlap and sub-graph isomorphism is compu-

tationally expensive, approximation algorithms have

been used for this purpose.54 The clique detection al-

gorithm has been found to be highly efficient in identi-

fying MCS55,56 and this procedure is extensively used

to detect tertiary structural resemblance in proteins.26

The patterns characteristic to a number of pro-

teins such as serine protease, staphylococcal nucle-

ase, NAD binding motif, calcium binding motif etc.,

are used as query to search across PDB.48 For in-

stance, serine proteases are characterized by the cat-

alytic triad (ser-his-asp). Figures 9(a) and 9(b) show

this catalytic triad in two serine proteases, trypsin

and elastin. The pattern is recognized not only in

serine proteases, but an additional triad is also found

in their precursor proteins (known as zymogens) at

a second site. Such unexpected hits prompt one to

search for their functions.27 Subgraph isomorphism

can also aid in correlating protein topology or struc-

ture with function. Striking resemblances are detected

between proteins with low sequence similarity such as

carboxy peptidase and leucine aminopeptidase,57 ri-

bonuclease H and connection domains of HIV reverse

transcriptase,58 bacterial signal transduction proteins

and G proteins,59 by subgraph isomorphism method.

5.2. Clusters in protein folding and function

The interaction among residues, together with their

interactions with the surrounding, determines the na-

tive functional structure of the protein. Therefore,

any cluster of interacting residues could be of signif-

icant interest from the protein folding and function

point of view. The fact that the residues, which form

the folding nucleus are also conserved in the sequences,

adds to the belief that for each protein structure, there

exist a small number of conserved residues that are the

key determinants of the folding process and more so

these key residues are clustered in the native structure

of the protein.60,61

Hydrophobic clusters, which form the buried core

of the protein, are known to be important in stabi-

lizing the native structure. An alteration of residues

in these clusters is known to destabilize the protein.62

The hydrophobic interactions on the surface of the

protein are major determinants of thermal stabil-

ity. Hydrophobic clusters on the protein surfaces are

known to be important for protein oligomerization and

subunit association and also play a crucial role in

protein–protein and protein–DNA interactions.63–65

On the other hand, charged clusters are known to be

essential for the function of the protein66–68 and they

are mainly present at the active site and metal binding

sites of the protein.

Since residue clusters play a crucial role in protein

stabilization, protein–protein association, folding and

function, efficient techniques are required to delineate

and characterize them from native structures and sev-

eral methods are available for this purpose.69–71 Such

important clusters are identified by the graph spec-

tral technique described earlier and it has proved to

be elegant and efficient in cluster identification. The

elegance of graph spectral method is due to the fact

that it takes a global view of protein structure and

the efficiency is due to a single numeric computation,

which is not influenced by the starting procedure (like

in some matrix reorganization methods) and can han-

dle weighted matrix, unlike some traditional methods

dealing with matrices. Some of the specific applica-

tions are discussed below.

5.2.1. Active site clusters

It is known that the active site of proteins generally

consist of a network of interacting residues. The clus-

ter of these interacting residues can be identified using

the clustering algorithm. This algorithm can be used

to find side chain clusters in proteins and amongst

these, the active site clusters can be identified. Kan-

nan and Vishveshwara have shown that one of the

clusters obtained using high contact criterion (means

a strong overlap between interacting residues), gen-

erally belongs to the active site and on reducing the

contact criterion, these active site clusters expand.22

These active site clusters are found to branch out

into bigger networks when the contact criterion is fur-

ther reduced. The expansion of these active site clus-

ters is significant because such network of interactions

surrounding the active site could be important for

holding the active site residues in proper orientation

and also for movement of these residues during lig-

and binding. Figure 10 shows the clusters obtained in

myoglobin (4mbn) at high and low contact criterion.
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(a) Myoglobin (4mbn) at high contact criterion.

(b) Myoglobin (4mbn) at low contact criterion.

Fig. 10. Expansion of the active site cluster in myoglobin
(pdb code: 4mbn). The side chain clusters obtained in
4mbn at high and low cut off is shown in a and b respec-
tively. The cluster residues along with the porphyrin ring
at the active site are shown in bold.

