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Abstract

Summary: Self-supervised deep language modeling has shown unprecedented success across natural language
tasks, and has recently been repurposed to biological sequences. However, existing models and pretraining meth-
ods are designed and optimized for text analysis. We introduce ProteinBERT, a deep language model specifically
designed for proteins. Our pretraining scheme combines language modeling with a novel task of Gene Ontology
(GO) annotation prediction. We introduce novel architectural elements that make the model highly efficient and
flexible to long sequences. The architecture of ProteinBERT consists of both local and global representations,
allowing end-to-end processing of these types of inputs and outputs. ProteinBERT obtains near state-of-the-art
performance, and sometimes exceeds it, on multiple benchmarks covering diverse protein properties (including
protein structure, post-translational modifications and biophysical attributes), despite using a far smaller and
faster model than competing deep-learning methods. Overall, ProteinBERT provides an efficient framework for
rapidly training protein predictors, even with limited labeled data.

Availability and implementation: Code and pretrained model weights are available at https://github.com/nadavbra/
protein_bert.

Contact: nadav.brandes@mail.huji.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Background

Proteins are nature’s ultimate machines, found across the entire tree
of life. While knowledge of protein sequences is accumulating expo-
nentially, understanding their functions remains one of the greatest
scientific challenges of our time, with numerous implications to
human health. Protein sequences can be viewed as strings of amino-
acid letters. As such, machine-learning methods developed for
natural language and other sequences are a natural fit to predictive
protein tasks (Ofer et al., 2021).

Modern deep neural network architectures specifically
designed for sequences [such as BERT (Devlin et al., 2018;
Vaswani et al., 2017)], combined with pretraining on massive
datasets, have led to a revolution in automated text analysis
(Radford et al., 2019). The attention-based Transformer architec-
ture in particular has shown astounding performance over a wide

range of benchmarks across many domains (Brown et al., 2020;
Keskar et al., 2019).

At the heart of these successes are self-supervised and transfer
learning. According to the transfer-learning paradigm, a model is
first pre-trained on one task, and then fine-tuned on other down-
stream tasks of interest (Do and Ng, 2005; Pan and Yang, 2010;
Raffel et al., 2019). Assuming that the pretraining and downstream
tasks are somehow related (e.g. both require understanding texts in
the same language), pretraining can help the model learn useful rep-
resentations for the downstream tasks. In self-supervised pretrain-
ing, labels are automatically generated, allowing models to learn
from enormous, unlabeled datasets (Chen et al., 2020). A common
example of self-supervised learning is language modeling, where a
model (typically a deep neural network) learns language structure
by filling missing parts in a text (which have been hidden with a spe-
cial mask token) or reconstructing corrupted text (Howard and
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Ruder, 2018; Radford et al., 2018). Fine-tuning, on the other hand,
is typically supervised and requires labeled data. The transfer-
learning paradigm has allowed predictive models to achieve substan-
tial performance gains across numerous benchmarks, especially in
tasks where labeled data is scarce (Thrun, 1996; Wang et al., 2019).

Most sequence-based language models [e.g. BERT (Devlin et al.,
2018), ULMFiT (Howard and Ruder, 2018), XLNet (Yang et al.,
2019), ELECTRA (Clark et al., 2020)] have been designed for proc-
essing natural languages (with a bias toward English). Thus, their
architectures and pretraining tasks may not be optimal for proteins,
which, despite many structural similarities, have different properties
from human language (Ofer et al., 2021; Strait and Dewey, 1996).
Most notably, proteins do not have clear-cut multi-letter building
blocks (such as words and sentences). Moreover, proteins are more
variable in length than sentences, and show many interactions be-
tween distant positions (due to their 3D structure). To this day, pro-
tein research is still dominated by classical sequence-similarity
methods [such as BLAST (Altschul et al., 1990) and hidden Markov
models (Finn et al., 2014)], in contrast to domains such as computer
vision which have become dominated by deep learning. A few recent
studies have pretrained deep neural language models on protein
sequences [e.g. ESM (Rives et al., 2021), TAPE-Transformer (Rao
et al., 2019), ProtTrans (Elnaggar et al., 2021), UDSMProt
(Strodthoff et al., 2020), UniRep (Alley et al., 2019)] (Heinzinger
et al., 2019; Madani et al., 2020; Nambiar et al., 2020). Such
works usually import existing architectures and tasks from the
natural language domain, without taking advantage of the unique
characteristics of proteins. A handful of works have implemented
protein-centric pretraining tasks, with mixed success and without
changing the underlying architecture (Rao et al., 2021; Sturmfels
et al., 2020; Yang et al., 2020).

