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We present a new program for predicting protein subcellular localization from amino
acid sequence. WoLF PSORT is a major update to the PSORTII program, based on

new sequence data and incorporating new features with a feature selection procedure.

Following SWISS-PROT, we divided eukaryotes into three groups: fungi, plant, and
animal. For the 2113 fungi proteins divided into 14 categories; we found that, combined

with BLAST, WoLF PSORT yields a cross-validated accuracy of 83%, eliminating about

1/3 of the errors made when using BLAST alone. For 12771 animal proteins a combined
accuracy of 95.6% is obtained, eliminating 1/4 of BLAST alone errors, and for 2333 plant

proteins the accuracy can be improved to 86% from 84%.

1. Introduction

Protein localization is a central issue in understanding cells. More than 20 papers6

have been published in major international journals describing programs for predict-
ing localization from amino acid sequence in eukaryotic cells. Some of these works
such as PSORT,9 PSORTII,7 the SignalP11,10 family of programs and others4 use
sorting signal information for prediction. However the majority of prediction pro-
grams developed use amino acid content in some form. These methods exploit the
longstanding observation12 that amino acid content correlates strongly with local-
ization site.

In this paper we present WoLF PSORT, a major extension to PSORTII which
combines (mostly signal based) features from PSORT and iPSORT2 with amino acid
content. Prediction accuracy is increased by using feature selection while retaining
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the simple k nearest neighbor classifier used by PSORTII. The dataset constructed
and web service are available at wolfpsort.org

2. Methods

2.1. Dataset

We prepared the dataset primarily from Swiss-Prot3 Release 45.0 annotation, ig-
noring entries with weakening qualifiers such as “by similarity”. In addition several
hundred Arabidopsis entries were added from the Gene Ontology1 web site (up to the
2004/12/4 release). Entries with evidence codes {TAS, IDA, IMP} were included,
with revisions by hand in a few cases.

2.1.1. Site Definition

The distribution of localization sites in our database is shown in Table 1. The
sites reflect common usage found in localization labeled Swiss-Prot entries. Table 2
shows the corresponding Gene Ontology numbers for the Gene Ontology derived
sequences.

Table 1. The distribution of localization sites for each category of organisms.

localization animal plant fungi localization animal plant fungi

nuclear 2682 433 667 cyto nucl 245 9 91
plasma membrane 3195 160 220 cyto mito 18 3 8

extracellular 3130 113 140 cyto pero 10 0 2

cytosol 1555 452 383 cyts plas 5 0 0
mitochondria 938 200 389 cyto plas 4 0 0

chloroplast N/A 744 N/A cyto golg 4 0 0

E.R. 425 65 66 E.R. mito 18 0 4
peroxisome 217 47 77 E.R. golg 9 0 0

lysosome 132 N/A N/A extr plas 19 0 0

golgi body 100 25 38 mito pero 15 0 0
vacuole 16 72 23 mito nucl 2 0 0

cytoskeletal 32 10 5 sum 12771 2333 2113

Italics indicate the abbreviated name. Localization names joining two abbreviated names with

“ ”, such as “cyto nucl”, indicate dual localization.

2.2. WoLF PSORT system

WoLF is a feature selection program, (the name “WoLF” is loosely inspired by the
words “Learning”, and “Weighted Features”). WoLF PSORT is the combination of
WoLF with a version of PSORTII slightly extended for this purpose. The extended
version outputs amino acid features and some iPSORT2 features as well as the
PSORT features. An overview of the system is shown in Figure 1.
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Table 2. The correspondence between the localization sites used in our
study and the GO numbers for the entries derived from GO annotation.

description GO numbers depth WoLF PSORT site

cytoskeleton GO:0005856 2 cyts

cytosol GO:0005829 0 cyto

endoplasmic reticulum GO:0005783 0 E.R.
extracellular GO:0005576 0 extr

cell wall GO:0005618 0 extr
Golgi apparatus GO:0005794 1 golg

mitochondrion GO:0005739 0 mito

nucleus GO:0005634 0 nucl
plasma membrane GO:0005886 0 plas

peroxisome GO:0005777 2 pero

vacuolar membrane GO:0005774 2 vacu
chloroplast GO:0009507 0 chlo

thylakoid lumen GO:0009543 0 chlo

Depth indicates the number of levels of “part of” descendents included
with the GO number. For example GO:0005856 and all of its “part of”

children and grandchildren were included in cyts. Note that “extr” and
“chlo” are the union of two lines from this table.

query
sequence

WoLF

Generalized kNN

training
sequences

Feature
Weights

Predicted Localization

PSORTII
(extended)

Sequence Features

Figure 1. A schematic of the WoLF PSORT system is shown. Rectangles represent programs or
procedures and ovals represent computed quantities. The black arrows denote information derived

from the query sequence while gray arrows denote information from the training sequences.

