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Abstract: Rhizoctonia solani is a soil-borne fungus causing sheath blight disease in cereal crops
including rice. Genetic resistance to sheath blight disease in cereal crops is not well understood in
most of the host(s). Aside from this, a comparative study on the different hosts at the biochemical
and proteomic level upon R. solani infection was not reported earlier. Here, we performed proteomic
based analysis and studied defense pathways among cultivated rice (cv. Pusa Basmati-1), wild rice
accession (Oryza grandiglumis), and barley (cv. NDB-1445) after inoculation with R. solani. Increased
levels of phenol, peroxidase, and β-1, 3-glucanase were observed in infected tissue as compared
to the control in all of the hosts. Wild rice accession O. grandiglumis showed a higher level of
biochemical signals than barley cv. NDB 1445 and cultivated rice cv. Pusa Basmati-1. Using two-
dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry (MS), differently
expressed proteins were also studied in control and after inoculation with R. solani. Wild rice
accession O. grandiglumis induced a cysteine protease inhibitor and zinc finger proteins, which have
defense functions and resistance against fungal pathogens. On the other hand, barley cv. NDB-1445
and cultivated rice cv. Pusa Basmati-1 mainly induce energy metabolism-related proteins/signals
after inoculation with R. solani in comparison to wild rice accession O. grandiglumis. The present
comprehensive study of R. solani interaction using three hosts, namely, Pusa Basmati-1 (cultivated
rice), O. grandiglumis (wild rice), and NDB-1445 (barley) would interpret wider possibilities in the
dissection of the protein(s) induced during the infection process. These proteins may further be
correlated to the gene(s) and other related molecular tools that will help for the marker-assisted
breeding and/or gene editing for this distressing disease among the major cereal crops.
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1. Introduction

The fungal pathogen Rhizoctonia solani has pathogenicity over a broad range of host
plants. R. solani causes sheath blight (ShB) in rice and is responsible for up to 25% of yield
losses [1]. This necrotic fungal pathogen has a considerable effect on the production of an
extensive range of plants imperative to humanity, including the 15 largest food crops world-
wide, and causes root rot disease in wheat and barley [2]. Despite cost-effective treatments
and the large impact of the pathogen, very little is known about how it causes disease in
the cereal crops. ShB disease management has been largely achieved through systemic
fungicides and certain non-systemic fungicides, namely, captaf, mancozeb, pencycuron
[1-(4-chlorobenzyl)-1-cyclopentyl3-phenylurea], etc. However, these chemical fungicides
harshly affect environmental conditions as pertains to beneficial microorganisms and others
present in the atmosphere [3]. Uses of the chemical fungicides raise the cultivation outlay of
the crops. Resistance to R solani varied among cereal crop species [4], thus, the information
on resistant host cultivars and the defense mechanisms studied against ShB have become
an essential concern in the present scenario. Several genetic loci have been identified that
can confer minor resistance against R. solani [5]. Therefore, identification of tolerant or
resistant genotypes is of prime importance for categorizing the crops for susceptibility and
resistance to this necrotic disease [6].

Few studies identified that farm soil type can also influence the severity of the disease.
There are several reports where resistance has been identified in the wild rice and other
hosts against different diseases [7]; further, it was also reported that the wild relative of
rice has not only an agronomically important gene, but also superior genetic diversity in
resistant genes as compared to cultivated rice. In cereal crops, resistance against R. solani
is governed by quantitative traits [8], and these traits might be associated with broad-
spectrum resistance. Up to 50–60% of defense-related alleles are lost in cultivated rice in
resemblance to wild rice [9]. The researchers’ intentions are to sort new rice genotypes with
improved disease resistance and to improve yield potential using genomic and molecular
information to shatter the rice yield plateau [10]. Few early studies attempted to look for
the detail of the mode of rice infection by sheath blight pathogen, which can be further
utilized for the conception of resistance mechanisms against R. solani [1]. R. solani isolates
produce hydrolytic enzymes such as cellular cellulase, pectolytic, and protease enzymes
which help in the invasion of the host’s primary line of defense [11]. These induced
toxins produced by R. solani have corresponded with sheath susceptibility in rice. Several
mechanisms, including redox regulation, reactive oxygen species (ROS) formation, signal
transmission, and metabolic alterations, were involved in the defensive routes against the
R. solani pathogen in cereals [12]. The biomolecules which were induced after R. solani
infection have been linked to basal resistance in several crops including rice [13].

Rice resistance to ShB is a typical quantitative attribute governed by many genes
or quantitative trait loci (QTLs) [14]. No rice variety has been reported to be completely
resistant to R. solani, despite the discovery of more than 60 SB resistance quantitative traits
(QTLs). Additionally, no SB resistance QTLs have been cloned [8]. Thus, there is a need to
investigate the molecular as well as the proteomic approaches in the wide host range to
confer resistance sources against the ShB pathogen. Researchers also provide proteomics-
based tools, which serve as an effectual method for investigating the molecular responses
of plants to various biotic stresses [15]. Lee et al. [16] recognized a precise 3-β HSD protein
in resistant cultivated rice varieties. LSBR-5 connected with a response to infection by R.
solani using 2-D and mass spectrometry (ESI Q-TOF MS). Similarly, a set of 319 differentially
accumulated proteins (DAPs) after R. solani [13] was also studied for the investigation of
resistance. A study of comparative metabolome and proteome profiles of the rice lines
(wild-type and AtNPR1-transgenic) before and after R. solani infection [17] also revealed
the host–pathogen interaction.

R. solani infects a broad range of cereal crops (rice, wheat, maize, barley, etc.) and
no proper evidence has been found on how this necrotic fungal pathogen infects the host.
The comparative defense response of different hosts has also been lacking until now, and
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effort should be put into exploring molecular targets for sheath blight-resistance which can
be used for introgression to the rice and other cereals. Therefore, differential proteomic
analysis of infected hosts in cereals (i.e., rice, wild rice, barley) may play an important role
in finding resistance to ShB. Thus, the present study was carried out in order to determine
the proteomic and biochemical signals that occur during the cultivated rice–R. solani, wild
rice–R. solani, and barley–R. solani interactions for the purpose of searching for resistance
possibilities in cereal crops.

