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Abstract

Evolutionary algorithms have been success-
fully applied to a variety of molecular struc-
ture prediction problems. In this paper we re-
consider the design of genetic algorithms that
have been applied to a simple protein struc-
ture prediction problem. Our analysis con-
siders the impact of several algorithmic fac-
tors for this problem: the conformational rep-
resentation, the energy formulation and the
way in which infeasible conformations are pe-
nalized. Further we empirically evaluated the
impact of these factors on a small set of poly-
mer sequences. Qur analysis leads to spe-
cific recommendations for both GAs as well
as other heuristic methods for solving PSP
on the HP model.

1 INTRODUCTION

A protein is a chain of amino acid residues that folds
into a specific native tertiary structure under certain
physiological conditions. Proteins unfold when folding
conditions provided by the environment are disrupted,
and many proteins spontaneously refold to their native
structures when physiological conditions are restored.
This observation is the basis for the belief that predic-
tion of the native structure of a protein can be done

computationally from the information contained in the
amino acid sequence alone.

A protein’s structure determines its biological func-
tion. Consequently, methods for solving protein struc-
ture prediction (PSP) problems are valuable tools for
modern molecular biology. Improved methods for solv-
ing PSP will facilitate our understanding of gene ex-
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pression and help identify new genes. Further, these
methods can be used to design diagnostic tests and
develop drugs. Exhaustive search of a protein’s con-
formational space is not a feasible algorithmic strat-
egy for PSP even for small protein sequences. Fur-
thermore, recent computational analyses of PSP have
shown that this problem is intractable on simple lat-
tice models [2, 4]. Consequently, heuristic optimiza-
tion methods seem the most reasonable algorithmic
choice to solve PSP problems. In particular, evolu-
tionary methods have been used by a variety of re-
searchers [22, 21, 20, 8, 12, 13, 14, 15, 17, 18}.

In this article we examine the basic design principles

that have guided prior work with GAs on the PSP
problem for the HP model [6}. We focus on a simple
lattice model because lattice models can capture many
global aspects of protein structures, they are inexpen-
sive to use, and it is possible to design test problems
for which the best conformational structure is known
(for small protein sequences). The PSP problem for
the HP model is a good test problem for evaluating
GAs because its complexity is well understood and
there has been a lot of prior work developing heuris-
tics and global optimization methods for this problem.
We consider three basic algorithmic factors that affect
how GAs are applied to this PSP problem. First, we
evaluate the representations commonly used for this
problem and describe equivalences between different
operators across these search domains. Next, we pro-
pose a new method for formulating the energy poten-
tial for the HP model that makes the energy potential
more continuous while preserving the integer rank or-
der of conformations in the search domain. Finally, we
describe how penalty methods can be used to safely
enforce self-avoiding constraints.

In the next section we motivate the use of simple lat-
tice models of PSP, particularly the HP model. Next
we review heuristic and global optimization methods
that have been applied to this problem. Based on this
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review, we reconsider the algorithmic design of GAs
and provide experimental results that evaluate the al-
gorithmic factors for the GAs. Finally, we conclude
with a discussion of our results.

2 THE HP PROTEIN FOLDING
MODEL

One of the most studied simple protein models is the
hydrophobic-hydrophilic model {HP model) proposed
by Dill [6]. HP models abstract the hydrophobic inter-
action process in protein folding by reducing a protein
to a heteropolymer that represents a predetermined
pattern of hydrophobicity in the protein; nonpolar
amino acids are classified as hydrophobic and polar
amino acids are classified as hydrophilic. A sequenceis
s € {H, P}*, where H represents a hydrophobic amino
acid and P represents a hydrophilic amino acids.

The HP model restricts the space of conformations to
self-avoiding paths on a lattice in which vertices are
labeled by the amino acids. Lattices provide a natu-
ral discretization of the space of protein conformations
since the dihedral angles along the protein’s backbone
are indeed constrained to specific domains. The HP
model has been extensively studied for conformations
embedded on the 2D square and 3D cubic lattices. De-
spite the simplicity of this model, it is powerful enough
to capture a variety of properties of actual proteins (7).