Here, we present ProteinBert, a new deep-learning model
designed for protein sequences. We improve upon the classic
Transformer/BERT architecture, and introduce a novel pretraining
task of predicting protein functions. We pretrained ProteinBert on
�106M proteins (representing the entire known protein space) on
two simultaneous tasks. The first task is bidirectional language mod-
eling of protein sequences. The second task is Gene Ontology (GO)
annotation prediction, which captures diverse protein functions
(Ashburner et al., 2000). GO annotations are a manually curated set
of �45K terms defined at the whole-protein level, covering the en-
tire protein space across all organisms. They cover molecular func-
tions, biological processes and subcellular locations. Unlike classic
Transformers, ProteinBERT separates local (character level) and
global (whole sequence level) representations (as well as inputs and
outputs), thereby supporting multitasking of both local and global
tasks in a principled way. While ProteinBERT is considerably
smaller and faster than existing models, it approaches or exceeds
state-of-the-art performance on a diverse set of benchmarks.

2 Materials and methods

2.1 Data
2.1.1 Protein dataset for pretraining

ProteinBERT was pretrained on �106M proteins derived from
UniProtKB/UniRef90, covering the entire tree of life (Boutet et al.,
2016; Suzek et al., 2007). UniRef90 provides a non-redundant set of
protein clusters sharing at least 90% sequence identity. Each cluster
is represented by a single representative protein, ensuring a relatively
homogenous coverage of the protein space. For each protein, we
extracted its amino-acid sequence and associated GO annotations
(according to UniProtKB). We considered only the 8943 most fre-
quent GO annotations that occurred at least 100 times in UniRef90.
Of the �106M UniRef90 proteins, �46M had at least one of the
8943 considered annotations (with �2.3 annotations per protein, on
average across the �46M proteins).

2.1.2 Protein benchmarks

To evaluate ProteinBERT, we tested it on nine benchmarks repre-
senting all major facets of protein research, covering protein

function, structure, post-translational modifications and biophysical
properties (Table 1). Labels in these benchmarks are either local
(e.g. post-translational modifications) or global (e.g. remote hom-
ology), and they are either continuous (e.g. protein stability), binary
(e.g. signal peptide) or categorical (e.g. secondary structure).
Notably, in local benchmarks, the number of training samples is
much greater than the number of protein sequences, as target labels
are per residue.

Four out of nine benchmarks (secondary structure, remote hom-
ology, fluorescence and stability) were taken from TAPE (Tasks
Assessing Protein Embeddings), a standardized set of benchmarks
for evaluating protein sequence models (Rao et al., 2019). The ‘con-
tact prediction’ task from TAPE was not included in this analysis, as
it does not fit the model’s output. Specifically ProteinBERT outputs
global and per-position outputs, but not pairwise outputs. In add-
ition, we introduce five new benchmarks (see Supplementary
Methods). Comparisons between ProteinBERT and other models
were carried out on the four TAPE benchmarks. Internal evaluations
were also carried out on the five new benchmarks (see Section 3).

2.2 Sequence and annotation encoding
Protein sequences were encoded as sequences of integer tokens. We
used 26 unique tokens representing the 20 standard amino acids,
selenocysteine (U), an undefined amino-acid (X), another amino
acid (OTHER) and 3 additional tokens (START, END and PAD).
For each sequence, START and END tokens were added before the
first amino acid and after the last amino acid, respectively. The PAD
token was added to pad sequences shorter than the sequence length
chosen for the minibatch.

The architecture of ProteinBERT (like most deep learning mod-
els) dictates that each minibatch has a fixed sequence length. We
included the START and END tokens to help the model interpret
proteins that are longer than the chosen sequence length. When
encoding a protein longer than the chosen sequence length, we
selected a random subsequence of the protein, leaving out at least
one of its two ends. The absence of the START or END token
allowed the model to recognize that it only received part of a
sequence.

GO annotations of every sequence were encoded as a binary vec-
tor of fixed size (8943), where all entries are zeros except those cor-
responding to GO annotation associated with the protein. When no
information about GO annotations is provided to the model (e.g.
during fine-tuning and evaluation on the benchmarks), the vector is
set to all zeros.

