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Abstract

Blind estimation of local (per-residue) and global (for
the whole structure) accuracies in protein structure
models is an essential step in many protein model-
ing applications. With the recent developments in
deep-learning, single-model quality assessment meth-
ods have been also advanced, primarily through the
use of 2D and 3D convolutional deep neural networks.
Here we explore an alternative approach and train a
graph convolutional network with nodes representing
protein atoms and edges connecting spatially adja-
cent atom pairs on the dataset Rosetta-300k which
contains a set of 300k conformations from 2,897 pro-
teins. We show that our proposed architecture, Pro-
teinGCN, is capable of predicting both local and
global accuracies in protein models at state-of-the-
art levels. Further, the number of free parameters
in ProteinGCN is almost 1-2 orders of magnitude
smaller compared to the 3D convolutional networks
proposed earlier. We provide the source code of our
work to encourage reproducible research.1

1https://github.com/malllabiisc/ProteinGCN

1 Introduction

Despite progress of deep learning-based methods as
recently demonstrated in the CASP13 experiment2,
protein structure prediction remains a challenging
problem. This is especially true if one needs models of
atomic-level accuracy - the resolution required for bi-
ologically relevant applications such as, molecular re-
placement, small-molecule binding or protein-protein
interaction studies. Along with the conformational
space sampling, the scoring function is the key com-
ponent of modeling, which allows for proper ranking
of the putative models and selection of the ones clos-
est to the native structure. Estimating both global
and local per-residue scores are important. The for-
mer provides an overall perspective on model’s qual-
ity. The latter differentiates between regions within
a model with respect to the degree of their struc-
tural similarity to corresponding local regions in the
native structure. This is especially useful for subse-
quent protein structure refinement.
Various methods have been developed to tackle the

scoring problem, ranging from energy functions de-
rived from either general physical principles (like a
number of popular molecular mechanics force fields
CHARMM [18], AMBER [6], OPLS [13], GROMOS

2http://predictioncenter.org/casp13/
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Figure 1: Overview of ProteinGCN: Given a protein structure, it first generates a protein graph (Section
3.2) and uses GCN to learn the atom embeddings. Then, it pools the atom embeddings to generate residue-
level embeddings. The residue embeddings are passed through a non-linear fully connected layer to predict
the local scores. Further, the residue embeddings are pooled to generate a global protein embedding. Similar
to residue embedding, this is used to predict the global score. Please refer to Section 3.3 for more details.

[30]), or deduced from diverse sets of known protein
structures (various knowledge-based or statistical po-
tentials GOAP [38], RW [36], DFIRE [39]), or both
(Rosetta [17]), to the ones trained to estimate par-
ticular similarity scores (e.g., lDDT [20], CAD [22],
GDT [35], TMscore [37], etc.) between a computa-
tional model and the experimentally determined ref-
erence structure directly from atomic coordinates of
the former. Meta-methods combining one or more
of the above scores with additional biological data
(e.g., multiple sequence alignments, templates, etc.)
also exist; some of them use neural networks to learn
the mapping of the above hand-crafted features to
the target similarity score (e.g., ProQ3D [32]).

The unifying idea among most scoring methods is
that only spatially adjacent atoms or residues con-
tribute to the quality score - this is due to the general
principle of locality of inter-atomic interactions. To
tackle the problem of model quality estimation from
deep learning perspective, one approach is to project
the structure onto a 3D grid and use 3D convolutions
(convolutions are local by definition) to convert this
voxelized representation in the quality score (3DCNN
[5]). Lack of rotational invariance of this representa-
tion can be partly mitigated by data augmentation
(use multiple different orientations for every model)
during training. More recently, in the Ornate method
[24] every residue is placed into its own local reference

frame and convolutions are performed independently
over a fixed-size box around each residue.