It is evident that the cluster obtained at high cut

off has got expanded at low cut off, thus including

many other residues in the cluster during the process

of expansion. The biological significance of such an

expansion of active site cluster is two fold. Primar-

ily, it explains how functionally important residues

are appropriately placed in space by being anchored

to the core of the protein. Secondly, the nucleation-

condensation hypothesis of protein folding72 seems to

be supported.

5.2.2. Folding clusters

During protein folding, the first residue–residue inter-

actions occur amongst residues involved in the nucle-

ation sites. The identification of such residues will

give some insight to the folding pathway.72 The sites

of nucleation that help in protein folding have been

identified using graph-theoretic method. It is well

known that hydrophobic interactions play a major role

during the process of protein folding.60,61 Hence, hy-

drophobic clusters were determined in a set of proteins

for which experimental information regarding residues

important for folding was already available. The vec-

tor components of the top eigenvalues (which in a way

represents the weight of the vertex in the graph) were

found to correlate very well with the established ex-

perimental results regarding the residues that play a

major role during the folding of the protein. Hence,

the analysis of the vector components of the top eigen-

values of the hydrophobic clusters could give informa-

tion regarding the folding of the protein. The probable

nucleation site on protein triose phosphate isomerase

(TIM barrel) was identified using this method.73 Con-

served hydrophobic clusters with high hydrophobicity

index74,75 were identified as the folding nucleus in this

class of proteins.

5.2.3. Topological characterization of α/β barrel fold

It is a well-known fact that the α/β barrel is one of

the commonest folds in proteins and is adopted by a

variety of proteins. Though these proteins have sim-

ilar fold, they scan highly diverse sequence and func-

tional space. This had motivated many researchers

into probing the reason for such a structural simi-

larity in spite of large sequence diversity. In order

to understand the structural factors contributing to

such a unique fold, the structures of these proteins

in terms of the backbone clusters, which might have

contributed to the formation of α/β barrel framework,

have been analyzed.73 Graph-theoretic algorithm was

used to identify backbone clusters,23 as backbone in-

teractions seem to be more conserved than side-chain

interaction in this class of proteins. An interesting re-

sult of this study was the observation that the largest

eigenvalue (lev) of graphs constructed for topologi-

cally similar proteins (α/β barrel proteins in this case)
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Fig. 11. Backbone clusters in α/β barrel protein, indole-
3-glycerolphosphate synthase (1juk). The cluster residues
are shown in bond representation. The clusters are con-
centrated in the β-barrel region and the loops connecting
the β-strands to the α-helices.

had similar values. The lev depends upon the extent

of branching in the graph and seemed to capture the

topology of a protein fold. In the case of α/β bar-

rel proteins, the residues contributing to the largest

vector components corresponding to the largest eigen-

value [lvc(L)], seem to belong to the β-barrel region,

indicating a possible structural role of these residues.

More importantly, these lvc(L) residues are topolog-

ically conserved in all α/β barrel proteins studied.

The residues at the middle and C-terminal ends of

the strands contribute significantly to the cluster for-

mation (largest vector component magnitude) and are

also located close to the active site of the proteins.

Figure 11 shows the backbone clusters obtained in

indole-3-glycerolphosphate synthase (1juk), which is

an α/β barrel protein. It is evident that the clusters

are concentrated in the β barrel region and that the

major contributions are from residues in the strands

and loops regions. It would be interesting to see if

topological indices such as lev or the graph spectra

can be used to characterize protein topologies.

5.2.4. Aromatic clusters/thermal stability

Thermophilic proteins can exist in their native con-

formation and be functionally active at high temper-

atures as well. A number of factors such as hydrogen

bonds and salt bridges have been known to be the de-

terminants of thermal stability.76–78 Cluster analysis

on a dataset of thermophilic proteins showed an over-

representation of aromatic clusters/interactions in

thermophilic proteins as compared to their mesophilic

homologue.79 Moreover, most of these additional aro-

matic clusters found in thermophiles were located

on the surface of the protein and were in relatively

rigid regions of the protein showing low B-factors. In

the mesophilic counterpart, these additional aromatic

(a) Mesophilic phosphoglycerate kinase (3pgk).

(b) Thermophilic phosphoglycerate kinase (1php).

