Protein Targeted Corona Phase Molecular Recognition

Thursday, November 12, 2015: 1:45 PM

253A (Salt Palace Convention Center)

Gili Bisker, Hoyoung Park, Nicole Iverson, Jiyoung Ahn, Justin Nelson, Markita Landry, Sebastian Kruss and Michael S. Strano, Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

Corona Phase Molecular Recognition (CoPhMoRe) is a method whereby a heteropolymer is adsorbed onto a nanoparticle surface, templating it for the recognition of a specific target analyte. Recently demonstrated for small molecules [1,2], CoPhMoRe applicability has not been extended yet to macromolecules such as proteins. In this work a CoPhMoRe screen of single walled carbon nanotubes (SWCNT) wrapped in a library of phospholipid-poly ethylene glycol derivatives and oligonucleotides against a panel of human blood proteins reveals a phase highly selective to fibrinogen. This corona phase has one of the highest relative coverage of the nanotube surface, of more than 85%, and upon the interaction with fibrinogen, an 80% decrease in fluorescent emission intensity is observed. The three nodules of fibrinogen are shown to bind sequentially in a three step mechanism, starting with the outer D-regions followed by the central E-region, with dissociation constants that increase with the SWCNT diameter, ranging from 3.5 nM for the (6,5) chirality to 31.4 nM for the (11,3) chirality. Our results open a new direction in the fundamental search of novel synthetic non-biological antibodies for the recognition of bio-macromolecules, proteins, and peptides, for biological applications.

References

[1] Zhang J. et. al., Nature Nanotechnology, 8, 959–968, 2013

[2] Kruss S. et. al., J. Am. Chem. Soc., 136 (2), 713-724, 2014