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Abstract

Background: While human gut microbiomes vary significantly in taxonomic composition, biological pathway

abundance is surprisingly invariable across hosts. We hypothesized that healthy microbiomes appear functionally

redundant due to factors that obscure differences in gene abundance between individuals.

Results: To account for these biases, we developed a powerful test of gene variability called CCoDA, which is

applicable to shotgun metagenomes from any environment and can integrate data from multiple studies. Our

analysis of healthy human fecal metagenomes from three separate cohorts revealed thousands of genes whose

abundance differs significantly and consistently between people, including glycolytic enzymes, lipopolysaccharide

biosynthetic genes, and secretion systems. Even housekeeping pathways contain a mix of variable and invariable

genes, though most highly conserved genes are significantly invariable. Variable genes tend to be associated with

Proteobacteria, as opposed to taxa used to define enterotypes or the dominant phyla Bacteroidetes and Firmicutes.

Conclusions: These results establish limits on functional redundancy and predict specific genes and taxa that may

explain physiological differences between gut microbiomes.

Keywords: Human gut microbiome, Proteobacteria, Bacteroidetes, Firmicutes, Variance, Shotgun metagenomics,

Statistical methods, Functional redundancy, Enterotypes, Human gut microbiome

Background
The microbes that inhabit the mammalian gut encode a

wealth of proteins that contribute to a broad range of

biological functions, from modulating the immune sys-

tem [1–3] to participating in metabolism [4, 5]. Shotgun

metagenomics is revolutionizing our ability to identify

protein-coding genes from these microbes and associate

gene levels with disease [6], drug efficacy [7] or side-

effects [8], and other host traits. For instance, human gut

microbiota associated with a traditional high-fiber agrar-

ian diet encoded gene families involved in cellulose and

xylan hydrolysis, which were absent in age-matched con-

trols eating a typical Western diet [9]. The functional

capabilities of the human gut microbiome go beyond sta-

tistical associations. A number of microbial genes have
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now been causally linked to host physiology. Examples

include the colitis-inducing cytolethal distending toxins of

Helicobacter hepaticus [10] and the enzymes of commen-

sal bacteria that protect against these toxins by producing

anti-inflammatory polysaccharide A [11].

It is therefore surprising that healthy human gut micro-

biomes have been characterized as functionally stable,

with largely redundant gene repertoires in different hosts.

We refer to these metagenomic gene families with very

low variance in abundance across hosts as “invariable.”

Several lines of evidence support this conclusion. First,

biological pathway abundance tends to be less variable

across metagenomes than it is between isolate genomes

[12], suggesting strong selection for microbes that encode

functions necessary for adaptation to the gut environ-

ment. Second, the relative abundances of pathways are

strikingly invariable compared to the relative abundances

of bacterial phyla in the samemetagenomes [12, 13]. Thus,

it appears that humans harbor phylogenetically distinct

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s40168-017-0244-z&domain=pdf
mailto: katherine.pollard@gladstone.ucsf.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Bradley and PollardMicrobiome  (2017) 5:36 Page 2 of 23

gut communities that all do more or less the same things,

except in the context of disease or other extreme host

phenotypes.

Functional redundancy deserves a closer look, however,

because physiologically meaningful differences in gene

abundances between healthy human microbiomes could

easily have been missed. One primary factor may be that

prior work did not look at quantitative abundances of indi-

vidual genes but instead mainly summarized function at

the level of Clusters of Orthologous Groups (COG) cat-

egories (e.g., “carbohydrate metabolism and transport”)

and KEGG modules (e.g., “citrate cycle”) [12–14]. This

strategy lacks the power to detect one component of a

pathway or protein complex that varies in abundance

across hosts if other components are less variable. This

masking of variable genes (i.e., genes with high variance)

is likely because the presence and abundance of most

COG categories and KEGG modules will be dominated

by core components (i.e., housekeeping genes) that are

widely distributed across the tree of life and abundant

in metagenomes. The only previous analyses of individ-

ual genes asked whether they were universally detected

across all individuals sampled [12, 14]. However, uni-

versally detected genes may still vary substantially in

abundance, and conversely, lower-abundance invariable

genes may not be universally detected merely due to sam-

pling. This approach is also sensitive to read depth [12]

and sample size [14]. Based on these observations, we

were motivated to quantitatively investigate functional

redundancy at the level of individual sets of orthologs

(or “gene families”).

To enable high-resolution, quantitative analysis of func-

tional stability in the microbiome, we developed a sta-

tistical test that identifies individual gene families whose

abundances are either significantly variable or invari-

able across samples. We named this test CCoDA, for

Covariate-Corrected Dispersion Analysis. The inputs to

the method are gene abundance values (e.g., normalized

counts of metagenomic reads mapping to a particular

gene), and the outputs are lists of genes whose abundances

differ significantly more or less than expected across sam-

ples, which can be summarized by pathways and by the

taxonomic groups contributing reads.

The study of variability, in addition to the more com-

mon study of average abundances, is becoming more

popular in other areas of genomics, such as gene expres-

sion across tissues [15], epigenetic variation [16], and,

especially, individual cells [17–21]. However, there are

still few existing statistical approaches for determining

whether a given observed amount of biological variabil-

ity exceeds or falls beneath expectations, and the existing

methods require the use of spike-ins to decompose tech-

nical and biological variability [19, 20]. Our method does

not require these additional data, which are often not

available in existing studies of the microbiome. Addi-

tionally, it incorporates solutions to three major chal-

lenges to studying functional redundancy with shotgun

metagenomics data.

The first key innovation of our approach is using a test

statistic that captures residual variability after accounting

for the overall gene abundance. Like modern approaches

for RNAseq analysis [22, 23] and proteomics analysis

[24], we use the negative binomial distribution to directly

model the sequencing count data and account for the

mean-variance relationship. However, instead of using

this distribution to more accurately detect genes with

differences in abundance between groups, we use it to dis-

cover genes whose variances are unexpected given their

mean values. This modeling choice is important because

abundant genes will be variable just by chance due to the

correlation between mean and variance in any sequencing

experiment. Conversely, phylogenetically restricted genes

will have relatively low variance due to being less abun-

dant. Furthermore, gene abundances can be sparse (i.e.,

zero in many samples). For all of these reasons, simply

ranking genes based on their variances would yield many

false positives and false negatives.

A second benefit of our modeling approach is that we

can adjust for systematic differences in a gene’s mea-

sured level between studies to allow for quantitative

integration of data from multiple sources. Meta-analysis

is essential for gaining sufficient power to detect vari-

able genes across the range of mean abundance levels.

It also ensures robustness and generalizability of discov-

ered inter-individual differences, which occur by chance

in small sets of metagenomes. Our modeling approach is

also flexible enough to account for factors such as aver-

age genome size that can affect measurements of gene

abundances.

Finally, our method does not require predefined cases

and controls but instead enables discovery of genes that

explain functional differences betweenmicrobiomes with-

out prior knowledge of which groups of samples to com-

pare. This is critical for the current phase of microbiome

research, when many factors influencing microbial com-

munity composition are unknown. Gene families that

contribute to survival in one particular type of healthy

gut environment should emerge as variable between hosts

and their functions may point to factors influencing com-

munity composition, mechanisms of microbe-host inter-

actions, and biomarkers of presymptomic disease (e.g.,

pre-diabetes).

We applied CCoDA to healthy gut metagenomes (n =

123) spanning three different shotgun sequencing stud-

ies and found both significantly invariable (3768) and

variable (1219) gene families (false discovery rate (FDR)

<5%). Many pathways, including some commonly viewed

as housekeeping or previously identified as invariable
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across gut microbiota (e.g., central carbon metabolism

and secretion), included significantly variable gene fami-

lies. Phylogenetic distribution (PD) correlated overall with

variability in gene family abundance, and exceptions to

this trend highlight functions that may be involved in

adaptation, such as two-component signaling and special-

ized secretion systems. This approach to discovering func-

tions that distinguish microbial communities is applicable

to any body site or environment.

Finally, the human gut is normally dominated by the

bacterial phyla Bacteroidetes and Firmicutes [13]. Clades

within these phyla (especially Bacteroides, Prevotella,

and Ruminococcaceae) are the most commonly used to

cluster individuals together into “enterotypes” [25–28]

because they explain the most taxonomic variation. The

Bacteroidetes-to-Firmicutes ratio has also been measured

as a potential biomarker of interest in its own right

[29–31]. In contrast, we show that the less abundant phy-

lum Proteobacteria, and not Bacteroidetes or Firmicutes,

is a major source of genes with the greatest variabil-

ity in abundance across hosts. Thus, while Bacteroidetes

and Firmicutes may contribute most to taxonomic varia-

tion between hosts, the abundance of Proteobacteria may

capturemore of the functional variation. This has implica-

tions for the interpretation of taxonomic data from human

gut microbiota and, because of the link between Pro-

teobacteria and dysbiosis [32], also suggests a potential

relationship between inflammation and gene-level differ-

ences in gut microbial functions.

Results
To describe variation within healthy gut microbiota across

different human populations, we randomly selected 123

metagenomes of healthy individuals from the Human

Microbiome Project (HMP, n = 42) [13], controls in a

study of type II diabetes (T2D, n = 44) [33], and controls

in a study of glucose control (GC, n = 37) [34]. These

span American, Chinese, and European populations,

respectively (see the “Methods” section). We mapped

these metagenomes to KEGG Orthology (KO) families

with ShotMAP [35] and counted reads for 17,417 gene

families.

Accurately normalizing gene read counts so that they

are comparable across samples and studies is critical to

our meta-analytical approach and any quantitative eval-

uation of shotgun metagenomes. We therefore quanti-

fied gene family abundance using reads per kilobase of

genome equivalents (RPKG) [36]. This method of calcu-

lating abundances takes into account differences in the

average genome size within different metagenomes, as

well as factors such as gene length, that can also bias

counts (long genes will generally have a greater proportion

of reads).

Unadjusted calculation of gene variability yields

misleading results

One straight-forward approach to determining gene fam-

ily variability, which has previously been employed in the

literature [13], would simply be to calculate the variance

of gene family abundances across all datasets. The tails of

this distribution—for example, the top and bottom 10%—

could then be termed “variable” and “invariable” gene

families. However, by this metric, the most “variable” gene

families would actually be enriched for pathways such as

the ribosome (FDR-corrected p value q = 2.4 × 10−10),

DNA replication (q = 0.07), and aminoacyl-transfer RNA

(tRNA) biosynthesis (q = 1.2 × 10−6). These results con-

tradict biological intuition: it would be very surprising

for genes within the best-conserved “housekeeping” path-

ways to be among the most variable, since they appear

in most microbial genomes. (Here, we define “house-

keeping” gene families as those involved in fundamental,

highly conserved cellular processes such as translation,

DNA replication, and central metabolism). Indeed, out of

a recent list of 74 protein-coding genes that were uni-

versally present and single-copy in bacterial genomes, 14

were ribosomal genes and 10 were tRNA synthetases or

tRNA modification enzymes [37]; “housekeeping” path-

ways also dominated previous lists of bacterial universal

and single-copy genes [38].