2.3. Classification

2.3.1. Candidate Features

We used fours kinds of features: PSORT9 features, iPSORT2 features, amino acid
content, and sequence length. Each feature is a deterministic mapping from amino
acid sequence to the reals. Since the numerical range of the raw features are not
homogeneous, we normalized each feature to its percentile value in the training data.
Values observed in test data may not appear in the training data – in which case
our programs use linear interpolation (extrapolation) to obtain a pseudo-percentile
value.
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2.3.2. Classification Algorithm

We adopted a weighted version of the kNN (k-Nearest Neighbors)5 algorithm for
classification. As in standard kNN, our method classifies based on the k nearest
instances in the dataset. However we slightly extended the distance calculation. In
our variation two weights, w1i and w2i, are associated with each feature i. More
formally, let Fji and Fki denote the values of feature i in protein instance j and k

respectively. The distance dW (j, k) between j and k is defined as:

dW (j, k) =
∑

i

w1i|Fji − Fki|+
√∑

i

w2i(Fji − Fki)2 (1)

combining elements of Euclidean and Manhattan (city block) distances.

2.3.3. Extensions for Dual Localization Prediction

The dataset contains some dually localized proteins. We gave partial credit for
partially correct predictions as shown Table 3.

Table 3. Example Utility Values.

label prediction utility label prediction utility

nucl nucl 1 nucl cyto nucl mito 0.333
nucl cyto nucl cyto 1 nucl cyto 0

nucl cyto nucl 0.5 mito nucl cyto 0

nucl nucl cyto 0.5 mito nucl 0

Examples of the utilities used in this study are shown. “label” denotes the localization site

according to the dataset annotation. Note that we chose to use utilities that are symmetric
with regard to the label and prediction.

2.3.4. Feature Selection and Weighting

We developed a C++ program, WoLF, for selecting the weights in Equation 1.
Given a set of candidate features, WoLF selects non-negative integer weights for
each feature (a weight of zero is equivalent to exclusion of the feature). WoLF uses
a greedy, neighborhood search algorithm to find a locally optimal set of weights. The
program uses the jackknife (leave one out cross-validation) utility on the training
data to evaluate weight vectors. In the case of ties the simpler weight vector is
chosen.

2.3.5. Reducing Over-reliance on Sequence Similarity

When training WoLF PSORT we employed a taboo list which disallows the use
of highly similar sequences (with identical localization sites) as a neighbor when
classifying a given instance. We determined the threshold by inspection of the
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correlation between best hit eValue and co-localization. The thresholds used were
-33, -63, -33.4 log2 eValue for fungi, plant, and animal respectively.

2.3.6. Evaluation of WoLF PSORT Accuracy

5-fold cross-validation was used to estimate the accuracy. For each partition, feature
and k value selection were performed using a jackknife test on the training partition.

3. Results

3.1. Effect of Feature Weighting

The results of various feature weight vectors, including those selected by WoLF
PSORT are shown in Table 4. For those tables the value of k was optimized sep-
arately for the taboo and no taboo list cases. The WoLF PSORT weight vectors
(one per partition) however were only trained using the taboo list. The confusion
matrices for the WoLF PSORT cross-validation for yeast (which had the highest
fraction of dual localization annotations) is shown in Table 6.

In addition to cross-validation studies, we also ran the WoLF feature weighting
procedure on the complete datasets. The selected features (trained with the taboo
list) are shown in table 5.

3.2. WoLF PSORT Combined with BLAST

We calculated the utility of combining WoLF PSORT with BLAST in a trivial
way; namely using the WoLF PSORT prediction for queries whose best BLAST
hit eValue exceeds a given threshold, while predicting the localization of the best
BLAST hit otherwise. Ties for the best BLAST hit (especially with eValue=0)
were fairly common, in which case we voted amongst the best hits (breaking ties
using the overall proportion of each localization in the given dataset). In the rare
cases in which no BLAST hit was obtained, the majority classifier was used in lieu
of BLAST. The results of this hybrid predictor for the three datasets are shown in
Figure 2.

3.3. WoLF PSORT Server

The WoLF PSORT server is freely available at wolfpsort.org. Detailed informa-
tion about the features of the query sequence and its k nearest (by Equation 1)
neighbors are given. These tables give the user a chance to examine the evidence
behind the prediction. For example Figure 3 shows a partial screen shot of the de-
tailed page (one click away from the summary page) when the protein AEP YARLI
is used as a query. From the first row in the displayed table one can see that
the variable gvh, the signal peptide detecting weight matrix score of Gunnar von
Heijne,13 has a very high value (93 percentile), consistent with the prediction of
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Table 4. Cross-validated utility with various feature weight vectors.