2. Materials and Methods
2.1. R. solani Isolate, Plant Materials and Inoculation Procedure

Seeds of cultivated rice cv. Pusa Basmati-1, wild rice accession O. grandiglumis, and
barley cv. NDB-1445 were collected from N.B.P.G.R., New Delhi, I.R.R.I., Philippines, and
the Department of Genetics and Plant Breeding, A.N.D. University of Agriculture and
Technology, Kumarganj, Ayodhya, U.P., India, respectively. They were sterilized with 5%
bleach for 10 min and thoroughly rinsed with distilled water. Germinated seeds were
placed in petri dishes at 28 ◦C for three days under dark conditions and further grown in
pots (45 cm × 60 cm) filled with autoclaved pot mixture (30 mg N, 9.7 mg P, and 18.5 mg
K per kilogram of soil in the form of urea, single superphosphate, and muriate of potash,
respectively). All host plants were grown in a greenhouse at 25 ± 3 ◦C (14 h light/10 h
dark cycle). The R. solani strain D-14, belonging to the AG1-IA anastomosis group, was
collected from the Rice Pathology Laboratory, G. B. Pant University of Agriculture and
Technology, Pantnagar, India. It was grown on potato dextrose agar at 28 ± 1 ◦C for 6
days and utilized for the inoculation. Approximately 0.2 mg of a 4-day-old immature
sclerotium of R. solani grown on a PDA (potato dextrose agar) medium was used as inoculum.
The sclerotium includes agar plugs embedded beneath the six-week-old host plants. The
inoculated host plants’ sheaths were covered with sterilized absorbent cotton to maintain
humidity. The host plants without R. solani inoculation were maintained as healthy controls.
The experimentation employed a completely randomized block design. Each treatment had
three replications with three pots in each replication, and the experiments were repeated
twice. After inoculation, all plants were transferred for 24 h. at 28 ◦C in complete darkness
and up to 100% humidity, then transferred at 20 ◦C for 14 h in the light, and finally, for
10 h in the dark at 60% humidity. The relative lesion height (RLH = lesion height/plant
height × 100) was recorded as described by Singh et al. [18]. The disease severity was
calculated based on the RLH percentage. The data of RLH was converted into a disease
index based on a disease score with a 0 to 9 rating scale. For the biochemical and proteomic
analysis, leaf sheath tissue of ~3 cm was harvested above the 2 cm lesion with R. solani in
the inoculated hosts, as described by Lee et al. [16], in order to avoid contamination.

2.2. Estimation of Total Phenol Content, Peroxidase (PO) and β-1, 3-Glucanase

For biochemical assays, infected and mock leaf samples were collected from rice, wild
rice, and barley at 24, 48, 72, and 96 hpi (hours post-infection). For phenol estimation in
samples, 100 mg of freshly collected infected and control samples were ground in liquid
N2. The homogenized sheath was collected in 10 mL of solvent (80% aqueous acetone) for
1 min, and transferred in test tubes and centrifuged for 15 min at 1000× g (REMI C-224
Centrifuge). After centrifugation, a clear supernatant was collected. The amount of total
phenolics in the leaves in both the control and inoculated conditions were determined
according to the Folin–Ciocalteu procedure [19]. Next, 2 mL samples in three replicates
were transferred into test tubes; 1.0 mL of Folin–Ciocalteu’s reagent and 0.8 mL of sodium
carbonate (7.5%) were added in each replicate. The tubes were assorted thoroughly and
permitted to stand for 30 min. Absorption at 765 nm was measured (Systronics UV-vis
spectrophotometer, Ahmedabad, Gujarat, India). The total phenolic content was stated
as gallic acid equivalents (GAE) in milligrams per gram of the sample dry material. The
phenol content of the extract was expressed as µg, and the phenol equivalent released g−1

of leaf tissue. For peroxidase activity assay, 100 mg of both freshly infected and control
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samples were ground in liquid N2. The ground powder was used for the estimation of
peroxidase activity by adopting the method described by Srivastava [20] and scoring the
absorbance at 420 nm. The enzyme activity in the tissue sample was represented by the
ktkatg−1. Similarly, 100 mg of freshly ground tissue of infected and control samples were
used to estimate β-1, 3-glucanase activity by the laminarin-dinitrosalicylic acid method [21].
The enzyme activity was expressed as µg, and glucose released min−1 mg−1 proteins. All
of the biochemical analyses were repeated thrice in this experiment.

2.3. Protein Extraction for 2D Analysis

Leaf-sheaths from both inoculated and non-inoculated (control) plants of different
hosts (rice, wild rice, and barley) were collected after 48 hpi. Fresh leaf samples (1 g of
control and inoculated) were crushed into a fine powder using liquid nitrogen. The ground
homogenate was extracted in 10% TCA in acetone containing 0.07% DTT and then kept
at −20 ◦C for 1 h, followed by centrifugation for 15 min at 35,000× g. The pellets were
centrifuged once for 15 min at 35,000× g, kept at 20 ◦C for an hour, and then given a second
wash with ice-cold acetone containing 0.07% DTT. When the supernatant was clear, the
washing procedure was repeated four or five times. The final precipitated pellets were
lyophilized using the Freeze Dryer lyophilizer (Sew, New Delhi, India). Proteins from the
leaves were extracted as described by Koller et al. [22]. The experiments were repeated
thrice from the three replicate samples.

2.4. Isoelectric Focusing (IEF) and Polyacrylamide Gel Electrophoresis (PAGE)

A total of 10 mg of the dried powder (control and treated) was suspended in 350 µL
of buffer, containing 7 M urea, 2 M thiourea, 4% CHAPS ((3-cholamidopropyl) (dimethy
lammonio)-1-propanesulfonate) detergent, 0.5% ampholytes (pH 3–10), and 0.7% DTT. The
supernatant was distributed in 100 µL aliquots and kept at −80 ◦C for further use. In
order to determine optimum 2-DE gel conditions, a broad range (pH 3–10) IPG strip for
the first dimension and a 12% linear polyacrylamide gel for the second dimension were
carried out. The preponderance of the protein spots was perceived in the center of the
gel, thus, the 2-DE gel with a pH 4–7 range and a 12% linear polyacrylamide gel were
used. A total of 500 µg of protein, assayed by the Bradford method [23], was loaded onto a
17 cm (pH range 4–7) linear IPG (immobilized pH gradient) strip (BIO-RAD, Hercules, CA,
USA) into the rehydration/equilibration tray with slight modification (Kumar et al. [24]).
The rehydration tray containing the IPG strips was covered by 2 to 3 mL of mineral oil to
avoid evaporation during the rehydration process. The first-dimensional electrophoresis
(isoelectric focusing) was carried out with a PROTEAN IEF Cell (BIO-RAD, Hercules, CA,
USA) at 250 volts for 20 min in linear mode, followed by 8000 volts for 2.5 h in linear
mode, followed by 8000 volts at ~30,000 volt-hour mode in rapid mode. The IPG strips
were subjected to second-dimensional electrophoresis after 10 min in equilibration buffer 1
(6 M urea, 0.375 M tris, pH 8.8, 2% sodium dodecyl sulphate (SDS), 20% glycerol, and 2%
(w/v) DTT), followed by 10 min in equilibration buffer 2 (6 M urea, 0.375 M tris, pH 8.8,
2% SDS, 20% glycerol and 2.5% iodoacetamide). The equilibrated IPG strips were washed
in sterile, distilled water, and then placed on top of a 12% non-gradient and 18 cm × 20 cm
polyacrylamide-bisacrylamide gel. No stacking gel was used [24]. Bromophenol blue-
containing 1% agarose was used to seal the IPG strip. The following operating conditions
were used for the second electrophoresis: 30 min of constant 16 mA at 6 ◦C, followed
by constant 30 mA in a vertical electrophoretic dual gel unit PROTEAN II XI (BIO-RAD,
Hercules, CA, USA). Coomassie Brilliant Blue R250 was used to stain the gels of all the
tested samples.