Furthermore, according to this same straight-forward

metric, the least variable gene families would include

those involved in disease signatures such as “salmonella

infection” (q = 0.027), “pertussis” (q = 1.4 × 10−3), and

“legionellosis” (q = 4.9 × 10−3). The presence of genes in

these disease signatures does not necessarily indicate the

presence of that disease or an active infection. However,

it seems unlikely for genes involved in pathogenicity to be

among the most stable components of the healthy human

microbiome.

The explanation for this counterintuitive result can be

visualized by plotting the mean vs. variance for each mea-

sured gene family (Fig. 1): in shotgun metagenomic data,

mean and variance are tightly correlated over the entire

range of means. This phenomenon is robust to the num-

ber of samples assessed (Additional file 1: Figure S1).

Similar mean-variance relationships are actually observed

in other high-throughput sequencing applications, such

as RNAseq [39, 40] (which is why standard hypothesis

tests based on assuming normality are inappropriate for

RNAseq data, if the correct variance-stabilizing transfor-

mations are not applied [40]).

This mean-variance relationship means that gene fami-

lies encoding, for example, the bacterial ribosome, which

are among the most abundant in these metagenomes, will

therefore have the highest sample variance as well. Mean-

while, gene families with low average abundance, such

as those involved in the disease signatures listed above,
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Fig. 1 Shotgun metagenomic data show a very strong mean-variance relationship. The log10(mean) is plotted against log10(variance) for each gene

family (points) in each study (headings). Bacterial ribosomal proteins (green), aminoacyl-tRNA charging genes (orange), and genes annotated to the

T3SS-dependent Salmonella pathogenesis signature in KEGG (blue) are highlighted. Trend lines show a Poisson (dashed blue line) and a negative

binomial (dashed red line) fit to the count data. Negative binomial provides a better fit in all three data sets

will appear to be invariable when in reality they are sim-

ply very infrequently observed. For example, three out of

five of the invariable gene families annotated to pertussis

only have one read each in a single sample, which con-

stitutes extremely weak evidence for their presence in the

metagenome, let alone invariability. This approach also

leaves us unable to detect gene families that are variable

but relatively abundant, as well as the opposite (Fig. 2a–d).

Gene family abundances can also vary by study, because

of both biological differences between populations and

technical factors including library preparation, amplifica-

tion protocol, and sequencing technology. However, gene

families with large study effects may or not be variable

within each study, and vice versa (see, e.g., Fig. 2e–h).

Our method should therefore also take this potential con-

founder into account.

Finally, to assess statistical significance, we need to

assess the range of variances we would expect for a partic-

ular gene family given its mean abundance, requiring us

to model the overall mean-variance relationship. Figure 1

shows that this mean-variance relationship cannot be ade-

quately captured by a Poisson distribution (blue dashed

line), in which the mean and variance are equal; however,

a better fit can be obtained by using the negative binomial

distribution (red dashed line), a count-based distribution

that allows for overdispersion, i.e., variance that exceeds

the mean. Indeed, simply based on this negative binomial

best-fit, ribosomal proteins are likely less variable than

expected since they fall well below the trend line in all

three datasets (Fig. 1). The negative binomial is commonly

used in other sequencing applications, such as RNAseq

[21], which has similar overdispersion.

A new test, CCoDA, captures the variability of microbial

gene families

Wepresent amodel that enables gene family abundance to

be quantitatively compared across metagenomes for thou-

sands of microbial genes. To account for study effects, we

fit a linear model of log abundance Dg,s for gene g in sam-

ple s as a function of the overall mean abundance μg and

a term βg,y that quantifies the offset for each study y:

Dg,s = μg +
∑

y∈Y

Iy,sβg,y + ǫg,s (1)

where Iy,s is an indicator variable that is 1 if sample s

belongs to study y and 0 otherwise. In this simple model,

βg,y is simply the mean of gene g in study y after subtract-

ing the overall mean μg , and ǫg,s are the residuals left after

these study-specific means βg,y are subtracted out.

The residual ǫg,s quantifies how much the abundance

of gene g in sample s differs from the average abundance
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Fig. 2 The residual variance statistic captures variation in gene families after accounting for between-study variation. The left-hand panels (“original

abundances") show filled circles representing log-RPKG abundances for gene families from the KEGG Orthology (KO), with per-study means shown in

solid horizontal lines and the distance from these means shown as dashed vertical lines. The right-hand panels (“residuals") show the same gene

families after fitting a linear model that accounts for these per-study means, with an accompanying density plot showing the distribution of these

residuals. Vǫ
g values in bold underneath density plots are the calculated variances of these residuals. These gene families are sets of orthologs

corresponding to the genes a tatA, b devR, c waaW, d thrC, e gspA, f tssB, g dctS, and h ecnB. Panels a,b show two invariable gene families with

relatively high (a) and low (b) average abundance; similarly, panels c, d show two variable gene families with relatively low (c) and high (d) average

abundances. Panels e, f show two gene families involved in secretion with similar abundances, but low (e) vs. high (f) variability. Finally, panels

g, h show that both invariable (g) and variable (h) gene families can have substantial study-specific effects. (All gene families displayed were

significantly (in)variable using CCoDA, FDR ≤ 5%)

across samples in the same study as s. We denote the

variance of the residuals across samples by V ǫ
g . When

this statistic is small, the gene has similar abundance

across samples after accounting for study effects. A large

value of V ǫ
g indicates that samples have very different

abundances.

To assess the statistical significance of gene family vari-

ability, as suggested above, we compare the residual vari-

ance V ǫ
g to a data-driven null distribution based on the

negative binomial distribution (see the “Methods” section

and Additional file 2: Figure S2). This approach is nec-

essary because there is no straight-forward formula for

the p value of V ǫ
g . Our method looks for deviations from

the null hypothesis that gene families in the dataset have

the same mean-variance relationship. This relationship is

captured by the overdispersion parameters ky, such that

the variance for a gene g in a study y is given by:

σ 2
g,y = βg,y +

β2
g,y

ky
(2)

where βg,y are study-specific means for gene g as above.

Because this null distribution is generated stochastically

per gene family from a count-based distribution match-

ing the observed mean, i.e., by parametric bootstrapping,

the null naturally accounts for the expected amount of

noise based on the number of times a given gene fam-

ily is observed. Gene families with low abundance or

a high proportion of zeros are therefore more likely to

be called non-significant than variable (Additional file 3:

Figure S6 C–D).
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We validated this approach further and assessed type

I and type II error rates with simulated data (see the

“Methods” section, Additional file 4: Figure S4), find-

ing that CCoDA has high power and good control over

the false positive rate when the overdispersion param-

eter k used in the null distribution is accurately esti-

mated. To make the test more robust to factors affecting

the estimation of k (Additional file 5: Figure S5), we

also used simulation to control the false discovery rate

empirically (Table 1).

CCoDA can be applied to shotgunmetagenomes to sen-

sitively and specifically identify variable genes in any envi-

ronment without prior knowledge of factors that stratify

relatively high versus low abundance samples.

Thousands of variable gene families in the gut microbiome

Using CCoDA, we found 2357 gene families with more

variability than expected and 5432 with less (leaving 9628

non-significant) at an empirical FDR of 5% (Additional

file 3: Figure S6A). Restricting the analysis to gene families

with at least one annotated representative from a bacterial

or archaeal genome in KEGG, we obtained 1219 sig-

nificantly variable and 3813 significantly invariable gene

families (and 2194 non-significant). The differences in the

residual variation of these gene families can be visual-

ized using a heatmap of the residual ǫg,s values (Additional

file 6: Figure S7 and Additional file 7: Figure S8). The large

number of genes that were less variable than expected

given their means supports the hypothesis of some func-

tional redundancy in the gut microbiome, potentially due

to selection for core functions that make microbes more

successful in the gut environment. Notably, the HMP

cohort tended to have overall lower variance in their

metagenomes than the GC and T2D cohorts; this may

be because the exclusion criteria for HMP, which explic-

itly studied only healthy individuals, were particularly

stringent [41]. Nevertheless, our discovery of thousands

of significantly variable genes across a range of abun-

dance levels demonstrates that the gut microbiome is less

invariable than prior work suggested.

This result highlights the importance of a quantitative,

gene-level evaluation of functional stability. Importantly,

the magnitude of the residual variance statistic V ǫ
g is not

the sole determinant of significance, as illustrated by the

Table 1 q value cutoffs to reach a given empirical FDR,

estimated from simulation

Empirical FDR (%) q value cutoff, variable q value cutoff, invariable

5 0.0238 0.108

10 0.0669 0.180

25 0.181 0.294

overlap in distributions ofV ǫ
g between the variable, invari-

able, and non-significant gene families. For example, both

low-abundance gene families with many zero values and

high-abundance but invariable gene families will tend to

have low residual variance, but the evidence for invari-

ability is much stronger for the second group. Our test

accurately discriminates between these scenarios, tending

to call the second group significantly invariable and not

the first (Additional file 3: Figure S6A, inset), whereas an

approach that simply thresholded V ǫ
g would be unable to

distinguish between them.

Biological pathways contain both invariable and variable

components

To test our hypothesis that the appearance of pathways

and functional categories with similar abundance across

samples can be explained by a subset of core compo-

nents, we examined individual gene variability within

KEGG modules. As expected, we observed an overall

signal of stability at this broad level of gene groupings.

Many of the pathways previously identified as invari-

able (e.g., aminoacyl-tRNA metabolism, central carbon

metabolism) indeed have more invariable than variable

genes. However, individual genes show a much more

complex picture. Even the most invariable pathways also

include significantly variable genes (Fig. 3). For exam-

ple, the highly conserved KEGG module set “aminoacyl-

tRNA biosynthesis, prokaryotes” included one variable

gene at an empirical FDR of 5%, sepRS. sepRS is an O-

phosphoseryl-tRNA synthetase, which is an alternative

route to biosynthesis of cysteinyl-tRNA in methanogenic

archaea [42]. Methanogen abundance has previously been

noted to be variable between individual human guts: while

DNA extraction for archaea may be less reliable than for

bacteria, even optimized methods showed large standard

deviations across individuals [43]. Another gene in this

category was variable at a weaker level of significance (10%

empirical FDR): poxA, a variant lysyl-tRNA synthetase.

Recent experimental work has shown that this protein has

a diverged, novel functionality, lysinylating the elongation

factor EF-P [44, 45].

By comparison, 77% of the tested prokaryotic gene

families in the KEGG module set “central carbohy-

drate metabolism” were significantly invariable, and 5.6%

(five genes) were significantly variable (Additional file 8:

Figure S9) at an empirical FDR of 5%. In this case, the vari-

able gene families highlight the complexities of microbial

carbon utilization (see Additional file 9 for details).