Fungi Dataset

weight vector type #weights taboo k % utility

psortEuclid 31 no 9.2(2.2) 64.7(2.8)

psortEuclid yes 15.6(6.0) 61.3(3.1)

allEuclid 56 no 4.6(3.5) 73.9(2.2)
allEuclid yes 26.8(11.3) 69.3(2.9)

allWeights 112 no 3.2(1.8) 74.3(1.7)
allWeights yes 31.2(18.0) 69.4(2.7)

WoLF PSORT 22.2(4.3) no 18.2(4.3) 72.6(0.7)

WoLF PSORT yes 18.2(4.3) 70.7(1.1)

Plant Dataset

weight type #weights taboo k % utility

psortEuclid 31 no 4.8(1.9) 66.5(2.0)

psortEuclid yes 41.2(24.3) 53.6(2.0)

allEuclid 56 no 1(0) 85.3(1.2)
allEuclid yes 19(3.8) 60.0(3.8)

allWeights 112 no 1(0) 85.2(1.2)

allWeights yes 20.6(3.2) 60.0(3.7)
WoLF PSORT 21.2(1.3) no 3(2.1) 76.7(2.4)

WoLF PSORT yes 13.8(7.0) 65.1(2.6)

Animal Dataset

weight type #weights taboo k % utility

psortEuclid 31 no 1(0) 79.7(0.5)
psortEuclid yes 36.0(9.3) 72.2(0.8)

allEuclid 56 no 1(0) 92.3(0.5)

allEuclid yes 34.6(6.5) 77.8(0.6)
allWeights 112 no 1(0) 93.1(0.6)

allWeights yes 30.2(7.2) 79.0(0.7)
WoLF PSORT 25.8(4.2) no 39.4(7.2) 83.2(1.2)

WoLF PSORT yes 39.4(7.2) 79.7(1.0)

Utility is given as percent of the maximum possible. The number of (non-zero) weights is omitted

when it is the same as the row above. Numerical entries represent averages over 5-fold cross-

validation with standard deviations given in parenthesis. The “psortEuclid” weight vector has
weight 1 for the quadratic term of each PSORT feature, “allEuclid” has weight 1 for the quadratic

term of all features, “allWeights” has weight 1 for all possible terms, and WoLF PSORT is the

weight vector selected by WoLF PSORT.

extracellular. One can also see that the value of the mit feature is very different be-
tween the query and two of its neighbors (PEPF ASPFU and PEPA ASPOR). mit
is a variable designed to discriminate between mitochondrial and non-mitochondrial
proteins9 so this does not seem to weaken the evidence in this case.

4. Discussion

4.1. Interpretable Results

WoLF PSORT alone achieves accuracy estimates (with sequence similarity reduc-
tion used for training but not evaluation) of 73%, 77%, 83%, on the yeast, plant
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Table 5. Selected Features.

feature type feature name fungi plant animal

net charge(1, 25) 1 0 12

iPSORT max negative charge(1,20) 0 1 0
max hydropathy(1,30) 2 1 1,12

PSORT gvh 1 0 12

signal peptide psg 0 2 0

PSORT mip 0 2 12

targeting signal mit 1 2 1

alm 1 0 32

m1a 12 1 0
PSORT m1b 1 3 0

membrane m3a 0 1 0
protein m3b 1 1 0

related mNt 1 0 0

tms 2 12 2

erl 12 12 0

leu 1 0 1
PSORT nuc 1 1 12

sorting pox 12 12 0
motif tyr 2 1 12

yqr 1 0 0

vac 0 0 1

dna 12 12 1,42

PSORT rib 22 12 12

non-sorting myr 12 0 1,12

motif rnp 1 1 12

act 0 0 32

miscellaneous length 0 1 12

The selected features are shown with their weights. Features with 0 weight for all datasets were

omitted. “12” and “22” indicate the quadratic term rather was selected with a weight of 1 or 2
respectively. The amino acid content features (by one letter code) selected for the three datasets

were “ARNDQEGIKMFSWV”, “ACQHILSV”, and “CIKS” respectively. In each of those cases

the weight was 1, the weight type was always linear for the fungi and plant dataset and always
quadratic for the animal dataset. “sorting” motifs refer to motifs such as the E.R. retention signal

“erl” with a direct causal relationship to localization. Descriptions of the variables can be found

on the WoLF PSORT server. For the PSORT variables useful documentation can also be found
on the PSORT help page www.psort.nibb.ac.jp

and animal datasets, with a small number of features and the trivially simple k

nearest neighbors classifier. We do not claim that this will meet the accuracy of
sophisticated classifiers such as the popular support vector machine. However the
template based nature of the kNN classifier makes individual classifications easier
to interpret. The web server provides a tabular display to facilitate this process.