2.5. Image Acquisition, Spot Digestion and Identification

Images of the stained gels were obtained by Chemidoc (BIO-RAD, Segrate (Milan),
Italy) using Quantity One software version 4.6.3 (BIO-RAD, Hercules, CA, USA). Spot
detection and matching analyses were conducted first with the PDQuest Advanced software
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(version 8.0) (Bio-Rad, Hercules, CA, USA), and then manually checked a second time.
Gel images were analyzed using stepwise spot detection and spot matching followed by
differential expression analysis. Protein spots among the gels showed increased/decreased
intensities with more than 1.5-fold selected for identification. PDQuest employs a Student
t-test and enumerates spots with a differential intensity of significant levels. Differentially
expressed protein spots of interest were excised from gels using the spot picker ‘Investigator
ProPic’ (Genomic Solutions, Huntingdon, UK) and collected in 96-well PCR plates. The
digestion of protein and spotting of peptides on the MALDI-TOF target plate was carried
out using the protein digester ‘Investigator ProPrep’ (Genomic Solutions, Huntingdon,
UK) as described by Shevchenko et al. [25] with slight modifications. The gel plugs were
de-stained and dehydrated by washing three times (~10 min) with 25 mM NH4HCO3-50%
acetonitrile (ACN) (1:1). Dried gel plugs were treated with freshly prepared 10 mM DTT
in 50 mM NH4HCO3 for 45 min at 56 ◦C. After incubation, the DTT was replaced quickly
by 55 mM iodoacetamide (freshly prepared) at the same volume in 50 mM NH4HCO3 for
30 min and, finally, dehydrated with 100% ACN. The dried gel pieces were incubated for
12 h at 37 ◦C with 25 mM NH4HCO3 containing 0.02 µg/µL of mass spectrometry grade
trypsin (Promega, Madison, WI, USA). The resulting peptides were extracted twice from
the gel pieces, using a peptide extraction buffer.

The digested protein samples were analyzed by mass spectrometry in the same manner
that was described earlier [25]. According to the instructions provided by the manufacturer,
digested protein samples were desalted and concentrated using C-18 ZipTips (Millipore,
Billerica, MA, USA). The ZipTips were eluted from the MTP 384 target plate using 2 L of a
saturated solution of a-cyano-4-hydroxycinnamic acid (HCCA) (Sigma-Aldrich, St. Louis,
MO, USA) dissolved in 50% aqueous cyanohydrin and 0.2% trifluoroacetic acid. The
Autoflex II TOF/TOF 50 mass spectrometer from Bruker Daltonik GmbH in Leipzig,
Germany was used to acquire mass spectra of digested proteins. The instrument was set
to the positive reflectron mode, and the detection range was 500–3000 m/z. Before the
acquisition, an external calibration to a spectrum was carried out, with the spectrum being
acquired for a mixture of peptides whose masses ranged from 1046 to 2465 Da. After
that, the proteolytic masses which were obtained were put through the Flex Analysis v.2.4
program so that peak detection could take place. In order to identify the proteins contained
in the rice database (O. sativa and other green plant data, EMBL/GenBank/DDBJ), peak
list submissions were made to the UniProtKB and Swiss-Prot databases through the use of
the Mascot search engine found at http://www.matrixscience.com (accessed on 9 and 27
November 2019).

2.6. Protein Analysis and Chromosome Localization of Differentially Expressed Protein

Biochemical characteristics such as molecular weight (M.Wt), isoelectric focusing (PI),
and signal peptides were examined using the SIB Bioinformatics portal (http://www.
expasy.org, accessed on 27 November, 2019). Cellular/subcellular targeting sites were
predicted using WoLF-PSORT (https://wolfpsort.hgc.jp/ accessed on 27 November 2019),
Predator (link), and TargetP1 servers (http://www.cbs.dtu.dk/services/TargetP-1.1/index.
php accessed on 27 November 2019). Physical locations of genes were obtained from the
Gramene (http://www.gramene.org/ accessed on 27 November 2019) and Phytozome
databases (https://phytozome.jgi.doe.gov/pz/portal.html/ accessed on 27 November
2019) and finally represented using the GGT 2.0 version tool. Bioinformatics approaches
such as finding out the ORFs of genes as well as their expressional graphs were studied,
and data were obtained from NCBI’s (National Centre for Biotechnology Information)
Gene Database (https://www.ncbi.nlm.nih.gov/gene, accessed on 27 November 2019)
and the ORF Finder of NCBI (https://www.ncbi.nlm.nih.gov/orffinder, accessed on 27
November 2019).

http://www.matrixscience.com
http://www.expasy.org
http://www.expasy.org
https://wolfpsort.hgc.jp/
http://www.cbs.dtu.dk/services/TargetP-1.1/index.php
http://www.cbs.dtu.dk/services/TargetP-1.1/index.php
http://www.gramene.org/
https://phytozome.jgi.doe.gov/pz/portal.html/
https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/orffinder
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2.7. Co-Expression Network and Gene Ontology Analysis

For the purpose of mapping, the co-expression network of differentially expressed
proteins in cultivated rice cv. Pusa Basmati-1, wild rice accession O. grandiglumis, and barley
cv. NDB-1445 under R. solani inoculation were considered individually as input in the
STRING 11.0 version (https://string-db.org/ accessed on 27 November 2019) and repeated
twice [26]. For this, protein ids/protein sequences were used to obtain the co-expressing
primary interactors, considering the maximum number of primary interactors was set
to 500 and the interaction score cut off value was set at ≥0.700. Then, a complete list of
primary interactors and differentially expressed proteins was used as input to construct the
co-expression network and gain insight into a functional classification for R. solani-induced
proteins in cultivated rice cv. Pusa Basmati-1, wild rice accession O. grandiglumis, and barley
cv. NDB-1445. For enrichment analysis, gene ontology was performed using STRING 11.0
to obtain insight into the enriched category (FDR corrected p-value ≤ 0.05).

2.8. Data Analysis

The SAS (Statistical Analysis Systems) software (version 7.0, SAS Institute, Cary, NC,
USA) [27] was utilized for the data analysis in the experiment, which was laid out in a
complete randomized design (CRD) with 3 replications. In the disease scoring experiment,
cultivated rice cv. Pusa Basmati-1 was used as a susceptible check and wild rice accession
O. grandiglumis was used as a resistance check. The protein spots in the gels were captured
by PDQuest software, which employs a Student t-test analysis.

3. Results

The Oryza spp. (cultivated rice cv. Pusa Basmati-1 and wild rice accession O. grandig-
lumis) and barley cv. NDB-1445 ranged from very susceptible to mildly resistant to sheath
blight. The cultivated rice cv. Pusa Basmati-1 showed the highest visual rating in terms of
infection under field and the detached leaf method, but O. grandiglumis was found to have
the lowest infection across all tested hosts. In field conditions, the average lesion number
was also largest in Pusa Basmati-1, but it was lower in O. grandiglumis than in the barley cv.
NDB-1445 and the other tested hosts (Figure 1a–c).
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on cultivated rice cv. Pusa Basmati-1 by leaf detached method. (d) Disease reaction of R. solani on wild
rice accession O. grandiglumis. (e) Disease reaction of R. solani on wild rice accession O. grandiglumis
by leaf detached method. (f). Disease reaction of R. solani on barley cv. NDB-1445. (g) Disease
reaction of R. solani on barley cv. NDB-1445 by leaf detached method.

https://string-db.org/
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3.1. Biochemical Assay