Fig. 12. Aromatic clusters in mesophilic (3pgk) and ther-
mophilic (1php) phosphoglycerate kinase. Residues 239F,
266L and 277V from a cluster in the mesophile. The
non-aromatic leucine and valine are replaced by aromatic
phenylalanines in positions 266 and 277 respectively, in the
thermophilic protein, thus forming a network of aromatic
interactions.
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residues, are substituted by non-aromatic residues.

These features can be seen in the example of the pro-

tein phosphoglycerate kinase as shown in Fig. 12. This

finding provides a basis for experimentally verifying

the role of aromatic interactions in contributing to

protein thermal stability.

5.2.5. Protein–protein interaction

Multimeric proteins are extremely common in na-

ture. The interactions, which hold the monomers of a

multimeric protein are usually non-covalent in nature

and form the basis for protein–protein interaction and

protein assembly. Analysis of the nature of interac-

tions in such interfaces is critical in understanding the

structural factors underlying protein–protein recogni-

tion. Since the structural environment of residues in-

volved in protein–protein interfaces would be similar

to residues buried in a protein core,80 one would ex-

pect similar stabilizing interactions governing proteins

interior and interfaces. In order to verify this hypoth-

esis, a set of homodimeric interfaces was analyzed for

the presence of side-chain clusters at the interface.81

The analysis showed that there are specific amino

acid residues, which cluster at the interface, involved

in strengthening the monomer–monomer interaction.

The residues which form the center of the interface

clusters [identified using the lvc(L)] were highly con-

served and are more likely to disrupt the dimer in-

terface upon mutation. Thus identifying side chain

clusters and their centers (nodes with highest degree

usually have the largest vector component and gen-

erally represent the center of the cluster in an ap-

proximate spherical distribution) using graph theory

has helped in identifying “hot spots” (residues im-

portant for dimer stability, the mutation of which

destabilizes the process of oligomerization) at protein

interfaces. The graph-spectral algorithm in conjunc-

tion with residue conservation and other traditional

methods like determination of the loss in accessible

surface area on dimerization, was used to predict po-

tential dimerization sites in monomeric proteins. The

predicted “hot spots” and dimerization sites correlate

well with the experimental results and can serve as a

powerful tool for protein structure analysis and creat-

ing protein interaction networks.

Further, the procedure was used as a predictive

tool in the case of RNA polymerase. The α2 dimer of

core RNA polymerase forms the initiation step in the

assembly of complete protein. Two “hot spots” at the

N -terminal domain of the α-subunit were predicted

to be important for dimer stabilization by the graph

spectral algorithm. Specifically F35 formed the cen-

ter of the cluster and was predicted to be critical in

dimerization. This prediction was experimentally ver-

ified using site-directed mutagenesis82 and was shown

to be dimerization defective. Figure 13 shows the

(a)

(b)

Fig. 13. Side chain clusters at the interface of RNA poly-
merase α2 dimer. The interface cluster enclosed within the
rectangular box in (a) has been enlarged in (b). The clus-
ter forming residues at the interface include 46I, 50S, 8F,
32E, 35F, 31L, 38T and 39L from one monomer and 227Q
from the other monomer. Residue 35F has been identi-
fied as the “hot spot” using the graph spectral method
and has been experimentally verified to be important for
dimerization.
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cluster identified in the dimer interface of RNA poly-

merase α2 dimer. The cluster consists of residues

from both monomers and hence, stabilizes the inter-

face through a network of interactions.

5.3. Graph theory in protein structure

and folding

5.3.1. Comparative modeling

An exponential increase in genome sequencing has re-

sulted in the availability of a large number of pro-

tein sequences. Ultimately, it is of interest to know

how these proteins function, for which the three-

dimensional knowledge of structure plays an impor-

tant role. With an increase in the number of protein

crystal structures, it has been possible to catalog most

of the possible folds taken by proteins in nature. Rig-

orous developments have taken place in assigning a

given sequence to a known fold.83 The fold reveals the

overall topology taken up by the polypeptide chain.

However, the possible combinations of side chain

conformations and the non-regular secondary struc-

tures of the backbone conformations are astronomical.

Conformational comparison with homologous proteins

decrease the search space (known as comparative

modeling). Clique finding algorithm is made use of

by Samudrala and Moult,84,85 to explore the side

chain conformational space in comparative modeling.