Another arguably more natural way of represent-
ing a protein molecule is by a graph with nodes rep-
resenting atoms, and edges joining atom pairs which
are closer in the 3D model than some predetermined
Dmax; this representation is rotationally invariant by
construction. Recently, there has been much progress
in the field of Geometric deep learning [2] which deals
with developing graph based deep neural networks
for graphical structures [10, 29, 16, 3]. Such meth-
ods have the ability to automatically learn the best
representation (embedding) from raw data of atoms
or bonds features for different node-level and graph-
level attribute predictions. These approaches have
been successfully applied to molecules for perform-
ing various tasks such as molecular feature extraction
[7, 14, 9], drug discovery [1], protein structure and
crystal property prediction [34, 28]. In most molecu-
lar GCNs, edges encode information on spatial prox-
imity of atoms, but not on their mutual orientations.
In this work, we explicitly take into account inter-
atomic orientations, and extend the application of
GCN to the protein model quality assessment prob-
lem. We show that, with 20-fold less learnable pa-
rameters than in 3D CNNs, the new method called
ProteinGCN shows state-of-the-art performance on
diverse benchmarks derived from CASP13 server sub-

2

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2020. ; https://doi.org/10.1101/2020.04.06.028266doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.06.028266
http://creativecommons.org/licenses/by/4.0/


missions, as well as on extensive Rosetta decoys.

2 Background: Graph Convo-

lutional Networks

In this section, we give a brief overview of Graph
Convolutional Networks (GCNs) [16] for undirected
graphs. Let G = (V , E ,X ) be a graph, where V de-
notes the set of vertices, E represents the set of edges,
andX ∈ R

|V|×d0 represents d0-dimensional input fea-
tures of each node. A single GCN layer update equa-
tion to obtain the node representations is defined as:

H = f
(
ÂXW

)
,

where, Â = D̃− 1
2 (A+ I)D̃− 1

2 is the normalized ad-
jacency matrix for a given adjacency matrix A af-
ter adding self-loops, and D̃ is defined as D̃ii =∑

j(A+I)ij . W ∈ R
d0×d1 denotes the model param-

eters and f is some activation function. The GCN
representation H ∈ R

|V|×d1 encodes the immediate
neighborhood of each node in the graph. To capture
multi-hop dependencies in the graph, multiple GCN
layers can be stacked as follows:

H
k+1 = f

(
ÂH

k
W

k
)
,

where k denotes the number of layers, W k ∈
R

dk×dk+1 is layer-specific parameter and H0 = X .
For a single vertex with representation vi ∈ H, the
same equation can be written as follows:

v
k+1
i = f

( ∑

j∈Ni

v
k
i W

k
)
,

where Ni denotes the neighborhood of the ith node.
We will use this vertex based update equation to de-
scribe our GCN formulations.

3 ProteinGCN

In this section, we first describe the problem state-
ment in detail (Section 3.1). Next, we discuss the

various steps involved in training ProteinGCN. In
that, we first explain the process of generating input
protein graph required for training ProteinGCN

(Section 3.2). Then, we formally define the model
architecture (Section 3.3). Finally, we specify the
loss criteria used to train the ProteinGCN model
(Section 3.4).

3.1 Problem Formulation

Protein model quality assessment (QA) is broadly de-
fined as the task to score protein conformations such
that the ones closest to the native structure can be
identified using the predicted scores. It has two re-
lated sub tasks - predicting a global score for the
protein conformation and predicting local scores for
each amino acid residue in the protein.

3.2 Protein Graph

A natural way to represent any given protein struc-
ture is by modeling it as a graph. Such a construct
has been shown to be effective in learning a repre-
sentation of a local neighborhood around each amino
acid residue [8]. In this work, we create a protein

graph with nodes representing the various constituent
non-hydrogen atoms in the protein. To connect the
nodes in the protein graph, we consider K nearest
neighbors for each node atom and connect the atom
to each of the K neighbors. For computing the dis-
tance between atoms, we use the given 3D protein
structure. Note that, with this formulation for graph
connectivity, we can capture the 3D interactions in a
better way since the connections are not restricted to
only the chemical bonds present in the protein struc-
ture. Now, given this protein graph, we use one-hot
vector encoding as features to represent the atoms
as nodes. We treat each heavy atom in the 20 stan-
dard residue types separately, which yields 167 atom
types and hence the dimension of the node feature
vector. For edges, we explore three types of features
as described below:

3
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1. Edge distance [ED]: Every edge is assigned
a distance measuring the proximity of the two
atoms in the protein structure model. We use
gaussian basis expansion to generate a vector
representation for the distance. In this work, we
use gaussian basis with means varying uniformly
from [0, 15] with a step size of 0.4.