Biochemical assays of total phenol, peroxidase, and β-1,3-glucanase were performed
in order to assess the R. solani infection in cultivated rice cv. Pusa Basmati-1, wild rice
accession O. grandiglumis, and barley cv. NDB-1445 on different time intervals, such as at
24 hpi, 48 hpi, 72 hpi, 96 hpi, 120 hpi, separately and in control condition. The hosts’ plants
show variation in phenol, peroxidase, and β-1,3-glucanase accumulation at different time
intervals on R. solani inoculation (Figure 2a–c). The accumulation of total phenol content
increased after inoculation with R. solani in Pusa Basmati-1, O. grandiglumis, and NDB-1445
as compared to the control condition (Figure 2a,b). Accumulation of total phenol was
much higher and appeared earlier in O. grandiglumis compared to other hosts, and further
increased up to 120 hpi in both rice (cv. Pusa Basmati-1 and barley cv. NDB-14445). The
total fold change in phenol content ranged from 0.94-fold (Pusa Basmati-1 at 120 hpi) to
2.13-fold (NDB1445 at 7 2 hpi). The time course of change in peroxidase among inoculated
cultivated rice cv. Pusa Basmati-1, wild rice accession O. grandiglumis, and barley cv. NDB-
1445 appeared to change from >1 to 1.6-fold. Activity of peroxidase was started up at
minimum in Pusa Basmati-1 and O. grandiglumis at 24 hpi, and at maximum in barley
cv. NDB-1445, at 72 hpi and 96 hpi. Similarly, the activity of β-1,3-glucanase in wild rice
O. grandiglumis was the highest among all of the hosts and increased consistently after
24 hpi up to 120 hpi. β-1,3-glucanase activity ranged from a 1.2-fold (cultivated rice cv.
Pusa Basmati-1 and barley cv. NDB-1445 at 24 hpi) to a 2.6-fold change (O. grandiglumis at
96 h).
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Figure 2. Enzymatic analysis of total phenol content, peroxidase (PO), and β-1,3-glucanase in
cultivated rice cv. Pusa Basmati-1, wild rice accession O. grandiglumis, and barley cv. NDB-1445 in
control and R. solani infected samples at different time intervals (24 hpi [1], 48 hpi [2], 72 hpi [3],
96 hpi [4], and 120 hpi [5]). (a) Fold change in enzymatic activity of total phenol content. (b) Fold
change in enzymatic activity of total peroxidase content. (c) Fold change in enzymatic activity of total
β-1,3-glucanase content. Mean differences were significant at ≤0.05% level.
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3.2. R. solani Induced Proteome Shift in Cultivated Rice, Wild Rice, and Barley

In the 2-DE maps, more than 1840 protein spots and an average of 613 protein spots
were viewed with Coomassie brilliant blue staining across all the hosts. A total of 672 spots
were identified, of which 605 were matched among the gels. In a comparison analysis
between inoculated and non-inoculated rice cv. Pusa Basmati-1, 67 spots were differentially
expressed on R. solani inoculated gel. After 48 hpi of inoculation, 15 distinct protein spots
were found with significant differential accumulation in response to pathogen infection.
Spots were considered to be differentially accumulated when a fold change of 2 in their
relative volume was observed on all three experimental repeats (Figure 3a,b; Table 1). A total
of eight up-regulated and four down-regulated protein spots were selected based on high
percent reduction and induction of the protein for the MALDI-TOF analysis (Figure 3c,d).
The up-regulated proteins were identified as ribulose bisphosphate carboxylase large
chain, thioredoxin peroxidase, alcohol dehydrogenase, fructose-1, 6-bisphosphatase, O-
methylthiopentene, OsClp1-putative protease homologue, thioredoxin, and hypothetical
protein OsJNBa0069E14). The four down-regulated proteins were identified as magnesium-
chelatase subunit chlI, alcohol dehydrogenase, catalase domain-containing protein, and
ribulose bisphosphate carboxylase large chain precursor (Table 1). Induced protein location
and their respective ORFs are mentioned in Supplementary Table S1.
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Figure 3. R. solani-induced proteome shift in cultivated rice cv. Pusa Basmati-1: Total proteins were
extracted from cultivated rice cv. Pusa Basmati-1 and analyzed by 2-DE protein electrophoresis. In
panel (a): complete 2D protein profile of cultivated rice cv. Pusa Basmati1 without R. solani infection.
In panel (b): complete 2D protein profile of cultivated Pusa Basmati-1 48 h post-inoculation of R.
solani. The spots which were more intense in the control are shown with a downward arrow (↓),
and the spots which were more intense in the stressed cells are shown with an upward arrow (↑).
After image analysis, 67 spots were found to be differentially expressed quantitatively between
the two situations. In panels (c,d) are some of the representative differentially expressed enlarged
regions of the protein profile from panels (a,b). Here, URP and DRP represent the up-regulated and
down-regulated protein spots, respectively.
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Table 1. List of proteins identified by the MALDI-TOF-MS/MS analysis of cultivated rice cv. Pusa Basmati-1 in response to R. solani inoculation.

Spot ID Sequence ID Gene Location Protein Name Theoretical
M.Wt (KDa)/pI SSR Putative Molecular

Function
Putative Biological

Process
Predicted Sub Cellular

Localization

URP1 LOC_Os10g21268.1 Chr10:10861158..10862712
Ribulos bisphosphate

carboxylase large chain
precursor

53.7/6.58 RM25277 Magnesium ion
binding Carbon fixation Chloroplast

URP2 LOC_Os07g44430.1 Chr7:26548652..26549804 Thiredoxin peroxidase 24/5.97 RM22046 Peroxi redoxin activity Oxidation–reduction
process Cytoplasm

URP3 LOC_Os11g10480.1 Chr11:5712641..5716288 Alcohol dehydogenase 40.98/6.20 RM26250 Zinc ion binding Oxidation–reduction
process Cytoplasm

URP4 LOC_Os03g16050.1 Chr3:8841268..8843069 Fructose-1,6-bisphosphatase 43.6/5.0 RM14709 Phosphoric ester
hydrolase activity

Carbohydrate
metabolic process Chloroplast

URP5 LOC_Os02g06300 Chr2:3143758..3152627 Translation factor 77.15/5.83 RM12492 GTPase activity GTP binding Chloroplast/Mitochondria

URP6 LOC_Os08g35310.1 Chr8:22277856..22279955 O-methyltransferase 38.46/5.64 RM23235 O-methyltransferase
activity

Protein dimerization
activity Cytoplasm

URP7 LOC_Os06g39712.1 Chr6:23574363..23575246 OsClp10-Putative Clp
protease homologue 24.74/4.64 RM20351 Serine-type endo

peptidase activity Proteolysis Chloroplast

URP8 LOC_Os12g19381 Chr12:11262563..11278448 Ribulose bisphosphate
carboxylase small chain 19.63/9.03 RM27952

Monooxygenase
activity, copper ion

binding

Photorespiration,
photosynthesis Chloroplast

URP9 LOC_Os07g08840 Chr7:4574245..4576234 Thioredoxin 13.15/5.17 RM21102 Protein disulfide oxido
reductase activity Cell redox homeostasis Cytoplasm

URP10 LOC_Os03g53740 Chr3:30809029..30810138
Protein not annotated
(Hypothetical protein