Weighted nodes and edges are considered for graph

construction in these studies. The weight of each

node is based on the degree of interaction between the

main chain and the side chain. The nodes are possi-

ble conformations of the side chains. Edges are drawn

between all considered nodes with the exception of

nodes arising from the same side chain and nodes giv-

ing rise to steric clashes. The edges are also weighted

based on the extent of favorable interaction between

nodes. Once the entire graph is constructed, all the

maximal sets of completely connected nodes are de-

tected by clique finding algorithm.86 The cliques are

scored based on the node and edge weights. The algo-

rithm is used in comparative modeling to build side-

chains, segments of main-chain and mix and match

between different homologues in a context sensitive

manner.

5.3.2. Inverse folding

The problem of inverse folding is to identify all possi-

ble sequences, which can take up a given structure.87

In other words, it amounts to the design of sequences

for a given structure. Lattice models are simple to

handle and it allows one to completely enumerate

the energetics of all possible conformations taken up

by a sequence and vice versa. The possible applica-

tion of graph theoretic parameters to design sequences

for a chosen structure has been explored.88 A com-

pact conformation on a lattice was chosen with the

polymer chain on lattice points as vertices and non-

sequential neighbors as edges. Hypothetical sequences

with polar (P ) and hydrophobic (H) residues were

chosen as the polymer chain and different energy val-

ues were assigned for (H–H), (H–P ) and (P–P ) non-

sequential contacts. Adjacency matrix of the graph

obtained for a given conformation was constructed

and the eigenvalues and their corresponding vector

components were evaluated. It was seen that the vec-

tor components of the largest eigenvalue were able to

discriminate between vertices of same degree depend-

ing on its position in the graph. This feature was ex-

ploited to assign topological weights for the vertices,

which in turn assisted in placing a H or a P residue

on the chosen vertex for the chosen conformation to

take up lowest energy. The procedure worked quite

well to construct sequences for a chosen conformation

on lattice model. The usefulness of such topological

indices in designing realistic sequences for real protein

structures is yet to be explored.

5.3.3. Searching for the rules of protein folding

Whether the structures of proteins have evolved ran-

domly or whether there are hidden constraints on their

patterns, scope and complexity, is a puzzle, which

is being investigated89 in the field of protein folding.

Przytycka et al., have studied protein sequences and

structures to see if patterns in protein structures are

haphazard assortments or whether they are similar to

sentences in a language which can be generated by

an underlying grammar.42 They have considered the

motifs of β-proteins like β-hairpin, β-β-β unit, the

anti-parallel and parallel Greek key motifs (some of

which are shown in Fig. 6) as building blocks, and

a set of simple rules (hypothetical) such as chirality,
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non-crossing properties and preservation of hydrogen

bond patterns in β-sheet topologies, to generate all

known β-folds in nature. The studies are carried out

on β-proteins and can be extended to other class of

proteins as well. The β-strand regions are identified

from the secondary structural assignment,49 and they

are considered as nodes of the graph. To begin with

edges are formed between sequentially adjacent nodes

and the Adjacency matrix is recursively modified by

applying the simple rules of folding mentioned above.

The process is continued until the complete domain

and its connections are identified. By this procedure,

it was possible to generate the protein β-folds found

in nature, which led them to conclude that there in-

deed is an underlying folding grammar in the evolu-

tion of protein structures. The complete and correct

set of rules however has to be established by further

investigations.

5.4. Protein dynamics

A protein should not only fold to an unique conforma-

tion, but also should posses the ability to do conforma-

tional motions relevant to its function, while retaining

its folded state. It is likely that the molecular topology

inherently determines the most likely mechanism of

motion in a cooperative manner involving all parts of

the structure. The rigorous method of understanding

protein dynamics is to carry out molecular dynamics

(MD) simulations (or Monte Carlo simulations) where

the force on each atom is explicitly defined and the

subsequent position of the constrained atoms are de-

termined by Newton’s law of motion. This procedure

however is computationally intense since the simula-

tions have to be carried out for several nanoseconds to

obtain the equilibrium properties. Further, the pro-

cedure becomes prohibitive for large structures. A

molecule with N atoms in principle can have 3N de-

grees of freedom. However, the atoms in a molecule

are constrained by various types of forces, such as

covalent, hydrogen bond, hydrophobic and so on. As

a result, the essential degrees of freedom are reduced

to much less than 3N . Essential dynamics studies

which identify the important modes in proteins is sim-

ilar to normal mode analysis of small molecules. The

method such as Gaussian Network Model (GNM)35

and constrained graph theory,36 which are described

below, have exploited the feature that information

regarding protein dynamics is encoded in the molec-

ular topology and have developed methods to extract

such information.