The energy potential in the HP model reflects the fact
that hydrophobic amino acids have a propensity to
form a hydrophobic core. To capture this feature of
protein structures, the HP model adds a value ¢ for
every pair of hydrophobics that form a topological con-
tact: a topological contact is formed by a pair of amino
acids that are adjacent on the lattice and not con-
secutive in the sequence. The value of ¢ is typically
taken to be —1. Figure 1 shows sequences embedded
in the square and the triangular, with hydrophobic-
hydrophobic contacts (HH contacts) highlighted with
dotted lines. The conformation in Figure la has an
energy of -1 and the conformation in Figure 1b has an
energy of -G.

The embedding of a sequence in a lattice may be rep-
resented in a number of ways. Three common methods
are Cartesian coordinates (the location of each acid on
the lactice is specified independently), internal coordi-
nates (the protein is specified as a sequence of moves
taken on the lattice from one acid to the next), and
as a distance matrix (amino acid locations are inferred
from inter-amino acid distances).
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Figure 1: HP sequences embedded in (a) the square
lattice and (b) the triangular lattice.

3 PSP METHODS FOR THE HP
MODEL

The biological relevance of the HP model has nat-
urally led to the analysis and development of algo-
rithmic methods for PSP using this model. The PSP
problem for the HP model has been shown to be NP-
complete on the square lattice [4] and cubic lattice [2].
Additionally, Hart and Istrail [10, 11] and Agarawal
et al. [1] describe performance guaranteed approxima-
tion algorithms for the HP model on the square, cubic
and triangular lattices. A wide variety of global op-
timization techniques have been applied to PSP (e.g.
see the papers in Biegler et al. [3] and Pardalos, Shal-
loway and Xue [16]). In particular, GAs algorithms
have proven a particularly robust and effective global
optimization technique for PSP.

An early application of GAs to PSP was that of Unger
and Moult [22, 21]. Their GA uses internal coordinates
that specify an absolute direction on a square or cubic
lattice. Thus individuals are coded with a sequence in
{U.D,L,R,F,B}™! (which correspond to up, down,
left, right, forward and backward moves in a cubic
for a length n protein). Additionally, their GA only
considers feasible conformations that are self-avoiding
paths on the lattice. When mutation and crossover are
applied, their GA iterates until a feasible conformation
is generated.

Patton et al. (8] describe a standard GA that sig-
nificantly outperforms the GA used by Unger and
Moult [21). To avoid a reduction in diversity, they
use a large population size, apply an “incest prohibi-
tion” method to avoid crossover between similar con-
formations and utilize niching. They also employed
an internal coordinate representation that uses rele-
tive offsets from the current position, together with a
a chain-growth method to help the GA search through
feasible conformations. A standard form of relative
offsets represents a conformation as a sequence in
{F,L,R,U, D}"2 (which correspond to forward, left,
right, up and down relative moves). This has the ad-



vantage of guaranteeing that all solutions are 1-step
self-avoiding (since there is no “back” move ). °

Finally, Patton et al. use a penalty method to en-
force the self-avoiding constraints. Their objective
function adds a penalty if two or more amino acids
lie at the same position on the lattice. Further, any
hydrophobic amino acid which lies at the same posi-
tion as another amino acid does not add hydrophobic-
hydrophobic contacts to the potential energy.

Khimasia and Coveney [12] considered the perfor-
mance of Goldberg’s [9] Simple Genetic Algorithm
(SGA) using internal coordinates with absolute moves.
The objective function was defined as a hybrid between
the Random Energy Model [5] and the HP model. This

included two penalty terms: a penalty for each lattice
site that has two amino acids on it, and a penalty for
each lattice site that has three or more monomers on
it. In this paper, the use of multi-point crossover is
recommended based on the study of the behavior of
the SGA over long sequences.