OSJNBa0069E14)
18.551/5.0 RM15932 -

Systemic acquired
resistance, salicylic

acid mediated
signaling pathway

Mitochondria

DRP1 LOC_Os03g36540.1 Chr3:20247674..20250146 Magnesium-chelatase
subunit chlI 44.85/5.51 RM15319

Nucleoside-
triphosphatase

activity

Porphyrin-containing
compound

biosynthetic process
Chloroplast

DRP2 LOC_Os11g10480.1 Chr11:5712641..5716288 Alcohol dehydrogenase 40.984/6.20 RM26250 Zinc ion binding Oxidation–reduction
process Cytoplasm

DRP3 LOC_Os03g03910.1 Chr3:1787648..1790957 Catalase domain containing
protein 56.76/6.93 RM14344 Catalase activity,

Heme binding
Oxidation–reduction

process Peroxisome

DRP4 LOC_Os10g21268.1 Chr10:10861158..10862712
Ribulose bisphosphate
carboxylase large chain

precursor
53.71/6.58 RM25277 Magnesium ion

binding Carbon fixation Cytoplasm
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In the comparative analysis of wild rice O. grandiglumis, 559 spots were detected, out
of which 515 spots were matched to all the gels and 44 protein spots were perceived to have
a different relative expression. Among 44 protein spots, 32 spots were up-regulated and 12
protein spots were down-regulated. The comparative protein profiles of wild rice accession
O. grandiglumis showed that 14 protein spots were differentially accumulated between
the control and R. solani treated samples (Figure 4a,b). Finally, nine up-regulated and
three down-regulated protein spots were selected for the MALDI-TOF analysis. In the up-
regulated spots, putative cysteine proteinase inhibitor, proteinase inhibitor type-2, kinesin
motor domain-containing protein, chlorophyll a-b binding protein, kinesin motor domain-
containing protein, ZOS5-12 C2H2 zinc finger protein, acyl carrier protein desaturase, and
down-regulated speckle-type POZ protein were identified (Figure 4c,d; Table 2). Induced
genes and their respective ORFs are mentioned in Supplementary Table S2.

In barley cv. NDB-1445, comparative analysis revealed 609 protein spots, of which 570
spots were matched to all of the treatment gels, and 39 spots which significantly varied in
their expressions. Among the 39 spots detected, 30 spots were up-regulated and 9 spots
were down-regulated (Figure 5a,b). Further protein spots showing more than twofold
increased intensities were further processed for identification purposes. The up-regulated
spots were identified as a heat shock factor, peptidase ClA papain, PhotosystemII PbsO, and
ribonucleoside-diphosphate reductase small chain. Down-regulated spots were identified
as chlorophyll a-b binding protein 3C and a hypothetical protein (Figure 5c,d, Table 3).
Induced genes and their respective ORFs are mentioned in Supplementary Table S3.
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Figure 4. R. solani-induced proteome shift in wild rice accession O. grandiglumis: total proteins were
extracted from wild rice accession O. grandiglumis and analyzed by 2-DE protein electrophoresis. In
panel (a): complete 2D protein profile of wild rice O. grandiglumis without R. solani infection. In panel
(b): complete 2D protein profile of wild rice accession O. grandiglumis 48 h post-inoculation of R. solani.
The spots which were more intense in the control are shown with a downward arrow (↓), and the
spots which were more intense in the stressed cells are shown with an upward arrow (↑). After image
analysis, 44 protein spots were found to be differentially expressed quantitatively between the two
situations. In panels (c,d): some of the representative differentially expressed enlarged regions of the
protein profile from panels (a,b). Here, URP and DRP represent the up-regulated and down-regulated
protein spots, respectively.
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Table 2. List of proteins identified by MALDI-TOF-MS/MS analysis of wild rice accession O. grandiglumis in response to R. solani inoculation.

Spot ID Sequence ID Gene Location Protein Name Theoretical
M.Wt (KDa)/pI SSR Putative Molecular

Function
Putative Biological

Process
Predicted Sub Cellular

Localization

URP1 LOC_Os03g11160.1 Chr3:5749954..5750298 Protein not annotated 12.39/5.04 RM14568
Cysteine-type
endopeptidase

inhibitor activity
defense response Secreted

URP2 LOC_Os09g17740.1 Chr9:10845678..10847156 Chlorophyll A-B binding
protein 28.01/5.14 RM24092 - Photosynthesis Chloroplast

URP3 LOC_Os12g39980.1 Chr12:24703185..24719302 Kinesin motor domain
containing protein 316.6/5.0 RM28598 Microtubule motor

activity
microtubule-based

movement
Plasma

Membrane

URP4 LOC_Os05g51830.1 Chr5:29753361..29756325 ZOS5-12-C2H2 zinc finger
protein 32.54/4.53 RM19225 Metal ion binding - Nucleus

DRP1 LOC_Os04g31070.1 Chr4:18560177..18564417 Acyl carrier protein
desaturase 43.34/6.53 RM16817

Acyl-[acyl-carrier-
protein] desaturase

activity

Oxidation–reduction
process, Fatty acid
metabolic process

Chloroplast

DRP2 LOC_Os10g28840.1 Chr10:15036094..15036951 Speckle-type POZ protein 30.60/5.57 RM25449 Protein binding - Chloroplast

Table 3. List of proteins identified by MALDI-TOF-MS/MS analysis in barley cv. NDB-1445 in response to R. solani inoculation.

Spot ID Sequence ID Gene Location Theoretical M.Wt
(KDa)/pI Protein Name Putative molecular function Putative Biological

Process
Predicted Sub Cellular

Localization

URP1 MLOC_75166.4 7:256555607-256557498 41.8/5.4 Heat shock transcription
factor

Sequence-specific DNA binding
transcription factor activity Responds to heat Nucleus

URP2 MLOC_81876.1.1 2:600305903-600309626 53.1/4.8 Peptidase CIA, Pepain Cysteine-type peptidase activity Proteolysis Vacuole

URP3 MLOC_78630.1 2:510753217-510754262 34.4/5.5 Photosystem II PsbO Calcium ion binding Photosynthesis Chloroplast

URP4 MLOC_52332.1 7:136313164-136314932 35.5/4.4 Ribonucleotide reductase
small subunit

Deoxy ribonucleoside
diphosphate metabolic process

Oxidation–reduction
process Cytoplasm

DRP1 MLOC_945.1 5:524670853-524671657 28.8/5.6 Chlorophyll A-B binding
protein

Chlorophyll binds,
Metal ion binding

Photosynthesis, light
harvesting Chloroplast

DRP2 MLOC_71259.1 7:500270477-500271934 49/5.7 – Catalytic activity – Cytoplasm
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Figure 5. R. solani-induced proteome shift in barley cv. NDB-1445: total proteins were extracted from
barley cv. NDB1445 and analyzed by 2-DE protein electrophoresis. In panel (a): complete 2D protein
profile of barley var. NDB-1445 without R. solani infection. In panel (b): complete 2D protein profile
of barley cv. NDB-1445 48 h post-inoculation of R. solani. The spots which were more intense in the
control are shown with a downward arrow (↓), and the spots which were more intense in the R. solani
cells are shown with an upward arrow (↑). After image analysis, 39 protein spots were found to
be differentially expressed quantitatively between the two situations. In panels (c,d): some of the
representative differentially expressed enlarged regions of the protein profile from panels (a,b). Here,
URP and DRP represent the up-regulated and down-regulated protein spots, respectively.