5.4.1. GNM model

The Gaussian network model (GNM), developed by

Bahar and coworkers,35,90 yields dynamical charac-

teristics of biomolecular structures based on atomic

coordinates of the native conformation. The basic as-

sumption of the model is to represent the native state

as a perfect elastic network. The amino acid residues

(represented by C-α atoms) are the nodes and the spa-

tially close residues are connected as edges, which rep-

resent the spring-like interactions between the nodes.

Edges are defined between all those residues (includ-

ing the immediate sequence neighbors) which reside

within a sphere of 7Å as shown in Fig. 7. The

Laplacian (Kirchoff) matrix is constructed based on

this definition and the solution to such a matrix is

obtained as eigenvalues, a procedure similar to the

one described earlier. The graph spectra thus ob-

tained is made use of in extracting interesting dy-

namical properties from the principles of statistical

thermodynamics.

The connectivities are considered as springs and

the total potential of the molecular system of N sites

is given as the sum of pairwise interactions

Vtot =
∑
i

∑
j

V (RiRj)

=
∑
i

∑
j

(
1

2

)
γ(∆Rij ·∆Rij) (12)

between all pairs 1 ≤ i < j ≤ N . Here, γ is the

Hookean force constant, ∆Rij ≡
∫
Rii − R0

ij is the

fluctuation in the distance vector Rij = Rj − Ri
between sites i and j, relative to the equilibrium

separation R0
ij . Using the concepts of statistical me-

chanics, expressions are derived for mean square fluc-

tuation, based on the trace of the Laplacian matrix.

The temperature factor (or B factor) which can be ex-

perimentally obtained from X-ray crystallography is

related to this mean square fluctuation. Such calcula-

tions are carried out on a series of proteins and their

complexes have been found to predict values consis-

tent with experiment. Similarly, vibrational contri-

butions to the Helmholtz free energy of the protein

is derived based on the eigenvalues of the Laplacian

matrix.91
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The free energy cost of distorting residues on a

local scale is thus computed and is applied35 to ob-

tain information on Proton/Deuterium exchange un-

der weakly denaturing conditions, a parameter which

can be determined by 2d-NMR experiments. Thus,

experimentally observed dynamics results are corre-

lated with the results from the superposition of N -1

modes in the GNM representation of proteins, the fre-

quencies of which are given by non-zero eigenvalues,

λk(2 ≤ k ≤ N), of the Laplacian matrix. The results

from the calculations have been shown to agree with

the hydrogen exchange data on a number of proteins

such as cytochrome C, ribonuclease H and so on.

The slowest vibrational mode usually extends over

the entire molecule and thus represents the global or

most cooperative mode. The distribution and the fre-

quency of a given mode is given by its eigenvalue and

its vector component respectively. Analysis of these

parameters of low modes gives valuable dynamical in-

formation on the global motions of amino acid residues

in proteins. For instance, the mode shapes are cal-

culated for the antibody, immunoglobulin G(IgG).35

The hinge regions are shown to be rigid, whereas the

variable domains, which recognize the antigen, are

computed to be flexible, which is consistent with its

biological activity. The correlation of global motion

with biological activity is also tested for other pro-

teins such as HIV reverse transcriptase. Recently,

the molecular mechanism of GroEL-GroES chaper-

onin complex, which prevents misfolding of proteins,

has been investigated using this method.92 The rel-

ative flexibility of the hinge region, stability of cen-

tral cavity and co-operative cross-correlation between

subunits of such a large protein–protein complex have

been investigated.