One of the more variable pathways was the “bacterial

secretion system.” We found that the majority of signif-

icantly variable gene families annotated to this pathway

(16 out of 18) were involved in specialized secretion sys-

tems, especially the type III and type VI systems (Fig. 4).

These secretion systems are predominantly found in
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Fig. 3Most pathways include a mixture of both variable and invariable gene families. a Stacked bar plots show the fraction of invariable (blue),

non-significant (gray), and variable (red) gene families annotated to KEGG Orthology pathway sets (rows), at different false discovery rate (FDR)

cutoffs (color intensity). Only gene families with at least one annotated bacterial or archaeal homolog were counted. b Fraction of strongly

invariable, non-significant, and strongly variable gene families within the ribosomes of different kingdoms. Row labels with only one kingdom

indicate gene families unique to that kingdom, and rows with multiple kingdoms (e.g., “Eukaryotes/archaea”) indicate gene families shared between

these two kingdoms. As expected, the bacterial ribosome was completely invariable

Gram-negative bacteria and are often involved in spe-

cialized cell-to-cell interactions, between microbes and

between pathogens or symbionts and the host. They allow

the injection of effector proteins, including virulence fac-

tors, directly into target cells [46, 47]. Type VI secretion

systems are also determinants of antagonistic interactions

between bacteria in the gut microbiome [48, 49].

In contrast, gene families in the Sec (general secre-

tion) and Tat (twin-arginine translocation) pathways were

nearly all significantly invariable at an empirical FDR of

5%, with only one gene in each being found to be sig-

nificantly variable. This contradicts previous suggestions

that the Sec and Tat pathways were some of the most

variable in the human microbiome [13]. This discrepancy

is probably due to our accounting for the mean-variance

relationship in shotgun data. The Sec and Tat sys-

tems are abundant and phylogenetically diverse [50] and

will therefore have greater variance than low-abundance

genes just by chance. Our test adjusts for this feature

of sequencing experiments and shows that these genes

are in fact less variable than expected given their mean

abundance.

Our results further demonstrate that analyzing func-

tional variability at the level of pathways can obscure

gene-family-resolution trends of potential biomedical

importance. The variability of individual gene families

involved in lipopolysaccharide (LPS) metabolism may

exemplify such a case. LPS (also known as “endotoxin”)

is a macromolecular component of the Gram-negative

bacterial outer membrane, consisting of a lipid anchor

called “lipid A,” a “core oligosaccharide” moiety, and a

polysaccharide known as the “O-antigen” (which may

be absent). Lipid A is sensed directly by the human

innate immune system via the Toll-like receptor TLR4.

Furthermore, lipid A variants with different covalent

modifications (e.g., differentially acylated [51], phos-

phorylated [52], and palmitoylated [53] variants) have

been shown to have different immunological properties

(see Additional file 9: Supplementary information).

We found that all but one gene family involved in

the biosynthesis of lipid A, as well as all gene families

involved in the biosynthesis of the core oligosaccharide

components ketodeoxyoctonate (Kdo) and glyceroman-

noheptose (GMH), were significantly invariable (16 out

of 17; Fig. 5). The lone exception catalyzes the the final

lipid A acylation step, adding a sixth acyl chain; this

gene family was significantly variable (FDR≤5%). Further-

more, we observe several variable gene families annotated

as performing covalent modifications of LPS, including

hydroxyl- (lpxO), palmitoyl- (pagP), and palmitoleoyla-

tion (lpxP), as well as deacylation and dephosphorylation.

These modifications can lead to differential TLR4 activa-

tion [53, 54]. We also observe that gene families involved

in O-antigen synthesis and ligation to lipid A tended

to be variable (5 out of 6). These results suggest that

healthy individuals may differ in the amount of hexa-

vs. pentaacylated LPS, and in the amounts of other LPS

chemical modifications, and thus in their baseline level
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Fig. 4 Variable and invariable gene families involved in bacterial secretion separate by gene function. a Schematic diagram showing the type III

(T3SS), type VI (T6SS), Sec, and Tat secretion system gene families measured in this dataset. Gene families are color-coded by whether they were

variable (red), invariable (blue), or neither (gray), with strength of color corresponding to the FDR cutoff (color intensity). Insets show a summary of

how many gene families in KEGG modules corresponding to a particular secretion system were variable or invariable and at what level of

significance. b Heatmaps showing scaled residual log-RPKG for gene families (rows) involved in bacterial secretion. Variable (red) and invariable

(blue) gene families were clustered separately, as were samples within a particular study (columns). log-RPKG values were scaled by the expected

variance from the negative binomial null distribution. Genes in specific secretion systems are annotated with colored squares (T6SS: red-orange; T3SS:

orange; Tat: yellow; Sec: grey)

of TLR4-dependent inflammation. Importantly, since the

majority of gene families annotated to LPS biosynthesis

were invariable, this result would have been missed by

considering the pathway as a unit.

Many invariable gene families are deeply conserved

Conservation of gene families across the tree of life is

one factor we might expect to affect gene variability. For

instance, ribosomal proteins should appear to be invari-

able merely because they are shared by all members

of a given kingdom of life. To explore the relationship

between gene family taxonomic distribution and variabil-

ity in abundance across hosts, we constructed trees of the

sequences in each KEGG family using ClustalOmega and

FastTree. We then calculated phylogenetic distribution

(PD), using tree density to correct for the overall rate of

evolution (DongyingWu, personal communication, 2015)

(Fig. 6a).

Overall, invariable gene families with below-median

PD tended to be involved in carbohydrate metabolism

and signaling. Specifically, these 2046 gene families were

enriched for the pathways “two-component signaling”

(q = 1.5 × 10−15), “starch and sucrose metabolism”

(q = 1.8 × 10−3), “amino sugar and nucleotide sugar

metabolism” (q = 0.063), “ABC transporters” (q =

2.4 × 10−5), and “glycosaminoglycan [GAG] degradation”

(q = 0.053), among others (Additional file 10). Enriched

modules included a two-component system involved in

sporulation control (q = 0.018), as well as transporters for

rhamnose (q = 0.14), cellobiose (q = 0.14), and α- and

β-glucosides (q = 0.14 and q = 0.19, respectively). These

results are consistent with the hypothesis that one func-

tion of the gut microbiome is to encode carbohydrate-

utilization enzymes the host lacks [55]. Additionally,

recent experiments showed that the major gut commensal

Bacteroides thetaiotaomicroncontains enzymes adapted

to the degradation of sulfated glycans including GAGs

[56, 57] and that many Bacteroides species can in

fact use the GAG chondroitin sulfate as a sole carbon

source [58].

Out of the 298 significantly variable gene families with

the above median PD, we found no pathway enrich-

ments but three module enrichments. These included the

archaeal (q = 1.5 × 10−3) and eukaryotic (q = 8.7 ×

10−9) ribosomes, which reflects differences in the relative

abundance of microbes from these domains of life across

hosts (Fig. 3b). The third conserved but variable module

was the type VI secretion system (q = 0.039). Intrigu-

ingly, specialized secretion systems were also observed

to vary within gut-microbiome-associated species in a
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A B

Fig. 5 Central Kdo and lipid A biosynthesis is invariable, but many genes involved in covalent modifications to LPS are variable. a Pathway schematic

showing a selection of measured gene families involved in lipopolysaccharide metabolism. Gene families are color-coded by whether they were

variable (red) or invariable (blue), with strength of color corresponding to the FDR cutoff (color intensity). Central Kdo and lipid A metabolism is

highlighted in light gray. Abbreviated metabolites are (GlcNAc N-acetylglucosamine), (Kdo ketodeoxyoctonate), (R5P ribose-5-phosphate), (S7P

sedoheptulose-7-phosphate), (GMH glyceromannoheptose), (aminoarabinose 4-amino-4-deoxy-L-arabinose). b Heatmaps showing scaled residual

log-RPKG for gene families (rows) involved in lipopolysaccharide metabolism, as in Fig. 4

strain-specific manner, using a wholly separate set of data

[59]. Finally, gene families described as “hypothetical”

were enriched in the high-PD but variable gene set (p =

2.4 × 10−8, odds ratio = 2.2) and depleted in the low-PD

but invariable set (p = 5.4 × 10−13, odds ratio = 0.41).

Transporters show strain-specific variation in copy

number across different human gut microbiomes [59],

and analyses by Turnbaugh et al. identified membrane

transporters as enriched in the “variable” set of func-

tions in the microbiome [12]. However, we mainly found

transporters enriched among gene families with simi-

lar abundance across hosts, despite being phylogeneti-

cally restricted (low-PD but invariable genes; Additional

file 11). Part of this difference is likely due to our strati-

fying by phylogenetic distribution, a step previous studies

did not perform.

Proteobacteria are the major source of variable genes

To assess which taxa contributed these variable and

invariable genes, we first computed correlations between

phylum relative abundances (predicted usingMetaPhlAn2

[60]) and gene family abundances. Specifically, we used a

permutation test based on partial Kendall’s τ correlation.

This test is rank-based and thus distribution-agnostic,

handles ties (unlike Spearman’s ρ), and accounts for study-

to-study variation by using partial correlation (see the

“Methods” section). The resulting p values were corrected

for multiple testing using the q value method and thresh-

olded at an FDR of q ≤ 0.05. Based on these results, we

then determined whether phyla were enriched for variable

or invariable genes by Fisher’s exact test (Bonferroni-

corrected p ≤ 0.05). This analysis revealed that the pre-

dicted abundance of Proteobacteria was strongly enriched

for correlations with variable gene families (Bonferroni-

corrected p ≤ 10−8): Fig. 7b). The abundance of the

archaeal phylum Euryarchaeota was also enriched for cor-

relations with variable gene families, to a lesser extent

(Bonferroni-corrected p ≤ 10−4).

Proteobacteria were a comparatively minor component

of these metagenomes (median = 1%), compared to Bac-

teroidetes (median = 59%) and Firmicutes (median =

33%: see Additional file 12: Figure S10), which were more

associated with invariable genes (Bonferroni-corrected

p ≤ 10−8). Euryarchaeota comprised an even smaller

fraction of the microbiome (median = 0%) and was

only detected in 33% of metagenomes (though this could

potentially be explained by unreliable extraction effi-

ciency for archaea, as mentioned above [43]). How-

ever, seven samples from the GC and T2D cohorts

had ≥15% Proteobacteria, with four having ≥20% and

one having 41%. Overgrowth of Proteobacteria has been

associated with metabolic syndrome [32] and inflam-

matory bowel disease [61]. Also, Proteobacteria can be

selected (over Bacteroidetes and Firmicutes) by intesti-

nal inflammation as tested by TLR5-knockout mice [62],

and some Proteobacteria can induce colitis in this back-

ground [63], potentially leading to a feedback loop.