2.3 Self-supervised pretraining on protein sequences

and annotations
To learn protein representations, ProteinBERT was pretrained on
protein sequences and GO annotations extracted from UniRef90.
The model received corrupted inputs (protein sequences and GO
annotations) and had to recover the uncorrupted data. The corrup-
tion of protein sequences was performed by randomly replacing
tokens with 5% probability (i.e. keeping the original token with
95% probability, or replacing it with a uniformly selected random
token with 5% probability). Input GO annotations were corrupted
by randomly removing existing annotations with 25% probability,
and adding random false annotations with probability of 0.01% for
each annotation not associated with the protein. For 50% of the
processed proteins, we removed all input annotations altogether (i.e.
giving an all-zero input vector), to force the model to predict GO
annotations from sequence alone (as was the case in all tested bench-
marks). In summary, the described pretraining is a dual task, where
the model has to recover both the protein sequence and its known
GO annotations. The latter task is relevant to numerous domains of
protein research, given the wide range of functions covered by GO
terms.

To avoid leakage of information from GO annotations of pro-
teins in the tested benchmarks (Table 1), we removed the GO anno-
tations of any protein with at least 40% sequence similarity to any
record in the benchmark test sets [using BLASTP with default
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parameters (Altschul et al., 1997)], thereby making sure that
ProteinBERT did not get additional information on the test-set pro-
teins other than their sequences. Notably, 40% sequence similarity
(as defined by BLAST) captures even lower percentages of sequence
identity. Of the �106M proteins used for pretraining, �600K such
sequences were identified.

The loss function minimized by ProteinBERT during pretraining
was a sum of the categorical cross-entropy over the protein sequen-
ces and the binary cross-entropy over the GO annotations, namely

L ¼ �
Pl
i¼1

log Ŝi;Si

� �
�
P8943

j¼1

Aj � log Âj

� �
þ 1� Aj

� �
� log 1� Âj

� �� �
,

where l is the sequence length, Si 2 f1; . . . ; 26g is the sequence’s true

token at position i, Ŝi;k 2 ½0; 1� is the predicted probability that pos-

ition i has the token k (for any k 2 f1; . . . ;26g), Aj 2 f0; 1g is the

true indicator for annotation j (for any j 2 f1; . . . 8943g), and Âj 2
½0;1� is the predicted probability that the protein has annotation j.

An important feature of ProteinBERT is sequence length flexibil-
ity. To avoid the risk of overfitting the model to a specific constant
length, we periodically (every 15 min of training) switched the
encoding length of protein sequences, using lengths of 128, 512 or
1024 tokens.

Pretraining speed on a single GPU (Nvidia Quadro RTX 5000)
was 280 protein records per second. We trained the model for
28 days over �670M records (i.e. �6.4 iterations over the entire
training dataset of �106M records). The trained model weights are
publicly available along with our code (see below).

2.4 Supervised fine-tuning on protein benchmarks
Following pretraining, we fine-tuned and evaluated the model on a
diverse set of benchmarks (Table 1). For all benchmarks,
ProteinBERT was initialized from the same pretrained state and
fine-tuned through the same protocol. Initially, all layers of the pre-
trained model were frozen, and only a newly added fully connected
layer was allowed to train for up to 40 epochs. Next, we unfroze all
the layers and trained the model for up to 40 additional epochs.
Finally, we trained the model for one final epoch of a larger se-
quence length (see Supplementary Methods). Throughout all epochs,
we reduced the learning rate on plateau and applied early stopping
based on an independent validation set. Model evaluation was then
performed over a held-out test set. No information about GO anno-
tations was exploited throughout the entire fine-tuning and bench-
mark evaluation process (i.e. the GO-annotation input was always a
constant all-zero vector). The entire fine-tuning procedure took
�14 min on a single GPU (on average across the nine benchmarks).

2.5 Deep-learning architecture
While inspired by BERT (Devlin et al., 2018), the architecture of
ProteinBERT is different and includes several innovations.
ProteinBERT is a type of a denoising autoencoder (Fig. 1). The two
inputs (and outputs) of ProteinBERT are (i) protein sequences
(encoded as amino-acid token sequences) and (ii) GO annotations
(encoded as fixed-size binary vectors).