5.4.2. Protein flexibility by constrained graph theory

The rigidity theory in mathematics was tradition-

ally applied to solve problems in engineering such as

structural stability of different truss configurations in

bridges. Constrained graph theory was developed for

analyzing the rigidity of substructures within covalent

network glasses,93 which was later applied to protein

structures.36 The fundamental step on which the cal-

culations are based is the ability to test whether a

constraint is redundant or independent. Such algo-

rithms help in identifying the rigid and flexible sub-

structures in proteins taking into account constraints

such as covalency and hydrogen bonds. Protein net-

work is constructed with edge weights related to the

force constant between the atoms. The eigenvalues of

such a matrix was used to calculate the normal mode

frequencies of the network, from which the flexible and

rigid substructures are identified. A flexibility index

was introduced as a continuous measure for quanti-

fying the flexibility or stability of each bond within

the protein. The straightforward evaluation is compu-

tationally intense and efficient algorithms have been

implemented for fast computing. The methodology

is applied to analyze several interesting proteins such

as HIV protease and dihydrofolate reductase and the

changes in the flexible regions upon drug binding have

been detected. The advantage of this method and the

GNM model is that they capture the functionally im-

portant conformational flexibility when performed on

a single structure.

6. Future directions

For structural biologists, there is an explosion of pro-

tein structure data and exponential increase in com-

puting power. Although the principles of graph theory

were known more than a century ago, structural bi-

ologists are now finding exciting applications of this

branch of mathematics and there is a promise of this

technique to contribute substantially more to our un-

derstanding of the problem of protein structure, fold-

ing, stability, function and dynamics.

Some of the problems that can be explored in-

clude the development of topological indices based on

the spectra of protein graphs so as to identify and

classify protein folds in the database. The utility of

indices can also be explored in protein structure pre-

diction and protein folding simulations. Further, in-

vestigations can also be taken up to deduce clustering

information from protein sequences based on the con-

servation of the cluster residues. The graph theoreti-

cal approach which captures the global connectivity in

a protein molecule can be used to identify important

side-chain networks which are involved in transduc-

ing energy in a protein molecule.94 Identifying such
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structural networks can help in understanding how

these molecular machines work. Research in some of

these areas is in progress in our laboratory.

Appendix A

Clustering from Laplacian Matrix34

Given n points and n×n symmetric Adjacency matrix

Aij which gives the connection between points i and

j, we want to find the location of “n” points which

minimizes the weighted sum of the squared distances

between the points.

If xi denotes the X coordinate of point “i” and

Z denotes the weighted sum of the squared distances

between the points,

Z =
1

2

n∑
i=1

n∑
j=1

(xi − xj)2Aij (13)

where Aij is the Adjacency matrix, then the one-

dimensional problem is to find a row vector X ′ =

(x1, x2, . . . , xn) which minimizes the above function

where prime denotes the vector transposition. To

avoid the trivial solution xi = 0 for all i, the following

quadratic constraint is imposed.

X ′X = 1 . (14)

The solution to the above framed problem is as

follows.

Now it can be shown that the Eq. (13) can be rewrit-

ten in terms of the Laplacian matrix as

Z = X ′LX . (15)

Expanding Eq. (13), we get

Z =
1

2

n∑
i=1

n∑
j=1

(x2
i − 2xixj + x2

j )Aij (16)

Z =

n∑
i=1

x2
i ai −

n∑
j=1

n∑
i6=j

xixjAij . (17)

Since Aij is a symmetric matrix ai = a′j , Z can be

written as in Eq. (15).

To minimize Z subject to the constraint X ′X = 1,

introduce the Lagrangian multiplier λ and form the

Lagrangian

L = X ′LX − λ(X ′X − 1) . (18)

Taking the first partial derivative of L with respect

to the vector X and setting the result equal to zero

yields

2LX − 2λX = 0 . (19)

If I is identified as the identity matrix, Eq. 19 can be

rewritten as:

(L− λI)X = 0 (20)

which yields a nontrivial solution X , if and only if λ is

an eigenvalue of the matrix L andX is the correspond-

ing eigenvector. If the above equation is premultiplied

byX ′ and the constraint Eq. (14) is applied, we obtain

λ = X ′LX . (21)