Thus, the variable gene families we discovered could be

biomarkers for dysbiosis and inflammation in otherwise

healthy hosts.
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Fig. 6 Phylogenetic distribution (PD) of gene families partially

explains gene family variability. Scatter plot shows log10 PD (x-axis) vs.

log10 residual variance statistic (y-axis). Red points were significantly

variable and blue points were significantly invariable. Gene families in

specific functional groups are also highlighted in different colors,

specifically the bacterial ribosome (green), the type VI secretion

system (or “T6SS”; orange), the KinABCDE-Spo0FA sporulation control

two-component signaling system (yellow), and hypothetical genes

(tan squares). Gene families that were significantly invariable (ribosome

and sporulation control) or significantly variable (hypothetical genes

and the T6SS) at an estimated 5% FDR are outlined in black. The

bacterial ribosome, as expected, had very high PD and was strongly

invariable. The type VI secretion system genes, in contrast, were

conserved but variable, and some genes involved in the Kin-Spo

sporulation control two-component signaling pathway had low PD

but were invariable. Only gene families with at least one annotated

bacterial or archaeal homolog are shown

It has been proposed that a small number of

“enterotypes” may exist in the human gut microbiome,

each with distinct taxonomic composition [25, 26].

Most recently, abundances of the taxa Ruminococcaceae,

Bacteroides, and Prevotella were found to explain the

most taxonomic variation across individuals [28]. These

enterotypes appeared to be linked to long-term diet, with

Prevotella highest in individuals with the most carbohy-

drate intake and Bacteroides correlating with protein and

animal fat. However, while these clades contributed most

to taxonomic variation, in our study, all were actually

depleted for associations with variable genes. In contrast,

the Proteobacterial family Enterobacteriaceae (Additional

file 13: Figure S12B), and to a lesser extent, Gammapro-

teobacteria in general (Additional file 13: Figure S12C)

were much more likely to be associated with variable gene

families. Similar results were also obtained using the cen-

tered log-ratio (clr) transform to correct potential com-

positionality artifacts (see Additional file 14: Figure S16).

This suggests that compared to previously identi-

fied enterotype marker taxa, levels of Proteobacteria,

and potentially Euryarchaeota, better explain person-to-

person variation in gut microbial gene function. These

less abundant phyla were missed in enterotype studies,

likely because enterotypes were identified by methods

that will tend to weight higher-abundance taxa more, and

enterotypes were identified from taxonomic, not func-

tional data.

Because Proteobacteria are a relatively well-annotated

yet low-abundance phylum, we explored whether either

of these characteristics explain their association with

variable genes. Importantly, genes correlated with

Actinobacteria did not tend to be variable, even though

Proteobacteria and Actinobacteria had similar levels of

abundance (Additional file 12: Figure S10). Also, while

they were comparatively low abundance compared to

Bacteroidetes or Firmicutes, Proteobacteria were also

generally not close to the limit of detection when present:

Proteobacterial relative abundance was more than 0.18 in

90% of samples, whereas MetaPhlAn2 was able to detect

taxa with relative abundances of only 0.0004% in our

data. Low abundance therefore does not appear to explain

this association.

The number of phyla present in our data was not

enough to determine whether there was any trend for

low-prevalence or low-abundance taxa to be more cor-

related with variable genes. To answer this question, we

conducted the same analysis with bacterial and archaeal

taxa at the family level. However, when considering the

30 families with significant enrichments for (in)variable

or non-significant gene families, there was no signifi-

cant association between the degree of enrichment for

variable genes and either prevalence (r = −0.07, p =

0.72) or abundance (r = −0.1, p = 0.58) (Additional

file 13: Figure S12D-E). In fact, Enterobacteriaceae, a Pro-

teobacterial family, was significantly enriched for corre-

lations with variable genes despite a prevalence of 86%,

in the top 25% of all families detected. Thus, preva-

lence and abundance do not explain the variability of

Proteobacterial genes.

To investigate annotation bias, we first compared the

numbers of genomes in KEGG for each phylum. There are

1111 Proteobacterial genomes compared to 575 for Fir-

micutes, 276 for Actinobacteria, 104 for Euryarchaeota,

and only 97 for Bacteroidetes. Accordingly, Proteobac-

teria had the most gene families (1417) not annotated

in any other phylum (“private” gene families), com-

pared to 538 for Firmicutes, 342 for Euryarchaeota,

215 for Actinobacteria, and 21 for Bacteroidetes. Con-

sidering only these private gene families, Proteobacte-

ria and Euryarchaeota were enriched for variable genes,

as before, whereas variable genes were depleted in the

other three phyla (Additional file 15: Figure S13A). This

suggests that the level of annotation does not predict

the amount of variable genes. In a further test, we
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Fig. 7 Variable gene families correlate with the predicted abundance of Proteobacteria. Bar plots give the fraction of gene families in each category

(significantly invariable, non-significant, and significantly variable, 5% FDR) that were significantly correlated to predicted relative abundances of

phyla, as assessed by MetaPhlAn2, using partial Kendall’s τ to account for study effects and a permutation test to assess significance. Asterisks give

the level of significance by chi-squared test of non-random association between gene family category and the number of significant associations.

(***p ≤ 10−8 by chi-squared test after Bonferroni correction; **p ≤ 10−4)

repeated the entire statistical test on a subset of genes,

sampling one part phylum-specific genes drawn equally

from Proteobacteria, Actinobacteria, Firmicutes, and Eur-

yarchaeota, and one part genes annotated to all four

phyla (see the “Methods” section). Again, Proteobacteria-

and Euryarchaeota-specific genes were significantly vari-

able more often than those from either Actinobacteria or

Firmicutes (Additional file 15: Figure S13B). We there-

fore concluded that phylum abundance and annotation

bias do not explain the enrichment of variable genes

in Proteobacteria.

Finally, variable genes also do not appear to be biomark-

ers for either taxonomic statistics or measured host char-

acteristics. To explore this question, we used the same

two-sided partial Kendall’s τ test as above. With regard

to taxonomic statistics, we tested α-diversity (measured

by Shannon entropy), the Bacteroidetes/Firmicutes ratio,

and average genome size (AGS): however, all of these

correlated more often with invariable gene families (see

Additional file 9, Additional file 13: Figure S12A). For

host characteristics, we selected bodymass index, sex, and

age, which were measured in all three studies we ana-

lyzed. None of these variables correlated significantly with

any variable gene family abundances, even at a 25% false

discovery rate.

One study (GC) measured blood levels of three inflam-

matory markers, TNFα, IL-1, and CD163, which did not

correlate with Proteobacterial abundance in this study

(Holm-corrected p value > 0.2, Kendall’s τ ). However,

other inflammatory markers directly linked to changes

in Proteobacterial abundance (e.g., IgA, IL-10, and IL-

17, reviewed in [32]) were not measured in this panel.

These results suggest that major correlates of variation in

microbiota gene levels, possibly including diet and specific

inflammatory markers, remain to be measured.

Bacterial phyla have unique sets of variable genes

The variable gene families we identified seem to include

both genes whose variance is explained by phylum-level

variation (e.g., Proteobacteria) and genes that vary within

fine-grained taxonomic classifications, such as strains

within species. Also, some gene families may confer adap-

tive advantages in the gut only within certain taxa. To

detect gene families that are variable or invariable within a

phylum, we repeated the test, but using only reads whose

best RAPSearch2 [64] alignments were to sequences from

whole genomes of each of the four most abundant bac-

terial phyla (Bacteroidetes, Firmicutes, Actinobacteria,

and Proteobacteria). Most (77%) gene families showed

phylum-specific effects. Invariable gene families tended to
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agree, but the reverse was true for variable gene families:

19.4% of gene families that were invariable in one phy-

lum were invariable in all, compared to just 0.34% (eight

genes) in the variable set (Fig. 8a, b). This trend was robust

to the FDR cutoff (Additional file 16: Figure S14A–B).

Gene families invariable in all four phyla were enriched

for basal cellular machinery, as expected (Additional

file 17: C–D).

The relationship between phylum-specific and over-

all gene family abundance variability differed by phylum.

Proteobacteria-specific variable gene families tended to

be variable overall (59%), whereas the proportions of

gene families that were also variable overall were much

lower for Bacteroidetes- (12%), Firmicutes- (29%), and

Actinobacteria-specific (18%) gene families (Fig. 8c). This

supports the hypothesis that Proteobacterial abundance

is a dominant factor influencing functional variability in

the human gut microbiome. It further suggests that many

overall-variable gene families are not only merely markers

for the amount of Proteobacteria (or some other phylum)

but are also variable at finer taxonomic levels, such as the

species or even the strain level [59, 65].

Comparing the two dominant phyla in the gut, Bac-

teroidetes and Firmicutes, we further observe that the

A

C

B

Fig. 8 Phylum-specific tests reveal hidden variability in the most prevalent bacterial phyla. a, b Venn diagrams showing the number of significantly

variable (a) and invariable (b) gene families across Proteobacteria, Bacteroidetes, and Firmicutes, FDR ≤ 5%. c Bars indicate the fraction of

phylum-specific variable gene families that were also variable overall (yellow, “both tests”) or that were specific to a particular phylum (red,

“phylum-specific test only”)
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overall proportions of variable and invariable fami-

lies were similar across pathways, with some inter-

esting exceptions. For example, LPS biosynthesis had

more invariable gene families in Bacteroidetes than in

Firmicutes, which we expected given that LPS is pri-

marily made by Gram-negative bacteria. Conversely, both

two-component signaling and the PTS system had many

more invariable gene families in Firmicutes than in Bac-

teroidetes (Additional file 16: Figure S14C). However,

phylum-specific variable gene families tended not to over-

lap (median overlap, 0%, compared to 46% for invari-

able gene families). This was even true for pathways

where the overall proportion of variable and invariable

gene families was similar, such as cofactor and vita-

min biosynthesis and central carbohydrate metabolism

(Additional file 16: Figure S14D). Thus, unique genes

within invariable pathways vary in their abundance across

microbiome phyla.

Furthermore, the enriched biological functions of the

phylum-specific variable gene families differed by phylum

(Additional file 18). For instance, Proteobacterial-specific

variable gene families were enriched (Fisher’s test enrich-

ment q = 0.13) for the biosynthesis of siderophore group

nonribosomal peptides, which may reflect the importance

of iron scavenging for the establishment of both pathogens

(e.g., Yersinia) and commensals (e.g., Escherichia coli) [66].

Another phylum-specific variable function appeared to

be the type IV secretion system (T4SS) within Firmi-

cutes (q = 0.021). Homologs of this specialized secretion

system are involved in a wide array of biochemical interac-

tions, including the conjugative transfer of plasmids (e.g.,

antibiotic-resistance cassettes) between bacteria [67]. We

conclude that our approach enables the identification of

substantial variation within all four major bacterial phyla

in the gut, much of which is not apparent when data

are analyzed at broader functional resolution or without

stratifying by phylum.