2. Edge coordinates [EC]: To account for ap-
parent anisotropy in relative atomic placements
inside a protein, we complement the above dis-
tances with a set of directional features. To do
this, a local reference frame −→ex,

−→ey ,
−→ez is placed

at every atom, which is calculated from 3D co-
ordinates of the two adjacent bonded atoms A,C
and the atom in question B (see supplementary
Table S1 for details):

−→ez =

−−→
AB −

−−→
BC

|
−−→
AB −

−−→
BC|

,

−→ex =

−−→
BC ×

−−→
AB

|
−−→
BC ×

−−→
AB|

,

−→ey = −→ez ×−→ex.

Every edge (i, j) then gets 2 × 3 additional fea-
tures representing projections of atomic coordi-
nates of atom j (i) onto the local frame of atom
i (j).

3. Bond type [BT]: It is a binary feature which
is 1 if the edge connection is an actual chemical
bond in the protein structure and 0 otherwise.

3.3 ProteinGCN formulation

ProteinGCN utilizes graph convolutional networks
(GCNs) to model the protein graph described in Sec.
3.2. Formally, let G=(V , E ,X ,U) denote a protein
graph. Here V represents the set of atoms constitut-
ing the amino acid residues in the protein structure,
(i, j) ∈ E denotes an edge between atoms i and j, and
|V|=N is the number of atoms in the protein graph.
vi ∈ X contains the features of the ith atom which
can encode various properties of the atom. In this

Atom 1

Atom 2
Atom 3

Atom 4

Wc

Wc

Wc

Figure 2: Overview of ProteinGCN update for
a single node: For a given central protein atom
node (e.g., Atom 1 above) in the protein graph, Pro-
teinGCN concatenates the neighbor embedding vj ,
edge embedding u(i,j), and self embedding vi using
the concatenation operator ⊕. We omit concatena-
tion of the self embedding in the diagram for clar-
ity. The concatenated embeddings are then con-
volved with convolutional filter Wc. The message
from all the neighbors are then aggregated to get an
updated embedding of the central node. The edge-
gating mechanism is also omitted in the figure for
clarity (i.e., assume wij = 1). Please refer to Equa-
tion 1 for more details.

work we utilize one-hot vector for node representa-
tions. u(i,j) ∈ U is the feature vector for the bond
between atoms i and j that captures properties of
the edges. To capture neighborhood influence using
ProteinGCN, we utilize the graph convolution for-
mulation as proposed by [34] for crystal graphs. It is
defined as follows:

v
(k+1)
i = v

(k)
i +

∑

j∈Ni

w
(k)
i,j ⊙ g(z

(k)

(i,j)W
(k)
c + b

(k)
c ),

w
(k)
i,j = σ(z

(k)

(i,j)W
(k)
g + b

(k)
g ),

(1)

where z
(k)
(i,j) = v

(k)
i ⊕v

(k)
j ⊕u(i,j) denotes the concate-

nation of atom and bond feature vectors of the neigh-
bors of ith atom, ⊙ denotes element-wise multiplica-
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tion. σ denotes a sigmoid function and g(·) denotes

any non-linear activation function (like ReLU). w
(k)
i,j

is an edge-gating mechanism [19] to incorporate dif-

ferent interaction strengths among neighbors. W
(k)
g ,

W
(k)
c , b

(k)
g and b

(k)
c are the gate weight matrix, con-

volution weight matrix, gate bias, and convolution
bias of the k-th layer of GCN respectively.
As discussed in Sec. 3.1, the task of protein QA