Krasnogor et al. [15] empirically evaluate what mix of
evolutionary operators (mutations, macromutations,
crossover) were most useful for solving the PSP prob-
lem for the HP model. Their experiments evaluated
GAs that applied these operators with different combi-
nations of probabilities. Their results strongly suggest
that (1) one point crossover was not able to trans-
fer building blocks and (2) macromutation was act-
ing like powerful local search. For the instances stud-
ied, the best combination of parameters had a small
crossover probability and high mutation and macro-
mutation probabilities.

4 ALGORITHMIC DESIGN

In this section we critique three algorithmic factors
that impact the performance and general applicability
of GAs for PSP problems: the energy potential, the

method of constraint management, and the conforma-
tional representation.

4.1 ENCODINGS FOR INTERNAL
COORDINATES

When working with lattice models, proteins are often
represented using internal coordinates. However no
comparative studies have evaluated whether an abso-
lute (as per Unger above) or relative (as per Patton
et al. ) representation is more effective for GAs; prior
researchers selected an encoding without explicit nu-
merical comparisons (8, 19, 20, 14, 15]. Since other
algorithmic parameters were also chosen differently, it

is difficult to assess the impact that the choice of en-
coding has on a GA’s performance. In this section we
illustrate how the fitness landscapes induced by these
encodings and the standard genetic operators can have
important differences that may affect the global search
behavior of the GA. Our discussion considers the two
dimensional square lattice, but an extension to other
discrete lattices is straightforward.

Mutation on the Relative Encoding Consider
the effect of one-point mutation on the structure
in Figure 2(a). It’s relative encoding is S, =
FLLFRRLRLLR when viewed from the H amino
acid. A one point mutation in the sixth position
could produce either of S}, = FLLFRFLRLLR or

Sree = FLLFRLLRLLR, which are shown in Fig-
ures 2(b) and 2(c) respectively.
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Figure 2: In (b) a one point mutation of the structure
in (a) at the sixth gene. An ‘R’ was mutated to an ‘F’
producing a lever effect of 90 degrees counterclockwise.
In (c) an ‘R’ was mutated to an ‘L’ producing a lever
effect of 180 degrees counterclockwise

We can see from this example that a one point mu-
tation in the relative encoding produces a rotation ef-
fect in the obtained structure at the mutated point.
To produce the same effect in the absolute encod-
ing we must perform a macromutation, that is, sev-
eral genes need to be simultaneously mutated to pro-
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Table 1: ‘Directed’ macromutations to rotate the spec-
ified angle of a structure in the absolute encoding.

duce the same change in the structure. We define a
rotation operator in the absolute encoding as, given
a point where to produce the rotation, all the re-
maining genes will be mutated according to Table 1}.
In the working example, Figure 2(a) is encoded as
Sats = RULLURURULU while the first mutated
structure (Figure 2(b)) is S},, = RULLUULULDL
and Figure 2(c) is S2,, = RULLULDLDRD.

Moutation on the Absoclute Encoding A One-
point mutation in an absolute encoding leaves the ori-
entation of the rest of the structure unchanged. To
achieve the same effect in the relative encoding, it is

necessary to change two subsequent values in the en-
coding. There are, however, restrictions in the map-
ping from a one-point mutation under the absolute
encoding to a two-point mutation in the relative en-
coding. Specifically, point mutations in an absolute
encoding can produce structures that are not one-step
self-avoiding, which have no equivalent in a relative
encoding.

4.2 POTENTIAL ENERGY
FORMULATION

Consider the conformation in Figure 3, which contains
two conformations of a hydrophobic sequence that
are formed from two domains connected with a hy-
drophilic chain. The basic energy potential of the HP
model only rewards direct hydrophobic-hydrophobic
contacts, so in each conformation only the compact
subconformations contribute any energy to this con-
formation. However, it is clear that Figure 3a is closer
to forming the optimal conformation than Figure 3b.