Discussion
This study presents a novel test for genes whose abun-

dances are significantly more or less variable across indi-

viduals than expected. This test, which we call CCoDA,

provides a finer resolution andmore statistically grounded

estimate of “functional redundancy” [68] than was pre-

viously possible in the human microbiome. CCoDA dif-

fers from earlier approaches to quantifying variability

in microbiome function in several key ways. First, we

focus explicitly on the variability of gene family abun-

dance, not differences in mean abundance between prede-

fined groups, as has been done to reveal pathways whose

abundance differs between body sites [69] or disease

states [6].

Second, by using a null distribution based on the nega-

tive binomial, our model accounts for stochastic variation

in gene family abundance between individuals caused by

sampling. This parametric bootstrap null is more compu-

tationally intensive than previous approaches. However,

the use of such a null allows us much better control

over the false discovery rate than previous approaches

that dichotomized gene families based on binary pres-

ence/absence [12]. Dichotomizing in this way may be

acceptable for small datasets. However, based on the

data used here, dichotomizing would classify 12% of sig-

nificantly invariable (FDR ≤ 0.05) gene families and,

more problematically, 85% of non-significant gene fam-

ilies (q ≥ 0.25) as part of the “variable” metagenome.

This problem is not easily avoided by picking a dif-

ferent presence/absence cutoff (see Additional file 19:

Figure S15).

A third important aspect of our method is that the

underlying model accounts for the mean-variance rela-

tionship in count data and corrects for systematic biases

between studies. While estimating this mean-variance

relationship accurately requires a significant sample size

(the best results in simulations were obtained with n ≥ 40

per study), CCoDA can identify individual gene families

as well as pathways that break this overall trend. Because

we account for the mean-variance relationship, we iden-

tify different variable pathways than the previous studies

that relied on the sample variance only [13]. Additionally,

our major findings are robust when we apply the cen-

tered log-ratio transform (see Additional file 14: Figure

S16). Importantly, unlike previous work, CCoDA tends to

call pathways that are well-conserved across prokaryotes

invariable (for example, the Sec general secretory system;

see Fig. 6). This suggests that this method better captures

biological intuition about meaningful variation. Fourth,

the null distribution is estimated from the shotgun data

and does not require comparisons to sequenced genomes

[12]. Finally, unlike previous approaches, CCoDA can be

used for meta-analysis, integrating data from multiple

different populations.

We found that basic microbial cellular machinery,

such as the ribosome, tRNA-charging, and primary

metabolism, were universal functional components of the

microbiome, both in general and when each individual

phylum was considered separately. This finding is con-

sistent with the previous results [12] and indeed is not

surprising given the broad conservation of these processes

across the tree of life. In contrast, we identified invariable

gene families that have narrower phylogenetic distribu-

tions. These included, for example, proteins involved in

two-component signaling, starch metabolism (including

glucosides), and glycosaminoglycan metabolism. Previous

experimental work has underscored the importance of

some of these pathways in gut symbionts: for instance,

multiple gut-associated Bacteroides species use the gly-

cosaminoglycan chondroitin sulfate as a sole carbon
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source [56], and the metabolism of resistant starch in

general is thought to be a critical function of the omnivo-

rous mammalian microbiome [55]. These results suggest

that our method identifies protein-coding gene families

that contribute to fitness of symbionts within the gut.

Finally, we found a number of invariable gene families

whose function is not yet annotated. These gene families

may represent functions that are either essential or pro-

vide advantages for life in the gut and may therefore be

particularly interesting targets for experimental follow-up

(e.g., assessing whether strains in which these gene fam-

ilies have been knocked out in fact have slower growth

rates, either in vitro or in the gut).

We also identified significantly variable gene fami-

lies, including enzymes involved in carbon metabolism,

specialized secretion systems such as the T6SS, and

LPS biosynthetic genes. Proteobacteria, rather than Bac-

teroidetes or Firmicutes, emerge as a major source of

variable genes, including some genes whose abundance

also varied within the Proteobacteria (e.g., T6SS). Since

Proteobacteria have been linked to inflammation and

metabolic syndrome [32], we speculate that inflamma-

tion may be one variable influencing functions in the

gut microbiome. Some variable genes, including many of

unknown function, had surprisingly broad phylogenetic

distributions.

Variable gene families have a variety of ecological inter-

pretations, e.g., first-mover effects, drift, host demogra-

phy, and selection within particular gut environments.

Computationally distinguishing among these possibilities

is likely to present challenges. For example, distinguishing

selection from random drift will probably require longi-

tudinal data and appropriate models. Separating effects of

host geography, genetics, medical history, and lifestyle will

be possible only when richer phenotypic data is available

from a more diverse set of human populations. To con-

trol for study bias and batch effects, it will be important to

include multiple sampling sites within each study.

While statistical tests focused on differences in vari-

ances are not yet common throughout genomics, there

is recent precedent using this type of test to quantify

the gene-level heterogeneity in single-cell RNA sequenc-

ing data [19, 20] and to identify variance effects in

genetic association data [70]. Like Vallejos et al. [20], we

model gene counts using the negative binomial distribu-

tion and identify both significantly variable and invariable

genes. In contrast, we frame our method as a frequen-

tist hypothesis test as opposed to a Bayesian hierarchical

model. Our method also accounts for study-to-study vari-

ation. Also, unlike previous approaches in this domain,

CCoDA does not require biological noise to be explic-

itly decomposed from technical noise. Thus, our method

does not require the use of experimentally spiked-in con-

trols, which are not present in most experiments involving

sequencing of the gut microbiome. Instead, we detect

differences from the average level of variability using a

robust non-parametric estimator, which we show through

simulation leads to correct inferences under reasonable

assumptions.

Our null model does not explicitly account for zero-

inflation, that is, the presence of more zeros than

predicted by the negative binomial model; models incor-

porating zero-inflation have been proposed for taxo-

nomic microbiome data [71–73]. However, only 1–2%

of gene families showed significant zero-inflation, and

our method tended to call these genes non-significant

(Table 2). This suggests that zero-inflation may not be

as severe a problem for measuring gene family abun-

dance as it is for measuring microbial species. However, if

applied to a dataset where measurements were expected

to be more sparse, the method could be modified to

generate the null from a zero-inflated negative binomial

distribution.

A statistical method for detecting significant

(in)variability similar to the one we present here could

also be applied to other biomolecules measured in counts,

such as metabolites, proteins, or transcripts. Performing

such analyses on human microbiota would reveal pat-

terns in the variability in the usage of particular genes,

reactions, and pathways, which would expand on our

investigation of potential usage based on presence in the

DNA of organisms in host stool. Integrating the results of

these analyses could also further help to validate or inter-

pret the functional variability we observe in this dataset.

For example, mass spectrometry methods that can resolve

differently modified LPS molecules could reveal whether

the variation we observe at the metagenomic level is also

seen across LPS molecules with different immunogenic

properties. Of course, we would also expect that key

functions provided by the microbiome would be highly

regulated at the level of transcript or protein abundance.

Integrating transcript and/or protein variability with

Table 2 Number of genes (with at least one bacterial/archaeal

representative) with significant zero-inflation in each dataset,

q ≤ 0.05

Glucose
control

Type II
diabetes

Human
microbiome
project

Invariable (5% FDR) Inflated 16 42 34

Total 3768 3768 3768

Variable (5% FDR) Inflated 6 11 21

Total 1218 1218 1215

Non-significant Inflated 55 67 72

Total 2161 2151 2117
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DNA variability would allow us to come up with more

precise hypotheses about which functions are effectively

constitutive and which are more strongly modulated by

the gut environment.

Another important extension will be to generalize our

method for comparing hosts from different predefined

groups (e.g., disease states, countries, diets) to identify

gene families that are invariable in one group (e.g., healthy

controls) but variable in another (e.g., patients), analo-

gously to recent methods for the analysis of single-cell

RNAseq [21] and GWAS [70] data. In particular, gene

families whose variance differs between case and control

populations could point to heterogeneity within com-

plex diseases, interactions between the microbiome and

latent variables (e.g., environmental or genetic), and/or

differences in selective pressure between healthy and

diseased guts. Investigating group differences in func-

tional variability could thereby allow the detection of

different trends from the more common comparison

of means.

Conclusions
We present a statistical test for variability called CCoDA

that can integrate data from multiple studies to identify

individual variable and invariable gene families. Simula-

tions reveal CCoDA has high accuracy and power across

a range of realistic scenarios. Applying this test to shot-

gun metagenomes from healthy human gut microbiota,

we uncovered thousands of variable gene families whose

abundances were more variable than expected. In general,

more conserved genes tended to be less variable, but sig-

nificantly variable genes also included somewith relatively

broad phylogenetic distributions. Finally, while the phyla

Bacteroidetes and Firmicutes varied substantially between

healthy individuals, consistent with previous studies of the

human gut microbiome, we found that these phyla were

actually depleted for associations with variable genes. The

same was true for genera and families used to define

“enterotypes.” Instead, a less abundant phylum, Proteobac-

teria, contributed most to functional variation in this

population. These results argue that gene function in the

healthy human gut microbiome may be more variable

than previously assumed and that the major axes of taxo-

nomic variation in microbiota do not necessarily capture

the most variation in function.

Methods

Overview

CCoDA takes as input reads that have been mapped to a

reference library of gene families, yielding counts of gene

families in each sample (see “Data collection and pro-

cessing” in the “Methods” section). The following general

process is then applied (see also Additional file 2: Figure S2

for a graphical depiction):

• Counts are normalized for genome size and gene

length, yielding reads per kilobase of genome

equivalent (RPKG) (the “Data normalization” section)
• Confounding factors, like study-to-study variation,

are regressed out using a linear model (the “Model

fitting to correct for covariates” section)
• The variance of the resulting residuals is calculated

per gene (the “Model fitting to correct for covariates”

section);
• A null distribution is generated (the “Modeling

residual variances under the null distribution”

section):

– An overdispersion parameter ky giving the

mean-variance relationship is fit (per study y)
– This parameter, along with the estimated

means of each gene, is used to generate null

count data via parametric bootstrap

– The first four steps are repeated on the null

count data to obtain null residual variances for

each gene

– Repeat until the desired number of bootstrap

samples is reached

• Based on the resulting null distribution, p-values are
calculated and corrected for multiple testing.

Data collection and processing

Stool metagenomes from healthy human guts were

obtained from three sources:

1. Two American cohorts from the Human

Microbiome Project [13], n = 42 samples selected,

2. A Chinese cohort from a case-control study of type II

diabetes (T2D) [33], n = 44 samples from controls

with neither type II diabetes nor impaired glucose

tolerance, and

3. A European cohort from a case-control study of

glucose control [34], n = 37 samples from controls

with normal glucose tolerance.