3.3. Chromosome Location of Differentially Expressed Protein on the Chromosomes

Genes encoding fifteen of the differentially expressed proteins from Pusa Basmati-1,
nine proteins from wild rice accession O. grandiglumis (Supplementary Figure S1), and
six from barley cv. NDB-1445 (Supplementary Figure S2) were located on their respective
chromosomes. Four proteins of cultivated rice and one from wild rice were found to be
located on rice chromosome 3, followed by two proteins from cultivated and one from wild
rice which were located on chromosome 10, two proteins located on chromosome 7 and
chromosome 12, and one each on chromosomes 2, 4, 5, 6, 8, and 11. Additionally, genes
encoding the highest no. of differentially expressed proteins were assigned to chromosome
3. In barley cv. NDB-1445, the maximum no. of differentially expressed proteins was found
on chromosome 7, followed by chromosome 2, whereas one differentially expressed protein
was seen on chromosome 5 (Supplementary Figure S2).

3.4. Co-Expression Networks and Gene Ontology

In order to understand the biological significance of differentially expressed proteins
upon R. solani infection, identified proteins were screened for their co-expression network
and gene ontology using the STRING 11.0 version. The co-expression network was mapped
using differentially expressed proteins along with their primary interactors. Primary in-
teractors were extracted, and the co-expression interaction network was individually
mapped for differentially expressed proteins of Pusa Basmati-1 (Figure 6a), O. grandiglumis
(Figure 7a), and barley cv. NDB-1445 (Figure 8a). The gene ontology enrichment analy-
sis of Pusa Basmati-1 identified that the differential proteins are majorly localized in the
cytoplasm (GO:0005737), intracellular membrane-bounded organelle (GO:0043231), and
chloroplast (GO:0009507). The significantly enriched biological process was related to the
oxidation–reduction process (GO:0055114) and photosynthesis (GO:0015979). The result of
significantly overrepresented terms for molecular functions lies majorly in catalytic activity
(GO: 0003824) and oxidoreductase activity terms (GO:0016491) (Figure 6b, Supplementary
Table S4). A similar analysis of differentially expressed proteins in O. grandiglumis showed
a highly connected co-expression network, suggesting their association with biological
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function (Figure 7b). Gene ontology enrichment identified that differentially expressed pro-
teins and primary interactors were majorly localized in the intracellular part (GO:0044424)
and in the cytoplasm (GO:0005737). Similarly, an enriched biological process lies in the
nitrogen compound metabolic process (GO:0006807), gene expression (GO:0010467), and
translation (GO:0006412) terms. The molecular function category showed enriched terms
such as organic cyclic compound binding (GO:0097159), nucleic acid binding (GO:0003676),
and chlorophyll binding (GO:0016168) (Figure 7b, Supplementary Table S5). Using a simi-
lar strategy, differentially expressed proteins from barley were also screened for primary
interactors, co-expression network analysis, and GO enrichment analysis (Figure 8a). The
significantly enriched cellular components belong to the chloroplast (GO:0009507) and
the photosynthetic membrane (GO:0034357), whereas the significantly enriched biologi-
cal process involves photosynthesis (GO:0015979) as well as the generation of precursor
metabolites and energy (GO:0006091). The enriched molecular function GO terms for the
co-expression network for barley involve metal ion binding (GO:0046872) and cofactor
binding (GO:0048037) (Figure 8b, Supplementary Table S6). Intriguingly, R. solani induced
differentially expressed proteins, co-expressed with cellular proteins that majorly deter-
mine photosynthesis and primary metabolic processes, showing enrichment of common
GO terms. A pathway analysis of biological processes and protein class was conducted,
in which differently abundant proteins after R. solani inoculation with the hosts were in-
volved, as depicted in Figure 9a,b. As a whole, seven functional groups based on molecular
process are most clearly affected by the R. solani infection, including protein binding (03),
enzyme regulator activity (03), transferase activity (03), lyasese activity (04), hydrolase
activity (07), and protein binding (18). With regard to the cellular components’ function,
the key groups containing intracellular (32), cell periphery (13), plasma membrane (10),
protein complex (8), endomembrane system (7), intracellular organelle part (5), external
encapsulating structure (4), non-membrane bounded organelle (4), and organelle lumen
(3) were found (Figure 9b). The present investigation suggests that R. solani inoculation in
cereal crops induced conserved signals which affect vital processes of the inoculated hosts’
growth and survival.
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Figure 6. (a,b). Protein interaction network analysis of differentially expressed proteins (including
primary interactors) in cultivated rice cv. Pusa Basmati-1 using STRING v.11.0. (a) Network was
constructed at an interaction score cut off value of ≥0.700 with maximum number of primary
interactors set to 500, including experimental evidence (pink lines), gene fusion (red lines), and
co-expression (black lines). (b) Graph showing GO enrichment analysis of interaction network
representing the no. of genes classified in respective GO categories (FDR corrected p value ≤ 0.01).
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Figure 7. Protein interaction network analysis of differentially expressed proteins (including primary
interactors) in wild rice accession O. grandiglumis using STRING v.11.0. (a) Network was constructed
at an interaction score cut off value of ≥0.700 with maximum number of primary interactors set to
500, including experimental evidence (pink lines), gene fusion (red lines), and co-expression (black
lines). (b) Graph showing GO enrichment analysis of interaction network representing the no. of
genes classified in respective GO categories (FDR corrected p value ≤ 0.01).
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Figure 8. Protein interaction network analysis of differentially expressed proteins (including primary
interactors) in barley cv. NDB-1445 using STRING v.11.0. (a). Network was constructed at an
interaction score cut off value of ≥0.700 with maximum number of primary interactors set to 500,
including experimental evidence (pink lines), gene fusion (red lines), and co-expression (black lines).
(b) Graph showing GO enrichment analysis of interaction network representing the no. of genes
classified in respective GO categories (FDR corrected p value ≤ 0.01).
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4. Discussion

Application of fungicide in rice cultivation is a common practice, and if it is not
applied precisely, it could adversely impact the environment as well as human beings and
other living organisms [28]. Studies on the rice sheath blight resistance mechanism are
limited due to the lack of resistant donors in cultivated cultivars [29]. So far, interaction
between the fungus and the plant has been studied [30], but there have been only a few
reports on R. solani interactions with a wide range of hosts. Thus, for the identification
of the differentially expressed biochemical signals and proteins among the three hosts of
R. Solani, a comparative proteomics study has been performed. Similarly, studies on ShB
resistance genes in rice and their processes have primarily utilized cultivated rice as a host
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for a long time [31]. However, due to the polygenic nature of ShB resistance, no significant
ShB resistance genes or rice cultivars demonstrating complete resistance to R. solani have
been reported [32]. Thus, in the present study, three hosts (namely, cultivated rice cv. Pusa
Basmati-1, wild rice accession O. grandiglumis, and barley cv. NDB-1445) have been selected
for the resistance response against the R. solani pathogen.