The model architecture consists of two almost parallel paths: one for
local representations and the other for global representations (Fig. 1).
The local representations are 3D tensors of shape B� L� dlocal where
B is the batch size, L is the minibatch sequence length, and dlocal is the
number of channels for the local representations (we used dlocal ¼ 128).
The global representations are 2D tensors of shape B� dglobal (using
dglobal ¼ 512). In the first layers of the model, the input sequences are
transformed into the local-representation 3D tensor by an embedding
layer with dlocal output features (which is applied independently and
identically position-wise), and the input annotations are transformed
into the global-representation 2D tensor by a fully connected layer with
dglobal output features.

The local and global representations are processed by a series of
six transformer-like blocks with skip connections and layer normal-
izations between their hidden layers. Within each block, the local
representation is transformed first by 1D convolutional layers, and
then by a (location-wise) fully connected layer. To allow the local
representations at each position to be based on other positions at
both short and remote proximity, we used both a narrow (without
dilation) and a wide (with dilation rate of 5) convolutional layer.
Both types of convolution layers have a kernel size of 9 and stride
size of 1. Accordingly, each narrow layer has a receptive field of 9
and each wide layer has a receptive field of 41 over the previous
layer, meaning that the 6th block has a receptive field of 241 over
the input sequence. The global representations, on the other hand,
are transformed by two simple fully connected layers per block
(with normalizations between them). All the hidden fully connected
and convolutional layers of the model use GELU (Gaussian Error
Linear Unit) activations (Hendrycks and Gimpel, 2016).

The only information flow between the local and global repre-
sentations occurs through broadcast fully connected layers (from the
global to the local representations) and global attention layers (from
the local to the global representations). The broadcast layers are
fully connected layers that transform the dglobal features of the global
representation into dlocal features of the local representations, and
then replicate that representation across each of the L sequence
positions.

The global attention layer, inspired by self-attention (Vaswani
et al., 2017), is of linear (rather than quadratic) complexity. While
self-attention takes an input sequence and outputs another sequence
by allowing each position to attend to each other position, global at-
tention takes as input both a sequence and a global fixed-size vector
and outputs a global fixed-size vector created by attending to each
of the local input positions according to the global input vector.
Formally, a single-head global attention layer takes as inputs a glo-

bal representation vector x 2 R
dglobal and local representation vectors

across L positions, s1; . . . ; sL 2 R
dlocal , and outputs a global output

y 2 R
dvalue . Similar to self-attention, the output is calculated by y ¼

PL
i¼1

zivi where vi 2 R
dvalue is the value associated with each position

i 2 f1; . . . Lg and zi 2 ½0; 1� is the amount of attention allocated to
that position (satisfying z1 þ � � � þ zL ¼ 1). Like in self-attention, the

Table 1. Protein benchmarks

Topic Benchmark Target typea Resolution # Training

sequences

Source

Protein structure Secondary structure Categorical (3) Local 8,678 (Moult et al., 2018; Rao et al., 2019)

Disorder Binary Local 8,678 (Moult et al., 2018)

Remote homology Categorical (1,195) Global 12,312 (Andreeva et al., 2014, 2020; Rao et al., 2019)

Fold classes Categorical (7) Global 15,680 (Andreeva et al., 2014, 2020)

Post-translational

modifications

Signal peptide Binary Global 16,606 (Armenteros et al., 2019)

Major PTMs Binary Local 43,356 (Hornbeck et al., 2015)

Neuropeptide cleavage Binary Local 2,727 (Ofer and Linial 2014, 2015; Brandes et al., 2016)

Biophysical properties Fluorescence Continuous Global 21,446 (Sarkisyan et al., 2016; Rao et al., 2019)

Stability Continuous Global 53,679 (Rocklin et al., 2017; Rao et al., 2019)

aFor categorical targets, the number of classes appears in parentheses.
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value associated with each position is calculated by vi ¼ r Wvsið Þ,
using a parameter matrix Wv 2 R

dvalue�dlocal and an activation func-
tion r (we chose GELU). Attention values are calculated by

z1; . . . ; zL ¼ softmax q;kih iffiffiffiffiffiffi
dkey

p
� �L

i¼1

, based on query and key vectors

q; ki 2 R
dkey . Notice that while the key vectors k1; . . . ;kL are specific

to each position, the query vector q is global. Like in self-attention,
the key vectors are calculated by ki ¼ tanh Wksið Þ, using a second