These studies were chosen because they contained large

cohorts of healthy individuals and were publicly available

at the time at which we began this study. Samples (see

Additional file 20 for SRA IDs) were chosen to have at

least 1.5×107 reads andmode average quality scores≥ 20

(estimated via FastQC [74]). For consistency, each sample

was rarefied to a depth of 1.5 × 107 reads, and as reads

from HMP were particularly variable in length, they were

trimmed to a uniform length of 90 bp.

After downloading these samples from NCBI’s

Sequence Read Archive (SRA), the FASTA-formatted

files were mapped to KEGG Orthology (KO) [75] protein

families with ShotMAP [35], an algorithm based on the

aligner RAPSearch2 [64]. Bit-score cutoffs for matching
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a particular protein family were selected based on the

average read length of each sample as described [35].

The KEGG Orthology database was chosen because

it annotates a large number of bacteria and archaea,

including many species observed in the human gut, and

covers a wide range of gene families, including metabolic

enzymes, signaling proteins, and virulence factors.

Data normalization

The gene family counts were normalized for two con-

founders:

1. Average family length (AFL) or the average length of

the matched genes within a gene family

2. Average genome size (AGS) or the estimated average

genome length based on single-copy universal

marker genes (estimated using MicrobeCensus: [36]

http://github.com/snayfach/MicrobeCensus).

Normalization for these two factors yielded abundance

values in units of RPKG or reads per kilobase of genome

equivalents [36].

These RPKG abundance values were strictly positive

with a long right tail and highly correlated with the vari-

ances (Spearman’s r = 0.99). This strong mean-variance

relationship is likely simply because these abundances are

derived from counts that are either Poisson or negative

binomially distributed. We therefore took the natural log

of the RPKG values as a variance-stabilizing transforma-

tion. Because log 0 is infinite, we added a pseudocount

before normalizing the counts and taking the log trans-

form. Since there is no AFL when there are no reads for a

given gene family in a given sample, we imputed it in those

cases using the average AFL across samples.

Model fitting to correct for covariates

We fit a linear model to the data matrix of log-RPKG D

of log-RPKG described above, with n gene families by m

samples. The purpose of this linear model is to regress

out variation caused by factors we were not interested in

(here, study-to-study variation and per-gene-family mean

values):

Dg,s = μg +
∑

y∈Y

Iy,sβg,y + ǫg,s (3)

where g ∈ [1, n] is a particular gene family, s ∈ [1,m] is a

particular sample, μg is estimated by the grand (i.e., over-

all) mean of log-RPKG
∑

s Dg,s

m for a given gene family g,

Y is the set of studies, Iy,s is an indicator variable val-

ued 1 if sample s is in study y and 0 otherwise, βg,y is a

mean offset for gene family g in study y, and the resid-

ual for a given gene family and sample are given by ǫg,s.

For each gene family, the variance across samples of these

ǫg,s, which we term the “residual variance” or V ǫ
g , was our

statistic of interest. In this case, residuals can be obtained

simply by subtracting the per-dataset means from each

gene family.

Overall trends in these data are explained well by this

model, with an R2 = 0.20. The residuals, which are

approximately symmetrically distributed around 0, repre-

sent variation in gene abundance not due to study effects.

Modeling residual variances under the null distribution

Having calculated this statistic V ǫ
g for each gene family

g, we then needed to compare this statistic to its distri-

bution under a null hypothesis H0. This required us to

model what the data would look like if in fact there were

no surprisingly variable or invariable gene families. To do

this, we used the negative binomial distribution to model

the original count data (before adding pseudocounts and

normalization to obtain RPKG).

The negative binomial distribution is commonly used

to model count data from high-throughput sequencing. It

can be thought of as a mixture of Poisson distributions

with different means (themselves following a Gamma

distribution). Like the Poisson distribution, the negative

binomial distribution has an intrinsic mean-variance rela-

tionship. However, instead of a single parameter control-

ling bothmean and variance as in the Poisson, the negative

binomial has two, a mean parameter μ and a “size” or

“overdispersion” parameter k. k is defined by k =
μ2

σ 2−μ
.

(If the sample mean is plugged into μ and the sample

variance into σ 2, this equation also gives a method-of-

moments estimator for k.) k ranges from (0,∞), with

smaller values corresponding to more overdispersion

(i.e., higher variance given the mean) and larger values

approaching, in the limit, the Poisson distribution.

To model the case where no gene family has unusual

variance given its mean value (i.e., our null hypothesis),

we assumed that the data were negative binomially dis-

tributed with the observed means μg,y for each gene g

and study y, but where the amount of overdispersion

was modeled with a single size parameter ky for each

study y. This has similarities to previous approaches to

model RNAseq distributions [22, 39, 76] and to identify

(in)variable genes from single-cell RNAseq data [20] (see

also the “Discussion” section).

H0 : V ǫ
g = V ǫ

g |Dg,s ∼ NB
(
μg,y, ky

)

Halt : V
ǫ
g �= V ǫ

g |Dg,s ∼ NB
(
μg,y, ky

)

To estimate this k̂y, the overall size parameter for a given

study y, we first calculated a k̂ value for every gene in

that study with the method-of-moments estimator from

above, then estimated the mode of these individual k̂g,y
values. We estimated the mode by fitting a Gaussian

http://github.com/snayfach/MicrobeCensus
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kernel density estimate to the log-transformed k̂g,y values,

and then finding the k̂y value that gave the highest density.

(From simulations, we found that the mode method-of-

moments was more robust than the median or harmonic

mean; see Additional file 21: Figure S3. We use the har-

monic mean here because the arithmetic mean of k̂g,y is

highly unstable, probably because the distribution of k̂ has

a long right-hand tail [77]).

Having estimated k̂y and the per-gene means μ̂g , we

can now easily generate count data under this null distri-

bution, yielding a parametric bootstrap null. These null

count data are then treated identically to the real data: we

add a pseudocount and normalize by AFL and AGS, fit the

above linear model, and obtain null residual variances V
ǫ0
g

exactly as before.

Once the null is generated, statistical significance was

obtained by a two-tailed test:

pg =

#

((
V

ǫ0
g −V

ǫ0
g

V
ǫ0
g

)2

≥

((
V ǫ
g −V

ǫ0
g

V
ǫ0
g

)2
))

+ 1

B + 1

Here, B refers to the number of null test statisticsV
ǫ0
g (in

this case, B = 750), and the overlined test statistics refer

to their mean across the null distribution.

The resulting p values were then corrected for multiple

testing by converting to FDR q-values using the proce-

dure of Storey et al. [78] as implemented in the qvalue

package in R [79].

An alternative approach to determining significance is

based on the bootstrap. While using a parametric null

distribution allows us to explicitly model the null hypoth-

esis, it also breaks the structure of covariance between

gene families, which may be substantial because genes are

organized into operons and individual genomes within a

metagenome. This structure can, optionally, be restored

using a strategy outlined by Pollard and van der Laan [80].

Instead of using the test statistics V
ǫ0
g obtained under the

parametric null as is, we can use these test statistics to cen-

ter and scale non-parametric bootstrap test statistics V ǫ′
g ,

which we derive from applying a cluster bootstrap with

replacement from the real data and then fitting the above

linear model (3) to the resampled data to obtain bootstrap

residual variances:

V ǫ0′
g =

⎛
⎝

⎛
⎝V ǫ′

g − V ǫ′
g

sd
(
V ǫ′
g

)

⎞
⎠ × sd

(
V ǫ0
g

)
⎞
⎠ + V

ǫ0
g

A similar non-parametric bootstrap approach has pre-

viously been successfully applied to testing for differences

in gene expression [80].

Visualization

As expected, when the residuals are plotted in a heatmap

as in Additional file 6: Figure S7, variable gene fami-

lies were generally brighter (i.e., more deviation from the

mean) than invariable gene families, though not exclu-

sively: this is because our null distribution, unlike the

visualization, models the expected mean-variance rela-

tionship. We visualized this information by scaling each

gene family by its expected standard deviation under the

negative binomial null (i.e., by the mean root variance
∑

b∈[1,B]

√
V

ǫ0
gb /B) (Additional file 7: Figure S8).

In Fig. 4, for comparability with existing literature, gene

families in the T6SS were named by mapping to the COG

IDs used in Coulthurst [47], except when multiple KOs

mapped to the same COG ID; in these cases, the original

KO gene names were kept. Schematics of the T3SS, T6SS,

Tat, and Sec pathways were modeled on previous reviews

[47, 81, 82] and on the KEGG database [75]. The pathway

diagram in Fig. 5 is based on representations in the KEGG

database [75], MetaCyc [83], and reviews by Wang and

Quinn [84] and Whitfield and Trent [85]. These reviews

were also used to identify KEGG Orthology gene families

that were involved in lipopolysaccharide metabolism but

not yet annotated under that term.

Power analysis

Statistical tests should have reasonable power (also called

“recall”) and control α, the false positive or type I error

rate, at the desired level (e.g., 5% for a p value cutoff of

0.05). Our test controls α as expected if the correct size

parameter k is estimated from the data (Additional file 21:

Figure S3a-b). Estimating this parameter accurately is dif-

ficult, however, particularly for highly over-dispersed data

[77], and in this case, we must also estimate this param-

eter from a mixture of true positives and nulls. We found

that the mode of per-gene-family method-of-moments

estimates was more robust to differences in the ratio of

variable to invariable true positives (Additional file 21:

Figure S3e–g) than the median or harmonic mean (the

harmonic mean mirrors the approach in Yu et al. [76]).

Power analysis was performed on simulated datasets

comprising three simulated studies. For each study, 1000

gene families were simulated over n ∈ {60, 120, 480, 960}

samples. Null data were drawn from a negative binomial

distribution with a randomly selected size parameter k

common to all gene families, which was drawn from a

log-normal distribution (log-mean= −0.65, sd= 0.57).

Gene family means were also drawn from a log-normal

(log mean= 2.94, sd = 2.23). True positives were drawn

from a similar negative binomial distribution, but where

the size parameter was multiplied by an effect size z (for

variable gene families) or its reciprocal 1/z (for invari-

able gene families). The above test was then applied to the

simulated data, and the percents of type I and II errors
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(i.e., false positive and false negatives) were calculated

by comparing to the known gene family labels from the

simulation. Using similar parameters to those estimated

from our real data, we saw that α decreased and power

approached 1 with increasing sample size (see Additional

file 4: Figure S4) and that n = 120 appeared to be sufficient

to achieve control over α.

Calculation of an empirical FDR

At n = 120, we also noted that α appeared to be greater

for variable vs. invariable gene families (Additional file 5:

Figure S5). This could be because accurately detecting

additional overdispersion in already over-dispersed data

may be intrinsically difficult. Instead of using a single q

value cutoff for both variable and invariable genes, we per-

formed additional simulations to determine what q value

cutoff corresponded to an empirical FDR of 5%. We cal-

culated appropriate cutoffs based on datasets with 43%

true positives and a variable to invariable gene family ratio

ranging from 0.1 to 10, taking the median cutoff value

across these ratios (Additional file 10). Using these cutoffs,

the overall dataset had 45% true positives and a variable to

invariable gene family ratio of 0.43, indicating that these

simulations were realistic.