Recently, significant developments in proteomics have made substantial progress in
understanding the physiological process governing rice resistance, associated signaling
networks, and their function in triggering defense responses [16]. For the assessment
of the biochemical response, we performed a comprehensive biochemical (total phenol
content, peroxidase activities, and β-1, 3-glucanase), and proteomic analysis of the different
hosts (cultivated rice cv. Pusa Basmati 1, wild rice accession O. grandiglumis, and barley cv.
NDB-1445) after R. solani infection in order to comprehend how host–pathogen interactions
work in rice sheath blight resistance. The host plants show variation in phenol, peroxidase,
and β-1,3-glucanase accumulation at different time intervals after R. solani inoculation [33].
From the biochemical analysis, it is clear that accumulation of phenol, peroxidase, and
β-1,3-glucanase was generally higher in infected samples as compared to the control. With
regard to pathogen attacks, plants generally produce and accumulate defense-related
compounds such as phenols, peroxidases, β-1,3-glucanases, chitinases, etc. Phenol and
peroxidase activities in wild rice accession and barley cv. NDB-1445 showed significant
induction after R. solani inoculation. Both enzymes showed maximum activity at 72 hpi in
wild rice accession, compared with susceptible cultivated rice cv. Pusa Basmati-1. Plant
phenolic compounds work as a structural barrier against pathogen attacks [34]. Plant
peroxidases play an essential role in catalyzing the oxidation of different reductants in cells.
These enzymes are active regulators of auxin metabolism, lignin and suberin synthesis,
cell wall component cross-linking, phytoalexin synthesis, ROS (reactive oxygen species)
metabolism, and RNS reactive nitrogen species), and are involved in disease resistance
in plants [35]. The activities of these enzymes were found to be altered after fungal
infection [35]. According to the earlier reports, the activity of peroxidase was significantly
enhanced in rice leaves after artificial inoculation with M. oryzae and R. solani [36]. A similar
report of high concentrations of defense enzymes such as 1,3-glucanase, phenylalanine
ammonia lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO), lipoxygenase (LOX),
and defense protein hydroxyproline-rich glycoproteins (HRGPs) positively correlated with
increased downy mildew resistance in pearl millet (Pennisetum glaucum (L.) after Sclerospora
graminicola (Sacc.) inoculation [37]. These results are consistent with our current inquiry.

Similarly, the induction of β-1, 3-glucanase is highest at 72 hpi in the wild rice accession
O. grandiglumis, and increased consistently up to 120 hpi in comparison to other hosts.
The β-1,3-glucanase enzyme plays a crucial part in the breakdown of fungal cell walls by
hydrolyzing chitin, where it has been demonstrated that cell wall fragments cause plants
to mount a defense response [37]. Similarly, a study showed that β-1,3-glucanase enzyme
activity significantly increased following a pathogen challenge in Taipei (TP) 309 containing
the pi54 gene at 120 hpi, but were significantly lower in other rice genotypes [38].

In cultivated rice cv. Pusa Basmati-1, upon R solani infection, upregulation of eight
proteins was identified: ribulose bisphosphate carboxylase large chain, thioredoxin peroxi-
dase, alcohol dehydrogenase, fructose-1,6- bisphosphatase, O-methylthiopentene, OsClp1-
putative protease homologue, thioredoxin, and the hypothetical protein OsJNBa0069E14.
In previous studies, it has been reported that Rubisco (ribulose bisphosphate carboxylase)
is inactivated by ROS after biotic stress and is mostly downregulated [17,39]. However, Wu
et al. [40] reported that the sugarcane mosaic virus (SCMV) infection affects photosynthesis-
related proteins, which were down-regulated in maize (Zea mays) seedlings, with the
exception of the Rubisco large subunit as well as the ferredoxin-NADP reductase and its
isoforms. Induction of the ribulose bisphosphate carboxylase large chain precursor was
also observed, and similar observations have been reported with abiotic and biotic stresses
in rice. Similarly, the upregulation of Thioredoxin peroxidase might be due to its ability to
mitigate oxidative stress along with thioredoxin reductase [13,41].
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The photosynthetic protein ribulose bisphosphate carboxylase large chain was up-
regulated, and the role of Rubisco is well studied in photorespiratory carbon oxidation
and photosynthetic CO2 assimilation. It has also been reported that after biotic stress,
Rubisco is destroyed during senescence and oxidative stressors, and inactivated by ROS.
Induction of another protein, namely, thioredoxin peroxidase, again showed the defense
mechanism in rice after R. solani infection [13]. Thioredoxin reductase and thioredoxin
peroxidase work together to mitigate oxidative stress [13,41]. Generally, fungal infections
create hypoxia/anoxia conditions in their host plant according to which plants adapt
mechanisms to compensate for the energy crisis. Alcohol dehydrogenase (ADH) is an
important component in the maintenance of a primary energy metabolism in higher plants,
and seems to be engaged in aerobic metabolism under specific stress situations [42] such as
low temperature, water stress, or ozone exposure. In several studies, alcohol dehydrogenase
(ADH) and pyruvate carboxylase are central enzymes in fermentative metabolism, and
were reported after biotic stress [43]. Inoculation of R. solani to the rice cv. Pusa Basmati-1
induces the accumulation of O-methyltransferases (OMT). Plant O-methyltransferases
(OMT) play an important role in lignin biosynthesis and stress tolerance in plants [44]. A
greater accumulation of OMT was also observed in barley after infection with the fungus
Blumeria graminis [45].

After R. solani inoculation, rice cv. Pusa Basmati-1 also showed down-regulation
in proteins, namely, magnesium-chelatase subunit chlI, alcohol dehydrogenase, catalase
domain-containing protein, and ribulose bisphosphate carboxylase large chain precursor.
An increased relative abundance of anaerobic metabolisms under salt stress was reported by
the increased relative abundance of FBP aldolase, other glycolytic enzymes, and enzymes
involved in ethanolic fermentation and glycolate metabolism in rice seedlings. After
inoculation with R. solani OsClp10, a putative Clp protease homolog protein showed down-
regulation. The important function of the chloroplast Clp protease has been proven in earlier
research employing several transgenic plants. Plants with lower levels of the plastomic
ClpP1 or other Clp proteolytic core elements have a reduced ability to differentiate their
chloroplasts, generate shoots, and maintain overall plant viability. The Rubisco small chain
protein ribulose bisphosphate carboxylase also showed down-regulation after inoculation
with R. solani. It is well known that infected plant cells have lower levels of the Rubisco
protein, a vital photosynthesis enzyme, as a result of pathogens attacking chloroplasts and
causing their destruction [46].

Wild rice accession O. grandiglumis showed induction of a cysteine-type endopeptidase
inhibitor. The induced proteinase inhibitors (PIs) are categorized under the PR6 family,
which plays an important role in plant defense. Additionally, it has been found that plant
PIs influence plant immunity by inhibiting pathogen proteases or controlling endogenous
plant proteases [47]. The majority of cysteines found in plants are found in tiny proteins
that act as inhibitors of the C1A papain-like family of cysteine proteases (CysProt). It has
been assumed that PhyCys has a defense function against viruses and pests based on its
up-regulation in response to biotic, stress-related signals. It has been demonstrated that the
A. thaliana serine protease inhibitor (UPI) aids in defense against the necrotrophic fungi Al-
ternaria brassicicola and Botrytis cinerea [48]. Recently, Zhang et al. [49] also reported a novel
host defense mechanism in rice, where an NLR receptor protects a host protease inhibitor
that is targeted by rice fungus Magnaporthe oryzae and promotes resistance against it.