parameter matrix Wk 2 R
dkey�dlocal . The global query vector is calcu-

lated by q ¼ tanh Wqx
� �

, using a third parameter matrix

Wq 2 R
dkey�dglobal . Overall, a single-head global attention layer uses

three parameter matrices fit during training, Wq, Wk and Wv. It is

also parameterized by the key dimension dkey (we used dkey ¼ 64). A

multi-head global attention layer is obtained by applying nheads inde-
pendent single-head global attention layers (each with its own
parameters) and concatenating their outputs, obtaining an output of

dimension nheads � dvalue (we used nheads ¼ 4 across all 6 blocks of
ProteinBERT). To satisfy dimensionality constraints, ProteinBERT

uses dvalue ¼
dglobal

nheads
¼ 128.

Overall, the ProteinBERT model includes six transformer-like
blocks with four global attention heads in each block. Altogether, it
includes�16M trainable parameters, making it substantially smaller
than other protein language models. For comparison, there are
�38M parameters in the TAPE Transformer (Rao et al., 2019),
�110M in BERT-base (Devlin et al., 2018), �430M in ProtTrans’s
ProtBert-BFD (Elnaggar et al., 2021), �650M in the ESM-1b model
(Rives et al., 2021) and 3B in ProtT5-XL-BFD (Elnaggar et al.,
2021).

The ProteinBERT architecture has several appealing properties.
Most importantly, the entire architecture is agnostic to the length of
the processed sequences, and it can be applied over sequences of any
given length without changing its learned parameters (our experi-
ments prove that the model indeed generalizes very well across

Fig. 1. The ProteinBERT architecture. ProteinBERT’s architecture is inspired by BERT. Unlike standard Transformers, ProteinBERT supports both local (sequential) and glo-

bal data. The model consists of six transformer-like blocks manipulating local (left side) and global (right side) representations. Each such block manipulates these representa-

tions by fully connected and convolutional layers (in the case of local representations), with skip connections and normalization layers between them. The local representations

affect the global representations through a global attention layer, and the global representations affect the local representations through a broadcast fully connected layer
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different lengths). This good generality across sequence lengths is
also achieved by avoiding positional embeddings used in the stand-
ard version of BERT which, in accordance with previous reports
(Neishi and Yoshinaga, 2019) and our experimentation, do not al-
ways generalize well to sequence lengths longer than those present
in the training data. Instead, the convolutional layers and special
tokens used at the beginning and end of each sequence provide the
model with information on the relative locations of positions. Due
to the use of global attention rather than self-attention, the amount
of computation performed by the model grows only linearly with se-
quence length (as opposed to quadratic growth in models with
standard self-attention). This linear growth also applies to the mod-
el’s memory consumption, allowing ProteinBERT to process ex-
tremely long protein sequences (of tens of thousands of amino-acids)
intact. Despite this simplification, each position in the local repre-
sentations and sequence outputs can still depend on the content of
each other position, thanks to the alternating information flow be-
tween the local and global representations. On top of that, the wide
and narrow convolutional layers allow the representation of each
position to depend on a large context. By relying on convolutional
and attention layers, but avoiding recurrent layers, the computation
performed by the network is more efficient and the learning is more
stable with respect to sequence length (as there are no long-term
dependencies and the computation performed by the network
involves only a fixed number of tensor operations) (Hochreiter
et al., 2001). Notably, we did not use dropout or any other form of
regularization (except for the final fully connected layer added when
fine-tuning the model, which included dropout).

When fine-tuning ProteinBERT on a labeled dataset, another
layer is added to its output. The final layer is fed with a concaten-
ation of either the local or global hidden states of the model, de-
pending on whether the output labels are local or global. The
activation used for the final layer depends on the output type (i.e.
softmax activation for categorical labels, sigmoid activation for bin-
ary labels or no activation for continuous labels).

2.6 Availability
Python code for ProteinBERT’s architecture, pretraining and fine-
tuning is open source and available at https://github.com/nadavbra/
protein_bert. The repository also includes pretrained model weights
and code for downloading and generating the datasets and bench-
marks. ProteinBERT is implemented in TensorFlow’s Keras (Abadi
et al., 2016; Chollet et al., 2015).