Estimating the phylogenetic distribution of gene families

To obtain estimates of the PD of KO gene families, we first

obtained sequences of each full-length protein annotated

to a particular KO. These sequences were then aligned

using ClustalOmega [86]. The resulting multiple align-

ments were then used to generate trees via FastTree [87].

For both the alignment and tree building, we used default

parameters for homologous proteins.

For all gene families represented in at least five dif-

ferent archaea and/or bacteria (6703 families total), we

then computed tree densities, or the sum of edge lengths

divided by the mean tip height. Using tree density instead

of tree height as a measure of PD corrects for the rate

of evolution, which can otherwise cause very highly con-

served but slow-evolving families like the ribosome to

appear to have a low PD (DongyingWu, personal commu-

nication, 2015). Empirically, this measure is very similar

to the number of protein sequences (Additional file 22:

Figure S11) but is not as sensitive to high or variable

rates of within-species duplication: for example, families

such as transposons, which exhibit high rates of duplica-

tion as well as copy number variation between species,

have a larger number of sequences than even very well-

conserved proteins such as RNA polymerase, but have

similar or even lower tree densities, indicating that they

are not truly more broadly conserved.

Many protein families (8931 families) did not have

enough observations to reliably calculate tree density,

with almost all of these being annotated in only a single

bacterial/archaeal genome. For these, we predicted their

PD by extrapolation. To predict PD, we used a linear

model that predicted tree density based on the total num-

ber of annotations (including annotations in eukaryotes).

In fivefold cross-validation, this model actually had a rel-

atively small mean absolute percentage error (MAPE) of

13.1%. We also considered a model that took into account

the taxonomic level (e.g., phylum) of the last common

ancestor of all organisms in which a given protein family

was annotated, but this model performed essentially iden-

tically (MAPE of 13.0%). Predicted tree densities are given

in Additional file 23. The PD of gene families varied from

1.2 (an iron-chelate-transporting ATPase only annotated

in Helicobacter pylori) to 434.9 (the rpoE family of RNA

polymerase sigma factors).

Gene family enrichment

We were interested in whether particular pathways were

enriched in several of the gene family sets identified in this

work. For subsets of genes (such as those with specifically

low PD), a two-tailed Fisher’s exact test (i.e., hypergeomet-

ric test) was used instead to look for cases in which the

overlap between a given gene set and a KEGG module or

pathway was significantly larger or smaller than expected.

The background set was taken to be the intersection of the

set of gene families observed in the data with the set of

gene families that had pathway- or module-level annota-

tions. p values were converted to q values as above. Finally,

enrichments were enumerated by selecting all modules or

pathways below q ≤ 0.25 that had positive odds ratios (i.e.,

enriched instead of depleted).

Associations with clinical and taxonomic variables

We used a general, non-parametric approach to detect

association of residual RPKG with clinical and taxonomic

variables (e.g., the inferred abundance of a particular phy-

lum or other clade via MetaPhlAn2). To take into account

potential study effects in clinical and taxonomic vari-

ables without using a parametric modeling framework, we

used partial Kendall’s τ correlation as implemented in the

ppcor package for R [88], coding the study effects as binary

nuisance variables.

Kendall’s τ was used instead of Spearman’s ρ because

while both are correlations based on ranks, Kendall’s τ

performs better when many observations have the same

rank. This is a particular problem with taxonomic data

because many taxa have zero abundance in some samples,

making their ranks equal.

The null distribution was obtained by permuting the

clinical/taxonomic variables within each study 250 times

and then re-assessing the partial τ . Finally, p values were

calculated by taking the fraction of null partial correla-

tions equally or more extreme (i.e., distant from zero) than

the real partial correlations.
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Taxonomic relative abundances were predicted from

the shotgun data by MetaPhlAn2 with the very

sensitive flag [60].

Two approaches were used to test for annotation bias.

First (Additional file 15: Figure S13A), gene families pri-

vate to a phylum (i.e., those annotated in only a single bac-

terial/archaeal phylum) were identified from the KEGG

database. We then tested whether these private gene fam-

ilies were enriched or depleted for significantly variable

gene families (5% FDR) using Fisher’s exact test. Second

(Additional file 15: Figure S13B), we performed a test in

which we sampled 215 private gene families from each

of Proteobacteria, Firmicutes, Actinobacteria, and Eur-

yarchaeota, totaling 860, plus 860 gene families annotated

in all four phyla. (Since Bacteroidetes only had 21 pri-

vate genes, that phylum was dropped from this analysis.)

Enrichment/depletion for variable gene families within

each phylum was performed as above.

Phylum-specific tests

We created taxonomically restricted datasets in which the

abundance of each gene family was computed using only

metagenomic reads aligning best to sequences from each

of the four most abundant bacterial phyla (Bacteroidetes,

Firmicutes, Actinobacteria, and Proteobacteria). Phylum-

specific data were obtained from the overall data as fol-

lows. First, the NCBI taxonomy was parsed to obtain

species annotated below each of the four major bacte-

rial phyla (Bacteroidetes, Firmicutes, Actinobacteria, and

Proteobacteria); these species were then matched with

KEGG species identifiers. Next, the original RAPSearch2

[64] results were filtered, so that the only reads remain-

ing were those for which their “best hit” in the KEGG

database originally came from the genome of a species

belonging to the specific phylum in question (e.g., E. coli

for Proteobacteria).

Since estimates of average genome size made from the

entire metagenome might differ from estimates made on

specific clades only, when performing the test, we normal-

ized for AGS by dividing gene family counts by themedian

abundance of a set of 29 bacterial single-copy marker

gene families [37]. These gene families were filtered in the

same phylum-specific way as all other gene families. This

approach is similar to the MUSiCC method for average

genome size correction [89] and also controls for overall

changes in phylum abundance. We also corrected for AFL

as above.

Finally, we estimated the average level of overdisper-

sion k̂y for individual studies based on the full dataset

(not phylum-restricted). We took this approach because

the expectation that <50% of gene families were differ-

entially variable might not hold within each individual

phylum. This could happen if, for example, different phyla

had larger or smaller “core” genomes or were more or less

prone to taking up DNA from the environment. We used

the same q value cutoffs as in the overall test to set an

estimated empirical FDR (Table 1). Otherwise, tests were

performed as above.

Zero inflation

Zero inflation was assessed separately for each gene in

each dataset by fitting the observed counts to a zero-

inflated model (using the zeroinfl function in the R

package pcsl [90, 91]) and testing significance of the

zero-inflation term. If the observed counts did not contain

any zeros, the p value was assumed to be 1. p values were

converted to q values as above to correct for multiple

testing.

Figures

Source data used to create main-text figures is provided in

Additional file 24.

Additional files

Additional file 1: Figure S1. The mean-variance relationship does not

depend on the total number of samples. The glucose control (GC) study

(n = 37) was subsampled to various numbers of samples (9, 12, 18, 28), and

the means, variances, and best-fits were computed as in Fig. 1, showing

that this relationship is highly robust to sample size. (PDF 4298 kb)

Additional file 2: Figure S2. Schematic shows overview of data

processing and method. (A) Data were collected from multiple datasets,

mapped using Shotmap [35] and normalized for average genome size [36]

and average gene family length. (B) The test integrates multiple studies

using a linear model, then uses a parametric bootstrap to generate the null

distribution for this linear model’s residual variance. See Additional file 9 for

a full description. (PDF 57 kb)

Additional file 3: Figure S6.We identified significantly variable and

invariable gene families, which are not explained by means near the limit of

detection or by large numbers of zeros. (A) Density plots of distributions of

residual variance (VG) statistics for significantly invariable (blue dashed line),

non-significant (black solid line), and significantly variable (red dashed line)

gene families. The distributions had the expected trend (e.g., significantly

variable gene families tended to have higher residual variance) but also

overlapped, indicating the importance of the calculated null distribution.

The inset shows the proportion of zero values for the non-significant

(black) and significantly invariable (blue) gene families with VG falling in the

lowest range (vertical dashed lines), indicating that the test differentiates

between gene families that only appear invariable because they have few

observations and gene families that are consistently abundant yet

invariable. (B-C) Density plots of distributions of log10 mean counts (B) and

fraction of zeros (C) across all three datasets for significantly invariable (blue

dashed line), non-significant (black solid line), and significantly variable (red

dashed line) gene families. Invariable gene families are not shown on the

right because they overwhelmingly have small numbers of zeros. Gene

families with very low mean abundances or large numbers of zeros tend to

be called non-significant, not variable, indicating that the test correctly

accounts for stochastic noise from low numbers of observations in

determining statistical significance. (PDF 186 kb)

Additional file 4: Figure S4. Size parameter estimation affects power

and α, with the mode method-of-moments giving the best control. α (A)

was minimized and power (B) was maximized when the mode

method-of-moments estimator was used to get estimates of the

study-specific dispersion parameters k̂y . Bars are from four simulations. The

proportion of variable/invariable gene families was 0.4, and 43% of genes

were true positives. (PDF 44 kb)

http://dx.doi.org/10.1186/s40168-017-0244-z
http://dx.doi.org/10.1186/s40168-017-0244-z
http://dx.doi.org/10.1186/s40168-017-0244-z
http://dx.doi.org/10.1186/s40168-017-0244-z
http://dx.doi.org/10.1186/s40168-017-0244-z
http://dx.doi.org/10.1186/s40168-017-0244-z
http://dx.doi.org/10.1186/s40168-017-0244-z
http://dx.doi.org/10.1186/s40168-017-0244-z


Bradley and PollardMicrobiome  (2017) 5:36 Page 20 of 23

Additional file 5: Figure S5. The mode estimator is robust to changes in

the proportion of true positives and the ratio of variable to invariable gene

families. α (A-C) and power (D-F) as a function of the proportion of true

positives (x-axis) and the ratio of variable to invariable true positives (y-axis)

for n = 120. α = 0.05 and power = 1 are shown in color-bars to the left of

each heatmap for reference. α and power were calculated overall (left), for

variable gene families (center), and for invariable gene families (right). In

general, α was better controlled for the invariable gene families than for

the variable gene families; we therefore used different empirical cutoffs for

each set of genes. (PDF 131 kb)

Additional file 6: Figure S7. Heatmap showing significantly variable and

invariable gene families (unscaled). Heatmap showing residual log-RPKG

abundances (i.e., after normalizing for between-study effects and

gene-specific abundances) of significantly invariable (blue) and

significantly variable (red) gene families. Variable and invariable gene

families were clustered separately, while samples were clustered within

each dataset. (PDF 158 kb)

Additional file 7: Figure S8. Heatmap showing significantly variable and

invariable gene families (scaled). As with Additional file 6: Figure S7, but

residual log-RPKG abundances were scaled by their expected variance

under the negative binomial null model (see the “Methods” section).