involves predicting scores at the global protein level
as well as at the local amino acid residue level. In
other words, it can be seen as a regression problem
at graph (protein graph) and subgraph (amino acid
residue) level respectively. Graph pooling [11, 27] is
a technique to generate a graph representation using
the learnt node embeddings. A simple example of
pooling is the average operator which takes the mean
of the representations of nodes in the graph. Similar
ideas can be extended to generate a subgraph embed-
ding using its constituent nodes. Hence, in Prote-

inGCN, the learnt atom features are then averaged
to get a vector representation of the protein graph. In
a similar manner, representations for each amino acid
residue are calculated by averaging the embeddings
of the constituent nodes. More concretely,

vG =
1

N

N∑

i=1

vi,

vRk
=

1

Nk

∑

j∈Rk

vj ,

where vi,vG , and vRk
are the atom, graph and kth

amino acid residue (Rk) representations respectively.
Nk denotes the count of atoms that consitute the kth

amino acid residue Rk.
Now, the global protein graph embedding (vG) and

local amino embeddings (vRk
) are fed to two separate

fully-connected layers with non-linearities that learn
to predict the global and local QA score respectively
as defined below:

SG = ReLU(vGWg + bg),

SRk
= ReLU(vRk

Wl + bl),

where SG and SRk
are the global and kth local scores

respectively. Wg,Wl, bg, and bl are weights and bi-

ases for global and local fully-connected layer respec-
tively.

3.4 Loss Criterion

We utilize the Mean Squared Error (MSE) as the ob-
jective function which measures the average squared
difference between the estimated values and the ac-
tual target value for penalizing ProteinGCN while
training the model.
Loss defined for the residue (local) score predic-

tions is as follows:

Llocal =
1

N

N∑

k=1

(SRk
− ŜRk

)2,

where SRk
and ŜRk

represent the kth residue (local)
true score and the predicted score respectively. Sim-
ilarly, the loss defined for global score predictions is
as follows:

Lglobal = (SG − ŜG)
2,

where SG and ŜG represent the global true score and
the predicted score respectively for each protein. The
combined loss L equally weights both local (Llocal)
and global (Lglobal) losses as follows:

L =
Llocal + Lglobal

2
.

4 Experimental Setup

In this section, we provide details of the datasets
and baselines used for the experiments, the evalua-
tion strategy, and ProteinGCN hyperparameters.

4.1 Protein datasets

We use two protein datasets for all our experiments.
Details about the dataset are provided below:

5
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• Rosetta-300k: The primary set used for traing
is composed of 2,897 protein chains ranging from
50 to 300 residues in length and having reso-
lution not worth than 2.5A. For every protein
chain, we generated 100 homology models of var-
ious accuracy using RosettaCM protocol [31] fol-
lowed by dual-space relaxation [4] (more details
on this set are given in Hiranuma et al [under
submission]).

• CASP13: This set includes models (150 per tar-
get) for 80 target proteins from CASP13 experi-
ment submitted by participating servers and se-
lected by the organizers for the second stage of
the EMA (Evaluation of Model Accuracy) exper-
iment [33]. Similar to the Rosetta-300k dataset,
all models were subject to dual-space relaxation
in Rosetta to mitigate the possible diference in
modeling procedures between different servers
and to consolidate the mmodels with the ones
from the training set.

4.2 Baselines

To compare the performance of ProteinGCN, we
use the following baselines:

• VoroMQA [23]: It estimates protein quality by
contsructing a Voronoi tesselation for the set of
atoms in the protein model and then uses the
derived inter-atomic contact areas to produce
scores at atomic, residue and global levels.

• Ornate [24]: In Ornate, residue-wise lDDT
scores are predicted from local 3D density maps
by a deep 3D convolutional neural network. We
have retrained the original network using the
Rosetta-300k dataset to facilitate comparison
with ProteinGCN.