3 Results

3.1 Pretraining improves protein modeling
ProteinBERT was pretrained on �106M UniRef90 records for �6.4
epochs. We see that the language modeling loss continues to im-
prove on the training set (i.e. does not saturate), even after multiple

epochs (Fig. 2), in accordance with other studies (Rives et al., 2021).
The GO annotations task, on the other hand, does show saturation.
During pretraining, we periodically changed the sequence length
used to encode the input and output protein sequences (128, 512 or
1024 tokens). We observe somewhat lower performance for the
128-token encoding, but similar for 512 and 1024.

3.2 ProteinBERT achieves nearly state-of-the-art results

on diverse protein benchmarks
To evaluate ProteinBERT, we used nine benchmarks covering a var-
iety of tasks in protein research (see definitions of the benchmarks in
Table 1; full results for all benchmarks are available in Supplementary
Table S1). For the four benchmarks taken from TAPE (secondary
structure, remote homology, fluorescence and stability prediction), we
compared our performance to other state-of-the-art sequence models
which had been evaluated on the same benchmarks with the same
metrics (Table 2). Specifically, we compared against a BERT
Transformer and LSTM models evaluated in TAPE (Alley et al., 2019;
Bepler and Berger, 2019; Rao et al., 2019). We also compared to
ProtT5 (Elnaggar et al., 2021) on the secondary-structure benchmark
(which was the only one of the four TAPE benchmarks with published
results for this model). Other notable protein language models [e.g.
ESM (Rives et al., 2021)] did not have directly comparable published
results. Notably, the compared deep-learning models from TAPE have
roughly 38M parameters and ProtT5-XL has 3 billion parameters, in
contrast to �16M parameters in ProteinBERT. We evaluated
ProteinBERT with and without pretraining, observing that pretraining
has a major, positive effect on performance in many tasks. Across
these benchmarks, ProteinBERT shows comparable performance, that
sometimes exceeds similar, larger models trained with much more
compute.

To further discern the impact of pretraining on downstream
benchmark performance, we evaluated ProteinBERT following dif-
ferent pretraining durations. Specifically, we initiated the model
from different snapshots along its pretraining and evaluated its
down-stream performance after fine-tuning from these states
(Fig. 3). While some tasks do not benefit from pretraining, other
tasks (e.g. secondary structure and remote homology) show clear
gains from ever more pretraining, and do not show saturation in
that improvement. This is notable given that these are among the
more challenging tasks.

We also performed ablation testing to study the effects of the
GO-annotation pretraining task (Supplementary Fig. S2), and found
that some benchmarks (specifically secondary structure, remote
homology and fold classes) benefited from it.

3.3 ProteinBERT generalizes across protein lengths
The architecture of ProteinBERT is efficient and flexible toward dif-
ferent sequence lengths (i.e. the number of tokens encoding the input
and output sequences). To test the model’s capacity to generalize

Fig. 2. Pretraining loss. Training-set loss over the two pretraining tasks: (i) protein sequence language modeling, and (ii) GO annotation recovery. Losses were evaluated with

input sequence length of 128, 512 or 1024 tokens on the first 100 batches of the dataset
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across sequence lengths, we measured the test-set performance of
ProteinBERT on the 4 of 9 benchmarks that had a non-negligible
number of test-set records in proteins longer than 512 tokens
(Fig. 4). Specifically, we required at least 25 such records, where a
record comprises either an entire protein (in the case of global tasks) or a
residue (in the case of local tasks). We observe that in most cases
ProteinBERT performs slightly worse for longer sequences, but only
modestly, showing that it indeed generalizes across a very wide range of
protein lengths. Moreover, the fact that in some cases longer sequences
achieve better performance (e.g. 16 384-token sequences in the ‘Major
PTMs’ benchmark, or 1024-token sequences in the ‘Neuropeptide cleav-
age’ benchmark) suggests that the changes in performance might be due
to other factors (e.g. predicting the secondary structure of longer sequen-
ces might be an inherently more difficult task).