(PDF 161 kb)

Additional file 8: Figure S9. Carbon metabolism contains variable and

invariable gene families. (A) Pathway schematic showing a selection of

measured gene families involved in central carbohydrate metabolism.

Gene families are color-coded by whether they were variable (red) or

invariable (blue), with strength of color corresponding to the FDR cutoff

(color intensity). Genes involved in the Entner-Doudoroff pathway (edd),

pentose metabolism (fae-hps), hexose metabolism (K01622, K16306), and

tricarboxylic acid cycle intermediate metabolism (frdCD) were variable

across healthy hosts. Abbreviated metabolites are glucose-6-phosphate

(G6P), fructose-6-phosphate (F6P), fructose-1,6-bisphosphate (FBP),

glyceraldehyde-3-phosphate (GAP), dihydroxyacetone phosphate (DHAP),

6-phosphogluconolactone (6PGL), 6-phosphogluconate (6PG),

2-keto-3-deoxy-phosphonogluconate (KDPG), ribulose-5-phosphate (R5P),

ribose-5-phosphate (R5P), pyruvate (pyr), hexulose-6-phosphate (Hu6P),

formaldehyde (HCHO), 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate

(ADTH), and tetrahydromethanopterin (H4MPT). B) Heatmaps showing

scaled residual log-RPKG for gene families (rows) involved in central

carbohydrate metabolism. Variable (red) and invariable (blue) gene families

were clustered separately, as were samples within a particular study

(columns). log-RPKG values were scaled by the expected variance from the

negative-binomial null distribution. (PDF 248 kb)

Additional file 9: Supplementary information. (PDF 98 kb)

Additional file 10: Module and pathway enrichments for variable and

invariable gene sets (Fisher’s exact test q ≤ 0.25). (CSV 7 kb)

Additional file 11: Module and pathway enrichments for

variable/high-PD and invariable/low-PD gene sets (Fisher’s exact test

q ≤ 0.25). (CSV 2 kb)

Additional file 12: Figure S10. Violin plots showing distributions of

abundant phyla. (A) Abundance and (B) logit-transformed abundance

(log ( a
1−a + 10−6), where 10−6 was added to prevent taking the log of

zero) distributions were plotted for the six most abundant phyla.

(PDF 155 kb)

Additional file 13: Figure S12. Variable gene families are less-often

correlated to measured host characteristics or enterotype-associated taxa

and are more often correlated to Proteobacterial clades. (A-C) Bar plots

give the fraction of gene families with at least one bacterial or archaeal

representative in each category (significantly invariable, non-significant,

and significantly variable) that were significantly correlated to various

sample characteristics or taxonomic abundances, using partial Kendall’s τ

to account for study effects and a permutation test to assess significance.

(A) Fraction correlating (q ≤ 0.05) to average genome size (AGS), the ratio

of Bacteroidetes to Firmicutes (B/F ratio), and a measure of α-diversity

(Shannon index). (B) Fraction correlating (q ≤ 0.05) to the predicted

abundance of specific bacterial clades (the genera Bacteroides and

Prevotella, and the families Ruminococcaceae and Enterobacteriaceae). (C)

Fraction correlating (q ≤ 0.1) to classes of Proteobacteria. (***p ≤ 10−8 by

chi-squared test after Bonferroni correction; **p ≤ 10−4 .) (D-E) Significant

enrichment for variable gene families is not explained by taxon abundance

or prevalence. log10(abundance) (D) and log10(prevalence) (E) were

plotted vs. the degree of enrichment for variable gene families (a log-ratio

of the number of significantly associated variable vs. invariable genes, with

a pseudocount to avoid division by zero). Each family is represented as a

circle; filled green circles represent significant (Bonferroni p < 10−2)

enrichments for variable, invariable, or non-significant gene families.

Considering taxa with significant enrichments, there is no significant

correlation with abundance (r = −0.1, p = 0.58) or prevalence (r = −0.07,

p = 0.72). (PDF 200 kb)

Additional file 14: Figure S16. Proteobacteria, particularly

Enterobacteriaceae, are still most strongly associated with variable gene

families following clr-transformation. This transformation eliminates

spurious correlation arising from the analysis of compositional data such as

taxonomic relative abundances (see Additional file 9: Supplementary

Information for details). (A–C) Associations of phylum abundances with

gene families. Associations were computed as in Fig. 7 except using

clr-transformed data, with an association significance threshold of (A)

q ≤ 0.05, (B) q ≤ 0.035, and (C) q ≤ 0.02. (D–F) Same as A–C, but for clr-

transformed “enterotype” taxa (compare Figure S12B). (G) Same as A and D,

but for clr-transformed taxonomic families. (H-I) Significant enrichment for

variable/invariable gene families, based on clr-transformed data, plotted vs.

(H) abundance and (I) prevalence (compare Figure S12D-E). (PDF 1177 kb)

Additional file 15: Figure S13. Genes only annotated in Proteobacteria

or Euryarchaeota, but not Actinobacteria or Firmicutes, are more likely to

be variable. (A) Bar plots give the fraction of gene families with at least one

bacterial or archaeal representative in each category (significantly

invariable, non-significant, and significantly variable) that were annotated

only in the phylum listed (x-axis). Significance was assessed as in Additional

file 13: Figure S12, using a Holm correction for significance. p values are

color-coded by whether a phylum was enriched (red), depleted (blue), or

neither (gray) for variable gene families (Holm-corrected p ≤ 0.1). (B) Bar

plots are as per (A), but test results come from a test sampling equal parts

phylum-specific genes and genes annotated in all four listed phyla, with

phylum-specific genes themselves uniformly sampled across phyla.

(PDF 149 kb)

Additional file 16: Figure S14. Comparison between Bacteroidetes- and

Firmicutes-specific variable and invariable genes. A-B) Venn diagrams

showing the number of significantly variable (A) and invariable (B) gene

families across Proteobacteria, Bacteroidetes, and Firmicutes, FDR ≤ 25%.

Compare to Fig. 8a, b. C) Bars indicate the fraction of phylum-specific

variable gene families that were also variable overall (red, “both tests”) or

that were specific to a particular phylum (yellow, “phylum-specific test

only”). For the Bacteroidetes- (left) and Firmicutes- (right) specific tests, the

proportion of invariable (blue), non-significant (gray), and variable (red)

gene families, at an estimated 5% FDR (using cutoffs from overall test).

Pathways with at least five total gene families across both phyla are shown.

(D) Rectangular Venn diagrams showing the proportion of

Bacteroidetes-specific (left), shared (center, bright), and Firmicutes-specific

(right) invariable (blue) and variable (red) gene families for each of the

pathways enumerated in A. (PDF 367 kb)

Additional file 17: Module and pathway enrichments for gene families

with invariable abundances in every phylum-specific test (Fisher’s exact

test, q ≤ 0.25). (CSV 3 kb)

Additional file 18: Module and pathway enrichments for gene families

variable in each phylum-specific test (Fisher’s exact test, q ≤ 0.25).

(CSV 2 kb)

Additional file 19: Figure S15. Distribution of proportions of zeros (i.e.,

proportion with read counts equal to zero) of invariable (FDR ≤ 0.05),

non-significant (FDR ≤ 0.05), and variable (FDR ≤ 0.05) gene families

identified by CCoDA. (PDF 138 kb)

Additional file 20: SRA IDs and characteristics (read length, average

genome size fromMicrobeCensus) for samples used in this study. (CSV 5 kb)

Additional file 21: Figure S3. Size parameter estimator choice affects

accuracy of estimation. For each mock dataset y, simulated null data was

generated from a negative binomial distribution, fixing the size parameter

ky but allowing the mean μg,y to vary for each of 1000 genes; simulated
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true-positive gene families were drawn from a negative binomial

distribution with size equal to zky or ky/z, where z is the effect size. A-C)

The choice of estimator affected the accuracy of size estimates. The mode

method-of-moments estimator (C, y-axis) more accurately estimated the

true size specified in the simulation (x-axis) than the harmonic mean (A,

y-axis) or median (B, y-axis), and was more tolerant to differences in the

ratio of true-positive variable and invariable gene families (colors). D-E)

When the size parameter was known, α (D) and power (E) were well

controlled, with α approximately equal to 0.05 at p ≤ 0.05 and power

approaching 1. Here, each simulation comprised three mock studies with

different size parameters, mirroring our actual data. Bar heights represent

means from four simulations and error bars are ±2 SD. The proportion of

variable/invariable gene families was 0.5, and 44% of genes were true

positives.(PDF 170 kb)

Additional file 22: Figure S11. Number of leaves correlates with tree

density, but tree density corrects for the overall rate of evolution. The

number of leaves (i.e., individual sequences) was plotted vs. tree density on

a log-log scatter plot, with each circle representing one gene family. Two

outliers with lower density than expected were plotted in colors: a putative

transposase (green) and a Staphylococcus leukotoxin (red). Both families

have large numbers of sequences from the same organism. (PDF 492 kb)

Additional file 23: Predicted tree densities. (CSV 314 kb)

Additional file 24: Source data for figures. Figure 1, source data 1: matrix

of read counts (after rarefaction) for every gene family in each sample

included in the present study. Figure 1, source data 2: matrix of average

family lengths for every gene family in each sample included in the present

study. Figure 1, source data 3: log-RPKG abundances for every gene family

mapped in the present study. Figure 2, source data 1: residual log-RPKG

abundances (i.e., after fitting the linear model) for every gene family

mapped in the present study. Figure 3, source data 1: counts of invariable,

non-significant, and variable gene families per pathway. “Strong,”

“medium,” and “weak” refer to FDR cutoffs of 0.05, 0.10, and 0.25,

respectively. Figure 3, source data 2: counts of invariable, non-significant,

and variable gene families for ribosomes in each domain of life. Figure 4,

source data 1: residual log-RPKG scaled by the expected variance under the

null model (see the “Methods” section). Figure 6, source data 1: log10
phylogenetic distribution (PD), log10 residual variance statistics (residvar),

significance at 5% FDR (invariable coded as “dn”, variable coded as “up”,

non-significant coded as “ns”), presence in at least one bacterial/archaeal

genome in KEGG, and annotations for all measured gene families. Figure 6,

source data 2: counts of significant associations of invariable, non-

significant, and variable gene families with taxonomic summary statistics.

Figure 7, source data 1: counts of significant associations of invariable,

non-significant, and variable gene families with phylum-level abundances.

Figure 8, source data 1: q values for gene families in the overall test.

Figure 8, source data 2: q values for gene families in phylum-specific tests.

Figure 8, source data 3: JSON-formatted lists of significantly (in)variable or

non-significant gene families at 5% (“strong”), 10% (“med”), and 25% FDR

(“weak”); overall test. Figure 8, source data 4: JSON-formatted lists of

significantly (in)variable or non-significant gene families at 5% (“strong”),

10% (“med”), and 25% FDR (“weak”); phylum-specific tests. (BZ 51464 kb)
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