This type of disparity between the energy value and
the “closeness” of the conformation can be remedied
by augmenting the energy function to allow a distance-
dependent hydrophobic-hydrophobic potential. Since
the distances between amino acids form a countable
set, it is possible to construct a distance-dependent
potential that preserves the rank order of the confor-

'Note that these these macromutations could be
achieved by an increment of 1 modulo 4 if the encoded
structure uses {0, 1,2,3} instead of {U, L, D, R}

(a)

(b)

Figure 3: Two conformations with equal energy for

the HP model. Figure (a) has lower energy for the
modified HP model.

mations in the HP model while enabling a finer level
of distinction between conformations with the same
number of hydrophobic-hydrophobic contacts. For ex-
ample, if d;; is the distance between two hydrophobic
amino acids H; and Hj;, then we can use

. _ -1 1diy =1
EH.H,(diJ')_{ _1/((15.,,\',,) ydig > 1 (1)

where Ny equals the number of hydrophobics in the
polymer sequence, and where k = 4 for the square
lattice and k£ = 5 for the triangular and cubic lattices.

We briefly sketch the proof of correctness of the mod-
ified energy potential for the square lattice. Let E(C)
be the energy of C in the HP model and let £(C) equal
the energy of C in the modified energy potential. We

show that E(C) = [E(C)] by proving that

55 Bun,(dy) > 1.

i fidiy>1

because this is the only fractional contribution of the
energy to E(C). Now

1 . . Ny
5 Z Z EH.-H,- (dz'j) > ’TH'Emim
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where By, = min; Z,-;d,.,->1 E 1:H;(dij). Thus ic suf-
fices to show that Ep, > ~2/Npg.




We consider a hydrophobic amino acid that interacts
with hydrophobic amino acids on all lattice points at
which a contact is possible whose distance is greater
than one, which overestimates the value of Enin. The
interactions in a quadrant can be split between the
interactions along the axis and the interactions strictly
within the quadrant. The interactions along the axis
add
1 {Z 1
Ny P (2k+1)*

The interactions strictly within the quadrant can be
bounded by considering points for which the distance
along the z- or y-axis is equal to 2k and 2k + 1 sep-
arately. In both cases, there are 2k possible points
which can form a contact, so the interactions within a
quadrant are bounded by

1 & 2k 1 & ok

Some simple algebra shows that £; > —2/Npy.

4.3 CONSTRAINT MANAGEMENT

Two broad classes of constraints need to be enforced
to define a feasible conformation: (1) the connectivity
of the polymer chain and (2) the self-avoidance of the
conformation. Both of these constraints can be han-
dled either implicitly or explicitly through the choice
of the search space (i.e. representation) and search
method (i.e. genetic operators). Perhaps the strongest
motivation for using internal coordinates is that they
handle the first constraint implicitly whereas this must
be done explicitly if cartesian coordinates are used.

Two basic approaches have been taken to manage
self-avoiding constraints when internal coordinates are
used. First, the search is constrained to only con-
sider feasible, self-avoiding conformations; when an in-
feasible conformation is generated, it is immediately
rejected and the search method attempts to regener-
ate a feasible conformation. This method is not well
suited to PSP problems, though, because the shortest
path from a compact feasible conformation to another
compact feasible conformation may be very long when
compared with the shortest path through the space of
infeasible conformations.

The second approach to enforcing constraints uses a
penalty to guide the GA toward feasible solutions.
Two penalty methods have been used to solve PSP for
the HP model. First, a penalty is added for every pair
of amino acids that lie at the same lattice point. Using
this penalty, there may be O(n®) penalties. Second, a
penalty is added for every lattice point at which there

are two or more amino acids. Using this, there may be
O(n) penalties. Patton et al. [8] extend this further
to prevent hydrophobic amino acids from contributing
to the objective function if they lie on a lattice point
with other amino acids.

When evaluating these penalty methods, it is impor-
tant to consider whether these methods correctly con-
strain the search domain to feasible regions. All of the

GAs discussed in Section 3 that use a penalty method

apply a fixed constant penalty term C. This policy can
cause problems if the second penalty method is applied
without the extension of Patton et al. , since for fixed
values of C is possible to construct examples where
the structure with optimal energy with the penalty
method does not correspond to the optimal energy for
the HP model.