4.2. Evaluation in the presence of similar sequences

In this study we included many similar sequences. This makes achieving a high
accuracy easy. However by comparing with BLAST we were able to show that our
method can be effective even when sequence similarity is low. For example the
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Table 6. Confusion Matrix for the Fungi Dataset.

site nucl cyto cyto cyto mito mito plas extr cyto pero E.R. golg vacu cyts sum

nucl nucl pero

nucl 556 33 37 0 27 2 6 0 0 6 0 0 0 0 667

cyto nucl 49 10 24 0 6 0 0 0 0 2 0 0 0 0 91

cyto 88 16 232 3 30 0 1 5 0 7 1 0 0 0 383

cyto mito 1 0 0 0 7 0 0 0 0 0 0 0 0 0 8

mito 38 3 22 0 299 3 9 6 0 8 1 0 0 0 389

mito nucl 1 0 1 0 2 0 0 0 0 0 0 0 0 0 4

plas 6 0 3 0 2 0 205 2 0 1 1 0 0 0 220

extr 2 2 4 0 2 0 0 129 0 0 1 0 0 0 140

cyto pero 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2

pero 16 3 23 0 5 0 6 2 1 20 1 0 0 0 77

E.R. 4 2 5 0 2 0 30 11 0 4 7 1 0 0 66

golg 10 1 1 0 1 0 10 8 0 0 2 5 0 0 38

vacu 2 0 2 0 2 0 10 6 0 0 1 0 0 0 23

cyts 4 0 1 0 0 0 0 0 0 0 0 0 0 0 5

sum 778 70 356 3 385 5 277 169 1 48 15 6 0 0 2113

The rows represent the dataset labels. The columns represent predictions made by WoLF PSORT
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Figure 2. The utility obtained by combining WoLF PSORT and BLAST with a simple eValue
threshold is shown for the fungi (F), plant (P), and animal (A) datasets. A detailed view of the
animal data (AD) is shown as well. The point at x = 1 represents using WoLF PSORT alone.

The lack of points between 0.8 and 1 for the fungi data is due to the fact that approximately 20%
(30% for plant, 36% for animal) of the proteins have hits with an eValue of “0”, a similar (but

smaller) gap occurs at the other end due to proteins with no blast hits.

number of errors produced by using BLAST alone on the animal dataset can be
reduced by about a quarter (accuracy of ≈ 95.6% vs ≈ 94.0%, yielding 179 errors)
by using WoLF PSORT for proteins without good BLAST hits.
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Figure 3. A screen shot of the server showing the feature table displayed for query and nearest

neighbors is shown. The query id, predicted localization, and features are showed aligned with
the id, localization, and features of its nearest neighbors. Color is used to attract attention to

large differences between the query and nearest neighbors. In the example shown the query is

“AEP YARLI”, which also appears on the next line as the nearest neighbor in the dataset.

4.3. Predicting Dual Localization

WoLF PSORT was designed with dual localization in mind. The only dual local-
ization category for which SWISS-PROT currently contains a significant number of
entries is dual localization to the nucleus and cytosol. This is an important cate-
gory of proteins, for example some transcription factors are regulated by conditional
localization to the nucleus8.

The prediction results seen in the confusion matrix (Table 6) are mixed. Un-
fortunately most of the 91 proteins labeled “cyto nucl” are misclassified as either
nuclear or cytosol. On the other hand, perhaps this mistake should not be looked
at too harshly – as a “half-right” prediction of a dually localized protein is the best
possible prediction for existing prediction methods which do not consider multiple
localization at all. It seems likely that the current annotation in SWISS-PROT is
conservative relative to multiple localization. For example in a recent large scale
experiment using GFP fusion proteins to determine localization in yeast, approx-
imately 20% out of a total of over 4000 measured proteins were found to dually
localize to the nucleus and cytoplasm.

5. Conclusion

WoLF PSORT achieves a dramatic improvement in prediction accuracy over PSOR-
TII while maintaining the simple, easily understood classifier which has been one
reason for PSORTII’s widespread use. Indeed by applying a feature selection algo-
rithm, WoLF PSORT is actually simpler than PSORTII in the sense that it uses
fewer features for classification. WoLF PSORT is also one of the most serious at-
tempts to date to incorporate dually localized proteins into a prediction scheme for
eukaryotic cells.
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