3.4 Understanding global attention
To demonstrate the inner workings of the global attention mechan-
ism, we extracted the values of the 24 attention heads in
ProteinBERT for two unrelated proteins selected from the test-set of
the signal peptide benchmark, before and after fine-tuning the model
on that task (Fig. 5). The patterns of global attention are clearly dis-
tinct across different proteins, but some shared patterns exist. For
example, attention head #3 in the 3rd block tends to concentrate on
the beginning of protein sequences, while attention head #2 in the
same layer tends to concentrate on the other parts. Fine-tuning the
model on signal peptide prediction appears to have mostly altered
the last (6th) global attention layer. For example, attention head #1
in that layer changed to further emphasize the beginning of sequen-
ces. In the positive example (Fig. 5, top panel), the largest increase

Table 2. TAPE benchmark results

Method Structure Evolutionary Engineering Model size (M)

Secondary structure -

3 state (accuracy)

Remote homology

(accuracy)

Fluorescence

(Spearman’s q)

Stability

(Spearman’s q)

Without Pretraining TAPE Transformer 0.70 0.09 0.22 -0.06 38

LSTM 0.71 0.12 0.21 0.28 ~38a

ProteinBERT 0.70 0.06 0.65 0.63 16

With Pretraining TAPE Transformer 0.73 0.21 0.68 0.73 38

LSTM 0.75 0.26 0.67 0.69 ~38a

UniRep mLSTM 0.73 0.23 0.67 0.73 18

ProtT5-XL-BFD 0.77 – – – 3,000

ProteinBERT 0.74 0.22 0.66 0.76 16

aTape’s LSTM models “approximately match the number of parameters in the Transformer” (Rao et al., 2019).

Fig. 3. The impact of pretraining on downstream tasks. Performance of fine-tuned ProteinBERT models over the four TAPE benchmarks as a function of pretraining amount

(measured by the number of processed proteins). Similar plots for all nine benchmarks are shown in Supplementary Figure S1

ProteinBERT 2107

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/38/8/2102/6502274 by guest on 20 Septem
ber 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac020#supplementary-data


in attention was at the end of the signal peptide (i.e. the cleavage
site). It is worth stressing that the exact attention values are depend-
ent on the model weights obtained from training, which can change
between runs. From our experience, fine-tuning tends to produce ra-
ther consistent results, but small differences are sometimes observed.

4 Discussion

We have presented ProteinBERT, a new deep language model for
protein sequences designed to capture local and global representa-
tions of proteins in a natural way (Fig. 1). We have demonstrated
the universality of the model, showing that it can be fine-tuned on a
wide range of protein tasks in a matter of minutes and achieve near
state-of-the-art results (Table 2). While some larger protein language
models [such as ProtT5 (Elnaggar et al., 2021)] show better per-
formance on at least some measured tasks, these models are far
larger and involve orders-of-magnitude more compute and memory
during both pretraining and inference.

ProteinBERT is extremely frugal by comparison to other leading
protein language models with respect to size, compute and memory.
For example, while ProteinBERT was pretrained for 4 weeks on a sin-
gle GPU, UniRep was trained for 3.5 weeks on 4 GPUs (Alley et al.,
2019), and ProtTrans’s ProtT5-XL was trained on a supercomputer
with thousands of GPUs and TPUs, and is too large to fit a single se-
quence on most consumer GPUs (Elnaggar et al., 2021).

To pretrain ProteinBERT, we introduce a novel pretraining task
of protein annotation prediction which is highly suited to proteins
[unlike sentence order prediction and other natural language tasks
(Lan et al., 2019)]. We argue that GO annotations (Ashburner et al.,
2000) are a sensible extension to language modeling in proteins.
They are ubiquitous and available for a large portion of curated pro-
teins (�46M of the �106M proteins in the UniRef90 dataset). In
addition, they can teach the model about a wide range of protein
functions (from subcellular localizations to pathways to biochemical
roles).

Unlike previous works which included �250M putative, redun-
dant sequences (Rives et al., 2021), we constrained the pretraining
of ProteinBERT to �106M representative proteins taken from
UniRef90 (Suzek et al., 2007), out of the entire known protein space
of �215M proteins in UniProt (Boutet et al., 2016). We argue that
using a non-redundant set of proteins is more sensible and eliminates
a lot of unnecessary bias caused by uneven sampling of the protein
space, which is prevalent in the non-filtered version of UniProt. For
example, there are >1M proteins in UniProt from the proteome of
human immunodeficiency virus 1 (HIV-1), even though the real
virus contains only 9 proteins. Such a redundancy reflects the abun-
dance of sequence variations along HIV-1 evolution, and the great
interest that researchers have had in this variation (compared with

most other, far less studied organisms). Using a non-redundant set
of proteins is also more efficient, especially when pretraining the
model for less than an entire epoch (such as when searching for opti-
mal hyper-parameter combinations).