It is also important to consider the efficacy of penalty
method to understand how well they facilitate opti-
mization. For example, we believe that the extended
formulation proposed by Patton et al. may lead to
a less effective search than other methods. If the hy-
drophobic amino acids are prevented from contribut-
ing to the objective function because they overlap, the
fitness landscape may have large flat regions. Conse-
quently the GA has less information to guide its search
and it will likely take longer to find optimal conforma-
tions.

These considerations recommend the use of a fixed
penalty approach that is adapted based on the num-
ber of hydrophobics available in the protein sequence,
Ny. The idea is that we can select C sufficiently
large to ensure the validity of the fixed-penalty con-
straint formulation. For example, on the square lat-
tice if C = 2Ny + 2 then the penalty is large enough
that any infeasible conformation has positive energy
while all feasible conformations have nonpositive en-
ergy. Thus the optimal conformation of the HP model
is strictly better than the best penalized conformation.

5 METHODS AND RESULTS

The GAs used in our experiments had a (500 + 500)
selection strategy, and mutation was applied to each
structure with probability 0.3. One-point mutation
was used to change one value in an absolute encoding,
and two-point mutation was used to change two con-
secutive values in a relative encoding. The One-point,
Two-point and Uniform crossover operators were used
with probability of 0.8. Each run of the GA consisted
of 200 generations with a non elitism policy. For the
comparison of the encodings the proposed modified en-
ergy potential was used. Furthermore, every pair of



amino acids mapped to the same lattice position, was
penalized with a constant penalty, C, dependent on
the length of the instance. We used five polymer se-
quences in our experiments, which have a relatively
short length (less than 50 monomers).

5.1 RELATIVE VS. ABSOLUTE
ENCODING

In order to evaluate the effect of the encoding on the
ability of the GA to find low energy configurations, a
series of experiments were run using the GA to find
optimal configurations for a number of proteins un-
der the two encodings. The performance metric was
the fitness of the best individual in the final genera-

tion of each run. In order to distinguish the effects
of the encodings from that of the choice of lattice or
operators, experiments were run in three different em-
bedding space: two dimensional square and triangular
lattices and a three dimensional square lattice. Five
protein instances of differing length and difficulty were
chosen for each lattice. In each type of lattice separate
experiments were run using One-Point, Two-point and
Uniform Crossover. As described above the mutation
operators used have the same phenotypic effect in each
encoding. Twenty nine runs were done for each combi-
nation, giving 45 sets of comparisons between the two
encodings

Figure 4 summarizes the resuit of this experiment. For
each combination of lattice, crossover operator, and
protein sequence, we computed the rank over all trials
of the two experiments that use either an absolute or
relative encoding of protein conformations. A maxi-
mum rank of 58 is possible since there are 29 trials
in each of the experiments in each pair. This figure
shows boxplots of the relative ranks of the final results
for each lattice and for the encodings; maximizing the

ranks indicates a better method. This plot clearly in-

dicates that the relative encoding is at least as good in
all lattices, and for the square lattice it is much better.

This result is confirmed in the statistical analysis
of these results. Table 5.1 summarizes the results
obtained. This results were obtained based on the
p — values of a t — test for the two encodings for the
different embedding spaces and crossovers. The null
hypothesis was that the fitness values obtained under
the two encodings come from the same distribution,
and the p — value is the probability that the null hy-
pothesis holds, i.e. that the choice of encoding makes
no difference to the ability of the GA to find good
solutions.

From inspection of table 5.1 we can say with 95% of
confidence that the relative encoding was always bet-

ter than the absolute encoding in the two dimensional
square lattice. In the three dimensional square lattice
almost always the relative outperformed the abso-
lute encoding, while 4 out of 15 times they were indis-
tinguishible. The robustness of the relative encoding
degrades when we look to the two dimensional trian-
gular case. For this embedding the absolute encoding
is 5 out of 15 times the best, while the relative just 3
out of 15. In the remaining 7 sets (of 29 runs each)
both encodings cannot be differentiated.