The chlorophyll a/b-binding protein (CAB), related to metabolism and energy, showed
up-regulation after R. solani inoculation at 48 hpi by the cultivated rice cv. Pusa Basmati-1
and wild rice accession O. grandiglumis. The CAB protein has a role in regulating the
expression of sugar-related genes in plants. Following pathogen infection, several genes for
chlorophyll a/b binding proteins were down-regulated, slowing photosynthesis and limit-
ing the availability of food resources such as sugar [50]. The transcription of photosynthetic
genes, including ribulose 1,5-diphosphate carboxylase and genes that bind chlorophyll
a/b, was also found to be inhibited in an interaction between rice and R. solani, in both
the susceptible and resistant interactions. However, wild rice accession O. grandiglumis
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induced the chlorophyll a/b-binding protein, probably due to the availability of food under
stress.

The kinesin motor domain-containing protein was up-regulated after R. solani inocula-
tion. It has been reported that plant stress tolerance depends on many factors, including
signals generated by mitogen-activated protein-kinase modules, which play a crucial role
under stress. After inoculation with R. solani, wild rice accession O. grandiglumis showed a
high level of expression of C2H2 zinc finger (C2H2-ZF) proteins. Zinc finger transcription
factors (TFs) had already been discovered in other plants, and it has been reported that
these TFs contribute to vital biological functions during vegetative growth, reproductive
development, and stress responses [13]. Several studies identified that a CCCH-type zinc
finger protein regulates the interaction of pathogens in cotton as well as in rice [51]. The
zinc finger protein (ZFP) (N2), which is associated with defense-related transcriptional
factors, was induced in a MoHrip2 elicitor and treated plants as compared to controls.
Similarly, acyl carrier protein desaturases and speckle-type POZ showed down-regulation
after R. solani inoculation in O. grandiglumis. The vital roles that stearoyl-acyl carrier protein
desaturases play in UFA production in response to biotic and abiotic stressors are well
documented [52].

The barley cv. NDB-1445 showed up-regulation of the heat shock transcription factor
after R. solani inoculation. There is evidence to support the importance of heat shock
factors (Hsfs) in stress sensing and signaling of various environmental stresses. Induced
reactive oxygen species (ROS) in plants, particularly H2O2, are important components
in biotic and abiotic stress responses and signaling mechanisms [53]. The heat shock
protein-encoding gene OsHsf23 was induced after interaction with R. solani via activation
of OsHsf23. Similarly, Bechtold et al. [54] also confirmed HSFA1b’s additional function in
sustaining baseline disease resistance, which was not dependent on stress hormones, but
did include H2O2 signaling.

A protease (namely, peptidase CIA (MLOC_751664) papain) was also induced after
R. solani inoculation by barley cv. NDB-1445. Proteases also appear to play key roles in
plant pathogenesis [47,55]. With the genetic identification of RCR3, a secreted papain-like
protease (C1) of tomato, the function of papain-like proteases has caused interest. The
function of the resistance gene Cf-2, which mediates recognition of the Avr2 avirulence gene
of the fungus Cladosporium fulvum, depends on RCR3 [55]. The role of cysteine proteinases
from different plants has also been associated with disease resistance [47].

The R. solani interaction with barley cv. NDB-1445 induced protein photosystem II
PsbO. Through the creation of ROS, which not only harms the elements of the photosyn-
thetic electron transfer chain but also serves as an essential retrograde signaling molecule,
photosystem II (PSII) plays a significant role in plant immunology. An interaction between
tobacco leaf PSII repair and the control of cell death was also reported after infections by
tobacco mosaic virus had been established in tobacco plants [56].

Proteins (namely, ribonucleotide reductase small subunit and the CAB protein) showed
reduced expression after R. solani inoculation. In yeast, humans, and, probably, higher
plants, ribonucleotide reductase (RNR) is known to be a significant target of DNA damage
checkpoint mechanisms [57]. There is also a report that upon Septoria tritici (filamentous
fungus) infection, a large number of proteins, including chloroplast CAB proteins, ribu-
lose bisphosphate carboxylase, fructose-bisphosphate aldolase, etc., show a decrease in
abundance and/or changed in phosphorylation status in wheat cultivars from 3 to 11 dpi.
This finding suggests suppression of photosynthesis, changes in sugar metabolism, and an
increase in sugar content [58]. It has been reported that high sugar levels decrease photosyn-
thetic gene expression and increase mobilization and sugar transport [58], and that fungal
diseases can target sugar transporters and activate the expression of the relevant genes for
nutritional gain [59]. According to the findings of this research, the reaction of cultivated
rice and other hosts (wild rice and barley) to R. solani can be explained in terms of the
physiological state of the infected cultivated rice and the energy needed to induce a defense,
which is supplied by proteins involved in energy metabolism (GAPDH, Rubisco). On the
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other hand, wild rice and barley were inducted into the defense modes of other, different
proteins. A number of photosynthesis-related proteins underwent changes, indicating
the dynamic impact of SA on photosynthesis. A decrease in the photosynthetic rate has
occurred after treatment, as evidenced by the down-regulation of proteins such as Rubisco
large subunit, phosphoenolpyruvate carboxylase, ADP-glucose pyrophosphorylase large
subunit, and Rubisco small subunit in control condition only.

Results analyzed from the present study conclude that stress-related proteins, includ-
ing defense, carbon metabolism, and energy synthesis, have been significantly affected in
the selected cereal crops after R. solani infection, i.e., in cultivated rice cv. Pusa Basmati-1,
and together dictate transition to a ‘defense mode.’ Some common stress response systems
appeared to be activated in both resistant and susceptible lines, but the resistant wild rice
accession O. grandiglumis produced significantly more defense-related proteins than barley
cv. NDB-1445. From the different protein expression patterns detected in this study, it
is hypothesized that the resistance of wild rice accession O. grandiglumis resulted from
its ability to produce more defense proteins than the more susceptible rice and barley cv.
NDB-1445. This ability was, possibly, a loss in the cultivated rice variety.

5. Conclusions

The present study reveals a complex response of R. solani interaction in three cereal
hosts showing simultaneous induction of key proteins, their biochemical profile, and chro-
mosomal and physiological mapping. Here, we propose that defense pathways involved
in R. solani interaction are due to some key regulated pathways at the translational levels,
such as pathogenesis-related protein, resistance gene/protein domains, signal transduction,
proteins involved in energy metabolism, and protein synthesis, which were induced in dif-
ferent hosts. In field conditions, wild relatives of rice accession O. grandiglumis showed high
resistance as compared to barley cv. NDB-1445 (moderately resistant) and cultivated rice cv.
Pusa Basmati-1 (susceptible). The identified sources could be dissected and engineered in
order to develop novel sheath blight resistance rice cultivars through breeding programs.
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colour) and wild rice accession O. grandiglumis (red colour). The proteins were mapped to the rice
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genome according to the locus of the markers; Table S1: Genes and their various ORFs of Pusa
Basmati-1, Table S2: Genes and their various ORFs of O. grandiglumis, Table S3: Genes and their
various ORFs of NDB-1445, Table S4: GO analysis for Pusa Basmati-1, Table S5: GO analysis for O.
grandiglumis, Table S6: GO analysis for NDB-1445.
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