• ProteinGCN-Base: This is a variant of Pro-
teinGCN where we use only the edge coordi-
nates [EC] as edge features. Further, we also re-
strict to using only the residue-level loss Llocal.
With these restrictions, ProteinGCN-Base is
directly comparable to Ornate.

4.3 Evaluation

The scores during training are evaluated using Mean
Absolute Error (MAE) accuracy metric. Finally, the
Pearson correlation coefficient i.e., Pearson’s r is used
to measure the linear relationship between the refer-
ence lDDT and the predicted lDDT scores for the
Protein QA on the test set. This ultimately helps
in understanding how close a model is to the native
structure based on the predictions and the ground
truth values. The Pearson’s r calculated for local
residue predictions first involves calculating Pearson’s
r for each local residue as shown below:

r =

∑
(x−mx)(y −my)√∑
(x−mx)2(y −my)2

,

where x and y are the local residue prediction and
target vectors respectively. mx is the mean of pre-
diction vector x and my is the mean of target vector
y. We now average these local residue Pearson’s r
coefficients over the total residues in a protein to get
the local score as follows:

Local Score =
1

N

N∑

k=1

rk.

Similarly, to calculate Pearson’s r for the global
predictions, we calculate Pearson’s correlation coeffi-
cient for each global value and finally take an average
over all the coefficients.

5 Results

In this section, we evaluate the performance of Pro-
teinGCN on multiple datasets and compare them
with existing baselines. Next, we perform an abla-
tion study to see the effect of different edge features
on model’s performance.

6
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Rosetta-300k CASP13

Method Global Local Global Local

VoroMQA 0.738 0.478 0.785 0.387
Ornate 0.820 0.622 0.779 0.489
ProteinGCN-Base - 0.674 - 0.548
ProteinGCN 0.837 0.704 0.809 0.582

Table 1: Comparisons of ProteinGCN with base-
lines on two protein datasets. The pearson correla-
tion is reported for all models. Please refer to Section
4.3 for evaluation strategy. Global correlation is miss-
ing for ProteinGCN-Base as it doesn’t have the
global loss objective. We observe that ProteinGCN

consistently improves upon previous baselines. For
more details, please refer to Section 5.1.

5.1 Performance Comparisons

In order to evaluate the effectiveness of Prote-

inGCN, we compare it against the existing protein
quality assessment baseline models listed in Section
4.2. The results are summarized in Table 1. We ob-
serve that ProteinGCN considerably outperforms
all the baselines on both the datasets. Further, we
find that ProteinGCN-Base shows consistent im-
provement over Ornate, even though both use the
same set of features. The main difference between
the two models is the use of GCN in ProteinGCN-

Base compared to 3D-CNN in Ornate. This clearly
demonstrates that GCN is better suited to model pro-
tein structures than the 3D-CNNs.

5.2 Ablation Study

To further evaluate the effect of various edge fea-
tures and loss terms in the ProteinGCN model, we
perform an ablation study over the two datasets de-
scribed in Section 4.1. We sequentially remove some
features from ProteinGCN model and evaluate its
performance on the two datasets. The results are
shown in Table 2. We observe that removing the
global loss leads to a significant decrease in perfor-
mance on both the datasets. Also, capturing the

Rosetta-300k CASP13

Ablation Global Local Global Local

ProteinGCN 0.85 0.704 0.809 0.582
ProteinGCN - EC 0.85 0.7 0.787 0.571
ProteinGCN - EC - BT 0.851 0.701 0.787 0.575
ProteinGCN - ED - BT - Lglobal - 0.674 - 0.548
ProteinGCN - EC - BT - Lglobal - 0.641 - 0.525

Table 2: Ablation of various components of Prote-
inGCN. The pearson correlation is reported for all
models. Lglobal refers to global MSE loss used to
train the model (Section 3.4). ED, EC, and BT are
the edge distance, edge coordinate, and bond type
respectively. Global correlation is marked with ’-’ for
models which do not have the global loss component.
Please refer to Section 5.2 for more details.

coordinate information leads to some gains in local
prediction indicating the usefulness of capturing the
edge orientations.