If 90% confidence is considered then we can see from
this table that just in one case on the three dimen-
sional square lattice both encodings present the same
performance, being in all the other test cases the rel-
ative better than absolute. On the triangular two di-
mensional lattice there is one more occurrence where
relative is better (4 out of 15) and one more occurrence
where the absolute is better (6 out of 15).

5.2 STANDARD VS. DISTANCE ENERGY

In this set of experiments we wanted to elucidate if the
modified energy potential improves the search capabil-
ities of the GA. For each of the three lattices we used
the same first four instances as for the previous section.
From the three crossover available we run the simula-
tions for One-point and Two-point crossover. Again,
29 trials were assigned to each of the four instances in
each of the three lattices for each crossover tested.

The results of these experiments do not show a sub-
stantial impact of using the modified energy potential
for the test problems. We computed the p — values of
a t — test where the null hypothesis was that the fi-
nal protein configuration were the same using the two
energy potential. We found that the two energy poten-
tials had the same performance except for instance B
using two-point crossover on the triangular lattice (p
= 0.95). There also appeared to be a slight effect for

instances C and D on the triangular and cubic lattices,
but this was not a significant difference.

6 DISCUSSION

In this paper we have directly compared the encoding
of PSP using internal coordinates by means of rela-
tive and absolute moves. We show the search spaces
induced by the relative and absolute encodings to be
different and we describe a mapping of the One-point
mutation in the absolute to the relative encoding (the
same could be done for other genetic operators). Also,
we proposed a modified energy potential that facil-
itates the GA search while preserving the ranking of
the standard HP model. We also identified weaknesses
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Figure 4: Distribution of relative ranks for the relative and absolute encodings on the square, cubic and triangular

lattices.
Lattice | Crossover | Best A | Best B | Best C | Best D | Best E
SQ2D l-point | Rel+ | Rel+ | Rel4+ | Rel 4+ | Rel +
2-point | Rel+ | Rel +| Rel +| Rel+ | Rel +
Uniform | Rel+ | Rel+| Rel + | Rel+ | Rel +
SQ3D 1-point | Rel + Rel *| Rel+ | Rel+
2-point Rel | Rel+ | Rel+ | Rel+ | Rel +
Uniform | Rel + | Rel + | Rel + Rel | Rel +
TRI2D 1-point * Rel | Abs + Abs | Abs +
2-point * * * * | Abs +
Uniform | Rel+ | Rel + | Rel + | Abs+ | Abs +

Table 2: Summary of results at 90% confidence, * denotes that both lattices are equal but the result is not of

statistical significance, a lattice followed by a + denotes confidence up to 95%, while the lattice alone means
confidence at 90%.), HO: both encodings mean fitnesses are the same

in the standard constraint management strategies and
proposed a constraint method that is ensures the cor-
rectness of the final solution. These algorithmic issues
were explored in the three most common lattices be-
ing used, two and three dimensional square lattice and
two dimensional triangular lattice. Our results sup-
port the use of the relative encoding for this problem,
which may explain the superior performance of the GA
described by Patton et al. [8] as compared to the GA
described by Unger and

We have previously argued [17, 12, 15] that the rep-
resentation with internal coordinates and standard
crossovers fail to transfer building blocks. In the works
studied there were no direct comparisons of the relative
and absolute encodings. If alternative representations
based on internal coordinates are to be researched or
used in heuristics (i.e. G.R.A.S.P., Hill Climbers, etc.),
then our results supports the use of the relative encod-
ing over the absolute one.

Although the modified energy potential did not pro-
vide improved optimization performance in these ex-
periments, further experiments need to be done with

larger protein instances. We suspect that for longer
proteins the difference between the two formulations

will be more clear. Furthermore, we believe that a
modified energy formulation will be particularly im-
portant for the effective use of hybrid GAs that use a
local search method. Without a modified energy po-
tential, there will exist large “plateaus” in the energy
landscape on which local search cannot find a descent
direction and where it must effectively perform a ran-
dom search.
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