Unlike traditional bioinformatic tools such as BLAST (Altschul
et al., 1990) and hidden Markov models (Finn et al., 2014) which
are based on sequence similarity (and therefore require searching
through massive databases), the deep-learning approach taken in
this work uses only primary sequence information, leading to two
important advantages. First, it allows for rapid inference and dataset
construction at a very large scale. Second, such models can remain
effective in the presence of new sequences, whether or not they have
homologues.

ProteinBERT’s architecture is efficient and highly scalable, allow-
ing it to process protein sequences of any length. The same model
weights conform to any sequence length, allowing it to be trained on
a specific range of lengths and then generalize to other, unseen se-
quence lengths (Fig. 4). By supporting extremely long sequences
(more than tens of thousands of residues), ProteinBERT spares the
complication of splitting long sequences into smaller chunks, a com-
mon practice with self-attention-based models which grow quadrati-
cally (rather than linearly) with sequence length (Choromanski et al.,
2020; Zaheer et al., 2020). At the core of the model’s flexibility is its
use of global attention layers. The compactness of global attention
(relative to self-attention) also allows easier inspection of the model’s
attention, as all attention values (across all positions and attention
heads) can be displayed as a simple 2D map (Fig. 5), as opposed to
the 3D map that would be required to cover all-by-all self-attention.

Compatible with the general trends in the field of language model-
ing (Brown et al., 2020), we observe that longer pretraining of
ProteinBERT shows clear performance gains, both as a language
model (Fig. 2) and across many specific tasks (Fig. 3, Supplementary
Fig. S1). Existing works show that, other things being equal, larger
models and additional pretraining correlates with improved model per-
formance (Brown et al., 2020; Devlin et al., 2018; Rives et al., 2021).
Thus, we expect larger versions of ProteinBERT (e.g. with more, wider
layers) to yield additional improvements. Yet, even with the frugal
computing resources used in this work (a single GPU), ProteinBERT
competes with state-of-the-art models (Table 2), providing a simple
and efficient out-of-the-box solution for a wide range of protein tasks.
The representations learned by the model through its pretraining are
universally applicable across a wide array of tasks, making it useful for
few-shot-learning tasks involving limited labeled data.

To facilitate easy usage of ProteinBERT, we provide the pre-
trained model as a Python package [based on TensorFlow and Keras
(Abadi et al., 2016; Chollet et al., 2015)], which allows automatic
downloading of a pretrained model state, fine-tuning and evaluation

Fig. 4. Performance across sequence lengths. Test-set performance of fine-tuned ProteinBERT models with different input sequence lengths. Sequence lengths (e.g. 512, 1024,

etc.) always encode proteins of shorter lengths (e.g. a protein of 700 residues will be encoded as a 1024-long sequence). Boxplot distributions are over the 371 pretraining snap-

shots used in Figure 3
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Fig. 5. Global attention before and after fine-tuning on signal peptide prediction. Global attention values obtained for two selected proteins: Outer membrane protein P.IIC

(piiC) in neisseria gonorrhoeae (top), and Gamma carbonic anhydrase-like 2, mitochondrial protein (GAMMACAL2) in arabidopsis (bottom). piiC has a signal peptide at

positions 1–25 (ending with the amino-acid sequence SAARA). GAMMACAL2 has no signal peptide. The left panels (red colors) show the attention values obtained by the

generic ProteinBERT model, after pretraining, it as a language model on UniRef90 (but before fine-tuning it on any specific task). The heatmap shows the global attention val-

ues at each residue of the protein by each of the 24 attention heads of the model. The bar plot shows the total attention at each residue by summing the attention values across

all attention heads. The right panels show the difference in attention values after fine-tuning ProteinBERT on the signal peptide task. The heatmap shows the increase (green)

or decrease (purple) of attention across all positions and attention heads. The bar plot shows the total difference in attention at each residue by summing the differences across

all attention heads. Note that, each attention head necessarily sums up to 100%. Accordingly, differences sum up to 0%
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on labeled datasets, as well as scripts for creating the pretraining
dataset.

By providing an effective and accessible model of protein
sequence and function, we hope to expedite the adoption of deep lan-
guage modeling by the protein research community and allow this
new powerful tool to further push the boundaries of protein research.
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