5.3 Qualitative Analysis

To better understand the performance of Pro-

teinGCN, we perform a quantitative analysis of
the model’s prediction for a sample protein target
(T1008). This is depicted in Figure 3. As shown
in the Figure 2B, there is a strong correlation be-
tween the true and predicted global scores, which is
desirable in real-case modeling scenarios when pick-
ing the best model from a pool of decoys is often a
challenge. We also check how well local scores are re-
capitalated by picking three models at three distinct
global accuracy levels and comparing predicted per-
residue lDDT scores (shown in color) with reference
ones (shown in grey, Figure 2C). Despite the differ-
ences in the global scores, ProteinGCN correctly
captures trends in the local scores; this allows for se-
lecting most inaccurate regions in the protein model
which need further refinement [25].

7
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Figure 3: Qualitative analysis of the performance of ProteinGCN on CASP13 target T1008. (A) Ex-
perimental structure is shown in rainbow. (B) Predicted global lDDT scores are well-correlated with the
reference scores with Pearson’s r = 0.778. (C) Three models of various accuracy levels (global lDDT scores
are given on the Figure) are color-coded according to local lDDT scores predicted by ProteinGCN. Both
reference (grey) and predicted (red, green, and blue) local scores are shown on the plots below the structures.
We observe that ProteinGCN is able to correctly capture trends in local scores for different models of the
target protein T1008. Please refer to Section 5.3 for more details.

6 Conclusion

In this work, we proposed ProteinGCN, the first
graph neural network framework for the task of pro-
tein model quality assessment. Along with cap-
turing the local structural information through the
graph convolution formulation, ProteinGCN is also
able to utilize both inter-atomic orientations and dis-
tances effectively. Along with that, ProteinGCN

also utilizes 20x lesser learnable network parameters
compared to Ornate, the state-of-the-art baseline.
Through extensive experiments on two datasets, we
establish the superiority of our proposed method over
previous baselines.
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A Appendix

A.1 Training Strategy

We first randomly split our dataset into 60/20/20 ra-
tio of train, validation and test sets, unless specified
otherwise. We then use one hot encoding to initial-
ize the embeddings for all the 167 different protein
atoms. The number of neighbours for each atom is
set to 50, a maximum limiting value decided based
on the closeness calculated using euclidean distance.
Model weights are learnt and it converges after train-
ing ProteinGCN over 50 epochs using Stochastic
Gradient Descent optimizer with the learning rate,
lr=0.001 and the momentum parameter, m=0.9. To
prevent overfitting and to regularize the model, we
use Batch Normalization[12] within the convolution
layer. Also, we use ReLU[21] as the activation func-
tion.
The model learns using the training set and then

we check the test error on the validation set. We per-
form hyperparameter tuning over the hyperparame-
ter space mentioned in the Table 3.

Hyperparameter Values

Number of convolutional layers, nconv 1, 2, 3, 4, 5
Hidden atom embedding dimension, ha 64, 128, 512
Hidden graph embedding dimension, hg 32, 64, 128
Number of fully connected layers, nfc 2, 4
Step size of the Adam optimizer, lr 10−4, 10−3, 10−2, 10−1

Table 3: List of hyperparameters and the ranges used
for fine-tuning ProteinGCN model. Refer to Sec-
tion A.1 for more details on training.

A.2 Model Parallelization

ProteinGCN typically has around 100k trainable pa-
rameters (can change depending on the setting). The
size of the model creates the process of batching a
challenge and doesn’t allow larger mini-batches to fit
in a single device for model training. Thus, we incor-

porated PyTorch [26] Data Parallel3 which splits and
distributes the mini-batches across multiple GPUs
evenly for the devices specified. This not only solved
the problem of small MiniBatch sizes but helped us
achieve performance gains in terms of 30% speedup
while training on a 56 core machine configured with
6 NVIDIA GTX 1080Ti GPUs.

3
https://pytorch.org/docs/stable/_modules/torch/nn/parallel/data_parallel.html
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