Thus, the formal solution to Eqs. (14) and (15) is sim-

ply that X is the eigenvector of L, which minimizes Z

and λ is the corresponding eigenvalue. The minimum

eigenvalue zero yields the uninteresting solution X =

(1/
√
n, 1/

√
n, . . . , 1/

√
n). Hence the second smallest

eigenvalue and the associated eigenvector which yields

the optimal solution is considered. We can that this

solution is related to the clustering of points. The

above solution for one dimension also holds good in

two- and three-dimensional space.34

Appendix B

Definition of nodes and edges for clustering

algorithm22

The protein graphs are constructed using Cβ atoms

of the amino acids as nodes and the distance between

the Cβ atoms as edges if the specified interaction cri-

terion is satisfied. The side chain interaction criterion

between two amino acid residues is evaluated by us-

ing an expression similar to that used by Heringa and

Argos.69 The expression is of the following form:

INT (Ri, Rj) =
N(Ri, Rj)

Norm(Restype(Ri))× 100
(22)

where N(Ri, Rj) is the number of distinct interact-

ing pairs of side chains atoms between the residues Ri
and Rj . If any two side chain atoms of residues Ri
and Rj are within a distance of 4.5 Å, then they are

said to form an interacting pair. All such interact-

ing pairs between residues Ri and Rj are counted to

obtain N(Ri, Rj).



Graph Theory and Protein Structural Biology 23

The normalization values (Norm(Restype(Ri)))

for all 20 residue types Ri was obtained by the fol-

lowing expression,

Norm(Restype(Ri)) =

p∑
K=1

Maxm(Type(Rik))

p
.

(23)

In order to evaluate the normalization factors, an

analysis on the non-redundant data set95 of 148 pro-

teins with a resolution greater than 2.0 Å was per-

formed. The number of interaction pairs (both main

chain and side chain) made by the residue type Ri
with all its surrounding residues in a protein k was

evaluated. Maxm(Type(Rik)) was determined by the

maximum number of interactions made by residue Ri
in protein k. For example, if residue type alanine oc-

curred twice in protein k and if one alanine had 10

interaction pairs with the main chain and side chain

atoms of the surrounding residues and the other ala-

nine 12 interaction pairs, then Maxm(ALAk) is equal

to 12. In the same manner, Maxm(Type(Rik)) for

residue Ri was evaluated for each of the proteins k

in the dataset. Norm[Restype(Ri)] was obtained by

the average of the maximum interaction value of the

residue Ri, over all the proteins p in the dataset, in

which the residue type Ri had occurred. The same

procedure was followed to obtain the normalization

values for all the 20 residue types. The normalization

values obtained are given in Table 5. It can be ob-

served that these values correlate well with the size of

the amino acid residue.

When interaction between all side chains (po-

lar and non-polar) are considered for constructing

the graph, the overlap criterion can be classified as

follows:

(a) If the percentage interaction between the two

side chains is 8% or more, then it is defined as

high side chain overlap.

(b) If the percentage interaction between the two

side chains is more than 5% and less than 8%,

then it is defined as medium side chain overlap.

(c) If the percentage interaction is less than 5%,

then it is defined as low side chain overlap.

This has been elucidated in Fig. 14.

Table 5. Normalization value used in the evaluation of the
percentage contact between pairs of interacting amino acids as
given in Appendix B. (The values for the 20 amino acid residue
type derived from 148 protein structures).

S. No Residue Type Norm

1 Alanine 55.7551

2 Arginine 93.7891

3 Asparagine 73.4097

4 Aspartic acid 75.1507

5 Cystine 54.9528

6 Glutamine 78.1301

7 Glutamic acid 18.8288

8 Glycine 47.3129

9 Histidine 83.7357

10 Isoleucine 67.9452

11 Leucine 72.2517

12 Lysine 69.6096

13 Methionine 69.2569

14 Phenyl alanine 93.3082

15 Proline 51.3310

16 Serine 61.3946

17 Threonine 63.7075

18 Trptophan 106.703

19 Tyrosine 100.719

20 Valine 62.3673

(a) High contact (8.57%)

(b) Low contact (3.21%)

Fig. 14. High and low contact criteria. Two pairs of
phenylalanine rings interacting with each other are shown.
The dotted lines between the phenylalanines indicate the
atoms that are within a distance of 4.5 Å. (a) high contact
(8.57%); (b) low contact (3.21%). The method of evaluat-
ing the percentage contact is described in Appendix B.
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